This invention relates to latch arrangements for closures such as automotive doors and tailgate locks, and is particularly, although not exclusively, useful with electronic central locking systems for vehicles. The inventions disclosed in this application concern components of the latches, systems incorporating such components, and methods of manufacture of latch arrangements. Generally, the purpose of each invention is to simplify and render more compact such latch arrangements, in order to reduce their cost and to reduce vehicle weight.
Electronic central locking systems are well known, and a typical such system is disclosed for example in GB-A-2167482; an improvement is disclosed in our PCT publication WO97/28338. These systems provide central control of the locking and unlocking of vehicle doors and other closures such as tailgates, bonnets and petrol caps, amongst other vehicle functions such as lights. They interact mechanically with the conventional locking mechanisms which usually comprise, for some doors, an external key mechanism and an internal door locking knob. Interior and exterior door handles are rendered inoperable or neutral by such locking mechanisms.
Vehicle door latches are disclosed for example in our own applications WO97/19242 entitled “Latch and Latch Actuator Arrangements”, WO97/19243 entitled “Latch Arrangement suitable for an Automobile Door” and WO97/28337 entitled “Latch Actuator Arrangement”. An electric motor incorporated within the latch, and usually controlled by the central locking arrangement, drives a mechanism for unlocking and locking the latch. A problem with door latches manufactured in accordance with other patent publications, such as EP-A-397966 (Roltra-Morese Spa) and GB-A-2221719 (Kiekert GmbH & Co Kommanditgesellschaft) has been size, weight and complexity.
Further, whilst mechanisms for using an electric motor to complete the closure of a partially-closed door are known as such, for example from U.S. Pat. No. 5,423,582 (Kiekert GmbH & Co Kommanditgesellschaft), and systems for using an electric motor to release the latch and allow the door to open are also known, for example from EP-A-625625 (General Motors Corporation) which discloses power-assisted door opening and closing, none of these prior systems has been hitherto capable of integration with electronic central locking. Some of the present inventions disclosed in this application provide integrated electric central locking and electric door opening and/or closing, and even the possibility of using a common electric motor for all these functions. This represents a substantial improvement to the state of the art.
To illustrate the possible saving in the number of latch components required to be assembled in manufacture, it can be seen for example from EP-A-743413 (Rockwell Light Vehicle Systems (UK) Limited) entitled “Vehicle Door Latch Assembly” that a very large number of components is typically required in a vehicle door latch. The present inventions reduce significantly the number of components, by simplifying the mechanical operation of the latch and its interaction with electric motor drive.
It is an important security feature that all electrically-operated drive systems, such as locking and door opening or closing, can be overridden by corresponding manual mechanical drive, as appropriate, in case of electrical malfunction or jamming. Each separate invention is capable of being used in a latch with fill mechanical override.
Double locking or so-called deadlocking or “super locking” mechanisms for vehicle doors are known as such. If the door has been locked by the key mechanism or electronic central locking, then it cannot be unlocked by the interior door knob. It can be unlocked by the interior door knob only if it has previously been locked by the door knob. To achieve this efficiently and simply, an invention provides an automobile door latch having a deadlocking arrangement.
Existing door latches for vehicles generally include components within a housing, and components extending outside the housing which make the arrangement bulky. As shown for example in Kiekert U.S. Pat. No. 5,419,597, the levers which cause the latch to release and the door to open, and which are connected to door handles by cables, generally project from the latch housing. We have discovered that it is possible to simplify the latch arrangement and to accommodate door handle-operated levers inside the latch housing, by providing a common axis of rotation for the latching pawl (sometimes denoted by the general term “locking member”), the pawl release lever connected to the door handle, and preferably also a rotary coupling member for selectively coupling the pawl release lever to the pawl.
Door latches typically comprise housings to which components are permanently riveted, so that the door latch cannot be disassembled non-destructively. An invention overcomes this problem, and also simplifies the process of assembly, by providing a latch assembly whose housing has a retaining means for retaining parallel plates releasably.
In some door latch arrangements incorporating electrically-powered actuation members for locking and unlocking, locking and unlocking is temporarily blocked if one of the door handles is pulled, but is unblocked once the handle is released. It then becomes necessary to repeat the actuation for locking or unlocking. In order to overcome this problem, an invention enables such actuation to be continued fully to completion once the handle has been released, without the need to repeat the actuation.
