The present disclosure relates to a latching mechanism in applications where it is desirable to lock two doors using a single lock.
In certain applications and environments it is desirable to lock two doors with a single lock situated at the center of one of the doors. In those instances there exist many types of latches that allows for the latching of the door opposite the lock. One such latch is a manual slide action latch that requires the user to reach behind the door and manually latch or unlatch the door opposite the lock. In another example, a latch will automatically actuate when the door with the lock on it closes, thereby latching the opposite door. In both such cases, the door opposite the lock needs to be closed first. In the latter case, closing first the door with the lock and then the opposite door will result in a crash (physical contact) involving the latch that may damage the latch mechanism and possibly the furniture (or other associated structure).
A variety of approaches have been previously published relating to consideration of locking or latching plural doors, involving or not a center post or similar. Examples include U.S. Pat. No. 7,458,621 to Fujihara et al. entitled Door connector; U.S. Pat. No. 6,729,701 to Carter et al. entitled Safety cabinet; U.S. Pat. No. 6,120,071 to Picard et al. entitled Mortise latch vertical rod exit device; U.S. Pat. No. 5,078,437 to Borgmeyer et al. entitled Transformer having an integral cabinet with door latching and locking apparatus; U.S. Pat. No. 4,793,643 to Ahad et al. entitled Door closing and locking mechanism; U.S. Pat. No. 4,703,981 to Stewart entitled Collapsible cabinet; U.S. Pat. No. 4,457,146 to Weinerman entitled Sliding door lock; and U.S. Pat. No. 4,235,463 to Benevenuta entitled Closure device for container doors. The complete disclosures of the foregoing listings are incorporated herein by reference, for all purposes.
The present disclosure offers a solution for such problems which allows the doors to be closed in any order (including both doors simultaneously) without a crash and with automatic latching.
In view of the recognized features encountered in the prior art and addressed by the presently disclosed subject matter, improved apparatus and corresponding methodology therefor have been provided for improved lock closures. More particularly, the presently disclosed subject matter relates to automatic latching upon closure of the associated doors.
In certain broader present aspects, it is a present object to provide latching features for applications to allow for the locking of two doors using a single lock.
In certain aspects, another more particular present object of various present exemplary forms in accordance with presently disclosed subject matter is to allow a user to slam closed associated doors in any order. More specifically, it an object for some presently disclosed embodiments to offer a latching solution to allow doors to be closed in any order including the closing of multiple doors simultaneously, without a crash but with automatic latching.
Another present broader object of various of the presently disclosed exemplary embodiments is to provide devices that have a self-latching nature so that the resulting latch assembly allows for the automatic latching of the cabinet doors without having to manually latch one of the doors before locking the other.
In accordance with further broader objects, aspects, and advantages of certain embodiments of the present subject matter, methodologies are provided which advantageously allow for multiple configurations. As one example, in the case of tall wardrobe doors, the presently disclosed subject matter allows for installation of two latch assemblies, one at the top and another at the bottom, with the lock installed in the center position of the door, thereby preventing the prying of the doors. Further, embodiments of the presently disclosed subject matter may be mountable at the top and/or bottom of a cabinet or wardrobe or other similar enclosure.
Another present broader object of various of the presently disclosed exemplary embodiments is to provide devices that may be field retrofitable for use with an existing structure, or which may be originally installed with newly manufactured components.
In accordance with yet additional objects, aspects, and advantages of further exemplary embodiments of the present subject matter, apparatus and accompanying and corresponding methodologies are provided for practice in accordance with the presently disclosed structures, devices, and combinations thereof.
One present exemplary embodiment relates to a latch assembly for multiple doors of an enclosure. Such an exemplary latch assembly preferably comprises a pusher engagement member for mounting on a first associated door of an associated enclosure; a catch engagement member for mounting on a second associated door of an associated enclosure; and a housing defining an interior chamber along an elongated axis of such housing. Further, such exemplary latch assembly preferably also comprises a pair of sliding spring-loaded bolts comprising respective bolt and spring pairs received in axial alignment for slide movement in such interior chamber with such bolts in partially nested position, such that an active bolt of such pair of bolts engages and pushes outwardly away from such housing a passive bolt of such pair of bolts whenever such active bolt is engaged by such pusher engagement member for relatively inward movement of such active bolt relative to such housing, so that such passive bolt is in a relatively extended position relative to such housing to engage such catch engagement member whenever the second associated door of the associated enclosure is in a closed position.
In variations of such exemplary latch assembly, such passive bolt may be mounted for inward sliding movement along such interior chamber relative to such housing whenever such passive bolt is engaged by such catch engagement member, without moving such active bolt.
In other variations of the foregoing, such interior chamber may comprise a u-shaped channel formed by such housing; and such latch assembly may further include a cap plate for selectively enclosing such u-shaped channel for maintaining such springs and inward ends of such bolts in such interior chamber.
Per other alternatives of the foregoing, such bolts may have respective outward ends forming angled surfaces for contact with such engagement members for respectively being driven by such engagement members in an inward direction relative to such housing; and such bolts may have respective inward ends forming pins disposed for securing respective ends of their paired springs.
In yet other alternatives, an exemplary latch assembly in some embodiments may further comprise a pair of mating stop members formed respectively on such active bolt and such passive bolt for limiting the range of inward movement of such active bolt.
For still other alternatives, a presently disclosed latch assembly in some implementations may further comprise a pair of cradles formed in such interior chamber for respectively receiving such pair of springs in parallel, non-axial