In order to couple electric motor drive to various appropriate actuation members within the latch assembly, for door opening and/or closing and/or for locking and unlocking or other functions such as child-safety locking, we have discovered that a rotary indexing mechanism is particularly useful, in which there is resilient coupling between formations in the driving actuators and formations on the rotary indexing mechanism. The resilience of this coupling allows the continued rotation of the indexing mechanism past the actuator once actuation has been completed over a phase of rotation of the indexing mechanism, by allowing positional tolerance.
As mentioned above, some of the inventions herein concern electric door opening, i.e. electrically-driven release of the latching mechanism to enable the door to open. An invention provides for the selective coupling of interior or exterior door handles, for example, to the door opening mechanism of the latch arrangement, under the control of a common electric motor. This is particularly advantageous as it provides electric control independently of each door handle, and thereby avoids the need to use a mechanical control for child-safety locking.
Some existing door latch arrangements provide for so-called panic door opening, by which the door can be unlocked by the operation of the interior door handle without the need to lift the interior door knob. The door then remains unlocked to ensure that the door can be opened by the exterior door handle. This prevents inadvertent locking out of the vehicle by the occupant. Usually, the door latch will be unlocked when the vehicle is in motion, but there may be circumstances in which it is locked with the vehicle stationary or even moving. The invention enables panic door opening to be provided in a latch arrangement of compact and simple design.
A particularly important invention is the combination of electric locking and electric door latch release (door opening) using a common electric motor. The invention also provides electrically-powered door closing, using the same electric motor. Preferably also such latch arrangements provide selective electrical control of interior or exterior door handles, for example, for door opening, and preferably they also provide electrically-operable child-safety.
Latch arrangements typically comprise a latch bolt, for engaging a fixed striker in the door frame, and a latching pawl for releasably holding the latch bolt so as to latch the bolt. Electric door opening can then be achieved by actuating the latching pawl. We have discovered a particularly beneficial arrangement for electrical door latch release and door opening, using a linear actuator acting directly on the latch pawl, this arrangement allowing independent door opening by external mechanical means such as the door handle.
An alternative beneficial arrangement for electrical door latch release on manual door opening, uses a rotary actuator acting directly on the latch pawl.
Electrically-powered door closing requires application of the drive to the latch bolt which then pulls on the fixed striker to draw the door to its fully closed position. We have found that a particularly beneficial arrangement is to have a rotary actuator, under electric power, acting on the latch bolt. Preferably, the arrangement also provides door opening, i.e. the same electrical drive, and preferably the same rotary actuator, is used to release the latch pawl to allow the door to open.
As a beneficial alternative to using a rotary actuator, an invention also provides a linear actuator acting directly on the latch bolt, against with optional door opening.
With all these arrangements, there is preferably a full mechanical override of any electrical function, i.e. mechanical actuation is independent.
With door latching arrangements there is a danger of inadvertent door locking when the door is slammed shut. This is particularly disadvantageous in electric central locking arrangements in which the locking of one door is linked to the locking of all doors. Existing anti-slam locking arrangements are generally quite complex, and one purpose of the invention is to provide an anti-slam latching arrangement with all the advantages of compactness and simplicity of the other inventions. This is achieved by appropriately orientating a reciprocating sliding coupling member within the latch arrangement. According to one embodiment of anti-slam latching is achieved differently, by ensuring that an actuator is prevented from moving within the latching arrangement whenever the arrangement is unlatched and the door open. The latching arrangement has a fixed formation which co-operates with the coupling actuator only at its unlocking configuration.
In order that the inventions may be better understood, the preferred embodiments thereof will now be described, by way of example only, with reference to the accompanying drawings, in which common reference numerals are intended to denote identical or equivalent parts throughout:
a shows a door opening arrangement integrated with electrical locking;
b shows an electrical door opening and closing mechanism, using a bi-directional rotary driving and indexing arrangement;
The operation of the latch bolt and pawl in relation to the movement of the door is described below with reference to
As shown in
The pin 30 is returned to its original neutral position Np, as shown in
Obviously alternative output drive couplings are possible, for example screw gears or spur gears. Further, the pin 30 could be replaced with any form of cam arrangements for abutting against a pawl.
In this arrangement, the door is opened, once the pawl has moved to its unlatching position, under the force of the resiliently-deformed door seal. The spring bias of the latch bolt 11 also contributes to the opening of the door.
An alternative form of door opening arrangement is shown in FIG. 2. The electric motor 70 output drive takes the form of a rack and pinion arrangement 31 producing linear drive in the direction D1, with part of the rack abutting against the pawl 20. Once the latch bolt has been electrically sensed to have moved to its fully unlatched position, the electric motor is either switched off, or else powered in the reverse direction, to bring the rack 31 back to its neutral position as shown in FIG. 2. When it is switched off, the rack remains in its door-opening position until the door is shut. Shutting the door causes the pawl to rotate to its latch engaging position, simultaneously driving the rack back to its neutral position. This is assisted by the spring biasing of the pawl 20.
The sensing of the position of the latch bolt also of course applies to the arrangement of
The arrangements of
The latch arrangement shown in
In this example, the unlatching or release of the pawl 20 is achieved indirectly through an actuation plate 38 pivotally connected at 40 to the pawl 20, and coupled to the rotary indexing and driving mechanism 50 by means of an arcuate slot 39 and a projecting pin 32 of the member 50. The arcuate slot 39 of the actuation plate 38 is concentric with the rotary member 50, and its function is to allow relative rotation of the rotary member 50 for approximately 70° in the clockwise direction D1, for door closing, without interference.
An extension arm 37 of the latch bolt 11 projects over the rotary indexing and driving member 50 for selective engagement with the pin 34. To close the door, the pin 34 is driven clockwise in direction D1 to the position A which the latch bolt 11 will have reached as a result of partial closure of the door manually. Completion of door closing is achieved by pin 34 abutting against extension 37 and driving it in the direction D3 to its fully latched position B. Once the latch bolt is electrically sensed to be fully latched, the motor is switched off and the rotary member 50 is returned by the spring 36 to its neutral position Np.
To open the door electrically, the motor drives the pin 34 anti-clockwise in direction D4, causing the pin 32 immediately to pull the end of the slot 39, thus to pull the pawl 20 in the direction D5 to unlatch it in direction D6. The latch bolt then springs open in the direction D7 as the door moves away from the frame in direction D8. Once the latch bolt has electrically been sensed to have reached its fully unlatched position, the motor is switched off, and rotary member 50 springs back to its neutral position Np.
The electrical position sensors are placed suitably in the latch so that, for example, when the pawl 20 is actuated to its unlatching position, it is prevented from falling into its half-latched position in notch 14.
This arrangement is capable of being accommodated in a single housing which is compact and simple to produce, improving on sound proofing and reducing manufacturing costs.
The latch arrangement of
Door closing is caused by rotating the pin 34 clockwise in direction D3 to abut against the latch bolt extension 37 at A and drive it to position A1. After a slight overtravel beyond point A1, the cam pin 34 becomes free from the latch bolt whilst rotating in the direction D3 towards a second neutral position Np2. Thus the first neutral position Np1 is located just before the cam pin 34 engages the latch bolt extension 37. The second neutral position Np2 is located at a point just past A1 but before it can engage the flange 44A. Once freed from the latch bolt, the cam pin 34 stops at its second neutral position Np2 by a resiliently deformable means such as a spring (not shown), after the motor has been switched off under the control of a suitable electrical position sensor (not shown). The motor may also be stopped at the second neutral position by means of a controlled powering of the motor in the reverse direction.
To open the door electrically the motor is powered to drive the cam pin from its neutral position 34B in direction D3 to the point 34C at which it abuts the actuator plate 41 to the point C1 at which the flange reaches the position 44B in direction D7. This causes the pawl to rotate in direction D4 to its fully unlatched position which allows the latch bolt to rotate in direction D5 whilst simultaneously moving away from the striker in direction D6. The cam pin 34 continues in the same direction to its first neutral point Np1.
At either neutral position, the latch bolt and pawl are completely free to be actuated manually, in a conventional manner, between their latched and unlatched positions. Thus conventional mechanical operation is interrupted only during electrical door opening and closing. This provides complete mechanical override as a safety measure against electrical dysfunction.
In contrast to the arrangement of
The arrangement of
A variant is shown in
The shuttle 56 is connected drivingly to an actuator plate 52 by a pin 53 riding in a slot 53, such that the shuttle is capable of driving the latch bolt for door closing without interference. The actuator plate 52 is pivotally connected at 51 to the pawl 20.
As with the arrangements of
Thus to close the door the shuttle 56 is driven from its neutral position to its extreme position P1 in direction D3, after which the electric motor is switched off and it returns to its neutral position. Electrical door opening is achieved by driving the shuttle in the opposite direction D5, from the neutral position to the second extreme position P2, which pulls the actuation plate 52 and releases the pawl.
This arrangement uses a potentially smaller drive motor, due to the greater gearing ratio.
A further modification of the door opening and closing mechanism is shown in FIG. 6. Instead of the rack and pinion arrangement, a linear shuttle 71 is driven in either linear direction by the cam pin 34 of the rotary indexing and driving member 50, in direction D1 or D2 as the case maybe. The cam pin 34 rides against a cam 74 fixed to the shuttle 71, so that drive is effected over a limited angular range or phase, for example about 40°, of rotation of the rotary member 50. Once again, the shuttle 71 is biased towards its neutral position by a tension-compression spring 72 mounted to a frame 73. The shuttle has an end formation 78 which drivingly abuts against the latch bolt extension 37 to move it from position A to position B. For electrical door opening, an actuator plate 77 corresponding to plate 52 is provided to link the shuttle 71 with the pawl 20. As with the arrangement of
The arrangement of
An alternative arrangement for electrical door opening is shown in FIG. 7. In this example, the shuttle 83, which is again constrained to move linearly, is driven from the electric motor 70 by means of leadscrew gearing taking the form of screw 81 and internally-threaded nut 82. The leadscrew 81 is driven by bevel gearing 80 from the rotary output drive. Once again, the shuttle is spring biased to its neutral position by a tension-compression spring 86. The slot 84 which couples to the pin 85 of the pawl 20 gives sufficient freedom to allow for independent mechanical door opening, as before. In this example, there is no provision for door closing, although of course this arrangement could be incorporated in the door closing arrangements of
This arrangement has the further advantage of complete independence of the mechanical door opening and closing from the electrical arrangement, at all stages of electrical door opening and closing from the electrical arrangement, at all stages of electrical door opening. It also has the advantages of enabling use with a relatively small motor, due to the high gearing ration, and is extremely adaptable and simple. As before, the compression-tension spring provides an anti-backlash arrangement which reduces noise by absorbing the inertia of the mechanism after the motor has been switched off; this also prolongs the life of the drive mechanism.
A further variation of the door opening and closing mechanism is shown in FIG. 8. The shuttle 95 in this example is driven linearly by a leadscrew 96 between two spaced tension springs 97 and 98 which are mounted on the leadscrew 96 between fixed brackets 99 and 200. The leadscrew is driven by a bevel gear 80 powered by the motor 70. The actuator plate 91 is again coupled to the shuttle 95 by a pin 92 sliding in a slot 94, and the shuttle 95 has an abutment surface at its end 93A which moves between a neutral position 93B, position A, a lower position 93C, position C, at which the pawl is unlatched, and an upper extreme position 93A, position B, at which the latch bolt is completely closed.
Preferably, the nut 95, formed integrally with the shuttle, and the screw 96, have their meshing teeth cut at 45° in relation to the axis of rotation of the leadscrew 96, so that the shuttle can drive the leadcrew and vice-versa. The means for constraining the nut 95 to move linearly may take any suitable form, such as grooves and rails (not shown) fixed to, or integral with, the latch housing (not shown).
The springs 97, 98 may be replaced by a single spring capable of use as a compression or tension spring coupled to the nut 95. It may also be a torsion spring coupled to the drive gear.
As with previous arrangements, electrical position sensing is employed to control the powering of the electric motor. A current sensor may be incorporated with the control electronics as an indicator that the latch bolt, for example has reached its latching position, since only overtravel beyond that point raises the current. Against, polarity of the electrical drive may temporarily be reversed, to counteract the inertia of the moving components.
This arrangement has advantages corresponding to the advantages of the arrangements of
With any of the arrangements of
A further modification of the previously-described electrical door opening and closing latch arrangements is shown in FIG. 9. In this example, the actuator plate 202 is connected pivotally at 203 to the pawl 20 near to the point of engagement with the latch bolt 11. It therefore operates in the reverse direction, as there is no lever action. This actuator plate 202 is constrained to rotate about the pivot axis of the rotary indexing and driving mechanism 50, or to move linearly in the actuation direction D4, by virtue of an end fork with limbs 205 and 206 on either side of the pivot axis.
In this example, the cam pin 34 is replaced by an arrangement of radial cams all integral with the rotary mechanism 50 and arranged in two separate planes normal to the pivot axis. In a first plane, radial cam 207 is arranged selectively to abut and drive the latch bolt extension 37. In a separate plane, radial cams 209 and 208 of the actuation plate 202 of the door opening, and a W-shaped leaf spring 210 fixed to the latch housing. The W-shaped spring 210 is a shock-absorber for the cam 208 as it rides up either limb, and locates it centrally. The spring 210 prevents backlash as well as locating the arrangement in its neutral position as shown.
To close the door, the rotary member 50 is driven clockwise in direction D1 to drive cam 207 against the latch bolt extension 37, as previously described. To open the door electrically, the rotary member 50 is also driven in direction D1 from its neutral position, to engage the lug 204 to drive the actuator plate 202 in direction D4 to unlatch the pawl.
Should electrical actuation be interrupted for whatever reason, the drive gear is moved back to its neutral position by means of a sliding spring (not shown) coupled to the drive gear. This guarantees full mechanical override, in the case of electrical malfuction.
The latch arrangement of
As with the W-shaped spring 210 of
Electrical door locking and unlocking, using the actuation member 222, is described below in greater detail with reference to
A variation of the door opening mechanism of
For electric locking, the notch 234 in the shuttle selectively engages with the end 1814 of a lever on 1810 pivoted at its centre 1812, and spring biased by a torsion spring 1813 on the pivot axis 1812 towards the neutral position as shown. The opposite limb 1811 engages in a notch of an actuation member 300 capable of moving in either direction D7; for locking and unlocking the latch.
Door closing is effected by driving the cam pin 30 against the extension 37 at the position A towards B; it is then impelled back to its neutral position N by the spring. Driving the motor in the reverse direction, the cam pin 30 moves in direction D2 to abut against the pawl 20A to release the latch bolt. Again, the cam pin 30 can be returned to its neutral position, either electrically or by the return spring.
The pawl 20 can alternatively be released manually by externally operable means, such as the handle through a lever 246 and cable 245.
In this example, the distal end 20A of the pawl 20 is elevated by bending so that it can override the latch bolt extension 37.
This particular arrangement enables a reduction in the drive torque and renders it more adaptable.
Door Opening and/or Closing Under Electric Power The arrangement of
With reference first to
The locking pawl 20 is mounted pivotally at 21, and pivot points 15 and 21 are both fixed to a latch housing (not shown). The pawl 20 has an end tooth 24 for locking engagement in notches 13, 14. At the same end, it is formed with a pin 23 on which there is pivotally mounted a link arm 25 which is coupled to a door handle for actuating the pawl. Lifting the door handle causes the link arm 25 to move in the direction shown by arrow 26, pulling the pawl 20 anticlockwise as shown by arrow 22, and moving the pawl to its unlocking position (not shown).
In accordance with the present invention, the latch bolt 11 is coupled drivingly to an electric drive motor 70, of the type commonly used for the central locking of vehicle doors. This coupling arrangement, to be described in greater detail below, also incorporates an arrangement for releasing the pawl.
The motor 70 is coupled to the latch bolt 11 through gears 40, 50, 60. Gear 40, shown in isolation in
Rotary motion of gear 50 in the direction shown by arrow 41 is controlled by its direct meshing engagement with the spindle of the motor 70. In the embodiments shown in
One section of gear 50 has a U-shaped indentation 51 which earns against a limb 33 projecting from a hook 32 at the end of a pawl actuator 30. The actuator 30 is constrained by formations on the latch housing (not shown) to reciprocate generally I the direction shown by arrow 34 in
The operation of the power-assisted door latch will now be described. It will be appreciated that the door latch can be operated either mechanically, without motor power, or else under motor power. This of course is an important safety feature.
Powered operation will be described first. With the door in its closed position, as shown in
Electronic position sensors, to be described below, cause the motor drive to switch off at the point that the vehicle door is partially open, and has passed its unlatched position. The door can then conveniently be opened fully by the passenger or driver.
Driving the latch bolt 11 clockwise has the desirable effect of pushing the door open, by reacting against the striker 10. This accelerates opening movement of the door, and such opening movement will continue until it is decelerated by friction in the door hinges by an amount dependent on the inclination of the vehicle.
When the door is closed, it will reach the same position, just beyond the half latch position, and will then cause the electric motor to be switched on again, with reverse polarity (to be described below). The motor then provides power-assisted door closing, to ensure that the door is properly closed and latched. Again, the half latch position is not possible, with power assisted closing. As the door commences full closure, anticlockwise rotation of the latch bolt 11 accompanies clockwise rotation of the smaller gear 40 together with the larger gear 50. After the first phase of such rotation, the extension 33 of the pawl actuator 30 translates back downwards. The free play between the pawl actuator and the pawl 20 allows the pawl 20 to ride over the slot 14 and into the slot 13, under a clockwise spring bias (not shown), without jamming. As the tooth 24 lodges in the slot 13, the arrangement returns to the position shown in FIG. 11.
Without power assist, the latch can be controlled by the door handle through the link arm 25. The mechanical interactions remain, and opening and closing the door causes rotation of the motor spindle, but this simply provides a small amount of mechanical resistance. Lifting the link arm 25 releases the pawl, allowing the door to be opened, whereby the latch bolt 11 is turned clockwise by striker 10. Again, the pawl actuator 30 is released form engagement with the gear 50 until the door is reclosed. It will also be appreciated that since the mechanical sequence is the same, power assisted closing can follow non power assisted opening, and vice versa. When the latch is operated purely mechanically, it is capable of lodging in the half latch position, with tooth 24 of pawl 20 in notch 14. This is an additional convenience and safety feature.
A modification of the arrangement of
An electric opening mechanism especially suitable for a boot or tailgate latch is shown in FIG. 15. The rotary output drive 50 of the motor 70 is coupled rigidly with a leadscrew 240 which causes linear reciprocating movement of a shuttle block 242 which is internally threaded in a nut portion 243 and which has an internal bore to receive the leadscrew 240. An end abutment surface of the shuttle 242 engages and drives the pawl 20 for door opening. As with other arrangements, a portion 244 of the pawl is connected by a link 245 to an external manual control such as a handle through a lever 246, to enable the door to be opened provided first the latch has been unlocked by a key mechanism, an interior door knob or an electrical control (not shown). The nut 243 and shuttle returns after each actuation to its neutral position, as shown, by at least one of the following mechanisms: a return spring acting on the nut; a return nut acting on the pawl; and repowering the motor so as to cause the nut to move in direction D6. The nut 243 is constrained to move linearly, by suitable means such as rails fixed to the housing.
In an alternative arrangement, the leadscrew 240 meshes with an internal thread 241 in the rotary drive gear 50, and the leadscrew is formed integrally with the shuttle 242. Further mechanical equivalent configurations will occur to the skilled reader.
A compact door latch arrangement is shown in FIG. 16. The housing 250 is in the form of a flat rectangular box with a rounded corner and a U-shaped opening for receiving the striker 10. The housing comprises mutually opposed end plates 252 and a side wall 251 defining an internal compartment 253 for housing the electric motor 70 and rotary output gearing 50. Cables 256, 258 for controlling respective levers 255 and 257 project through the side wall and are connected to the levers 255 and 257 project through the side wall and are connected to the levers by nipples held within end formations. The particular connection which his preferred is described below with reference to FIG. 16.
It is especially important for the compactness of this arrangement that several components are all mounted on the same pivot axes 21, including the pawl 20. This latch arrangement provides electric locking and unlocking.
The pawl 20 has a lever arm formed with a fork 259 to enable it to be driven rotationally. A pawn release lever 255 is pivotally connected on the pawl axis 21, for actuation by an external manual control such as an interior or exterior door handle. Rotary motion of the pawl release lever 255 is transmitted to the pawl fork 259 only by means of a rotary coupling member 300, 400 which carries a dependent elongate lug 262 disposed parallel to the pivot axis. Clockwise actuation of the pawl release lever 255 causes its end notch 263 to engage the lug 262, which is then driven against the fork 259. This leads the pawl 20 to its unlatching position, to allow the door to open.
The rotary coupling member 300, 400 comprises two components connected pivotally at the pivot axis 21 but capable of sliding movement, normal to the pivot axis, by virtue of an oval slot formed in both components 300, 400. Locking member 300 is constrained to move linearly between the left-most position as shown in
The rotary coupling member 300, 400, is driven selectively by an output disc 500 with an eccentric pin, driven by the bevel gear 50 of the motor 70. The pin drives the locking member 300 through a notch or other formation 302. Such coupling arrangements will be described in greater detail, in various alternative forms, with reference to
Mechanical locking and unlocking is achieved through lever 257, for example from a key mechanism or interior door knob. This drives the locking member 300 and forces the electric motor drive when it is not powered. Thus the latch arrangement provides independent mechanical and electric locking and unlocking.
A member 254, of which only a portion is shown, also couples drivingly with part of the locking member 300, for locking and unlocking.
The rotary sliding member 400 with the lug 262, which is permanently coupled with the fork 259 of the pawl 20, is prevented from moving between its locking and unlocking positions for as long as it is in the course of being actuated rotationally, by means of a boss or elongate block 260 projecting from the housing. Whilst the fork 259 rides over the boss 260, the lug 262 cannot move radially of the pivot axis 21 past the boss 260, in either radially direction.
Anti-slam Locking
The boss 260 also has the desirable function of providing anti-slam locking of the latch. The boss 260 prevents inadvertent locking of the door whilst the door handle is held open and the pawl is in its unlatching position, by preventing sliding movement of the locking member 300, due to the radial engagement of lug 262 with boss 260. Thus if the door latch were unlocked and the door then slammed shut, the door could not inadvertently be locked, since the rotary coupling member 300, 400 is held within the housing.
Even without such locking arrangement with the boss 260, the latch arrangement can be configured for anti-slam locking. In the configuration shown in
Selective Electric Locking
Two alternative latch arrangements for electrical locking and unlocking will be described with reference to
In addition, each latch arrangement has a further lever 900 connected to an external control mechanism through a cable 901, such as to a child-safety switch, or an interior door knob, depending on whether the arrangement is to be used in a rear door or a front door. This further lever 900 has a pivot point at 902 within the housing, and is connected to a lever arm with an end pin 903 coupling with an appropriate one of the rotary coupling members.
In the arrangement of
In the case of
The arrangement of
Rotary coupling member 350, 450 has a lug 451 on the left-hand side which is capable of being driven clockwise by notch 702 on pawl release lever 700. As mentioned above, it is also coupled pivotally to lever 900 through pin 903. The rotary sliding member 450 is formed with a notch 452 capable of being driven clockwise by a lug 802 on the pawl release lever 800. It is also formed with the notch 453 which drives lug 410 of other rotary sliding member 400, when at its left-most position.
Thus actuation of lever 700 drives the pawl through lugs 451 and 420 only in the position shown. If the rotary sliding member 450 were to be moved to the let, then lug 451 would no longer couple with notch 702, and lever 700 would be neutralized.
Actuation of lever 800 through notch 803 drives the lug 420 directly, but only if the rotary sliding member 400 is at its left-most position as shown. This in turn drives the pawl 20.
Wherever the rotary coupling member 350, 450 is at its neutral, left-most position (not shown), neutralizing lever 700, it is automatically returned to its coupling position, as shown, by the action of the other release lever 800 with its lug 802 acting on the notch 452 of rotary sliding member 450. Thus if for example the exterior door handle is operated on a door latch in which the interior door handle has been neutralized by a child-safety lever, subsequent operation of the interior door handle serves to open the door; in other words, operation of the exterior handle overrides the child-safety function. Similarly, this arrangement provides for a panic override of door locking, enabling lever 800 to raise the interior door knob coupled to lever 900 when an interior front door handle is operated.
The arrangement of
These arrangements avoid the need for a mechanical child-safety lever, since the selective operation of an interior door handle can be controlled electrically form an electronic central control unit. The use of the exterior door handle as a mechanical override allows the interior handle to be opened, and this is useful for police vehicle use as well as for child safety.
The arrangements also enable double locking to be achieved, by rendering neutral the interior door knob connected to lever 900 in
Existing door latches require a number of mechanical units for double locking, and often employ two motors.
Continuation of Locking or Unlocking Function After Temporary Blocking by Mechanical Door Handle Actuation
Pawl release lever 700 of
An alternative configuration for the rotary sliding members 400 and pawl 20 of
A separate electric motor 70 drives a lever 194 pivoted at 195, by way of a sliding block 191 to which it is pivoted at 192 through a slot 193. The block 191 is constrained to move linearly and is driven by a leadscrew 198 driven by the motor through reduction gearing. The lever 194 at its pivoted end has a pin 196 connected to an actuation lever 197 capable of reciprocating linearly in directions D3 and D4 between positions c and d, to operate the child-safety mechanism. This couples the mechanism to the pawl selectively, as described above, for selective decoupling of the interior door handle. The electrical control avoids the need for a mechanical child-safety lever or switch in the rear door latch.
Combined Electrical Locking and Door Opening and Closing
The arrangements shown in
The latch arrangement in
Door opening is achieved by the shuttle 1006 which has an abutment surface 1005 acting on the lever 1008 of pawl 20. Door closing is achieved by the abutment surface 1010 at the lower end of the shuttle which abuts against the latch bolt extension 37 to move it form position B to position B1. As shown, the cam finger 1004 moves between a neutral position Np and extreme positions P1 and P2. As before, the shuttle is controlled by a tension compression coil spring 1007.
The arrangement of
A further variant is shown in
A further variation is shown in
As with other arrangements, the rotary member 50 may be spring biased into its neutral positions for example by a sinuous rotary cam surface against which the leaf spring 1037 is forced radially.
Alternative resilient formations are of course possible. The cam pin 30 may be fixed, and rides over a V-shaped leaf spring 1070 retained within a box formation in actuator 1080 which is part of one of the locking members, for example. Alternatively, a pin or button 30 is mounted for sliding movement in the housing either of the actuator of the rotary member 50, so that it can be depressed to allow the passage of the co-operating cam.
In the arrangement shown in
Housing for Latch Actuator
As described above, the latch actuator can be formed in a compact box-shaped housing. As shown in
An elongate closure plate 3010 has keyhole-shaped apertures 3012 and 3013, coupling with the projecting pivot axes 3015 and 3028. During manufacture, once the latch arrangement components have been assembled as shown, and the face plate 3017 inserted over the three spindles, the closure plate 3010 is located with the larger circular portion of each keyhole 3012, 3013 passing over the enlargements 3015, 3028. At this point, a corresponding aperture 3011 in the closure plate is slightly misaligned with the axis of the spindle 3019 as shown. The closure plate 3010 is then slid, in direction A, over the face plate 3017, to lock it into position. The inner portions of each keyhole slide over and retain the respective spindles on the pivot axes 21 and 15. The closure plate then bears against the enlargements or studs 3015 and 3028. At this point, aperture 3011 in the closure plate reaches the axis of the spindle 3019, and a closure cap 3014 is inserted with a push fit through aperture 3011 and a corresponding aperture in the face plate 3017, to secure the closure plate against sliding movement.
This arrangement allows non-destructive disassembly of the latch arrangement, simply by removing the cap 3014 sliding the closure plate 3010 and then removing the closure plate and disassembling the remainder of the latch assembly. Thus faulty components can be replaced at any time.
Each end of the latch housing may have its own such closure plate.
Number | Date | Country | Kind |
---|---|---|---|
PCT/GB97/03434 | Dec 1997 | WO | international |
This application is a continuation of Ser. No. 09/372,912, filed Aug. 12, 1999 now U.S. Pat. No. 6,386,599.
Number | Name | Date | Kind |
---|---|---|---|
4223927 | Kobayashi et al. | Sep 1980 | A |
4502718 | Sasaki et al. | Mar 1985 | A |
4762348 | Matsumoto | Aug 1988 | A |
4763936 | Rogakos | Aug 1988 | A |
4948183 | Yamada | Aug 1990 | A |
4966266 | Yamada et al. | Oct 1990 | A |
5088347 | Wanlass | Feb 1992 | A |
5222775 | Kato | Jun 1993 | A |
5411302 | Shimada | May 1995 | A |
5516164 | Kobayashi | May 1996 | A |
5639130 | Rogers | Jun 1997 | A |
6565131 | Roos | May 2003 | B2 |
Number | Date | Country |
---|---|---|
0106725 | Apr 1984 | EP |
745746 | Dec 1996 | EP |
528082 | Oct 1940 | GB |
WO 9628666 | Sep 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20020121784 A1 | Sep 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09372912 | Aug 1999 | US |
Child | 09993794 | US |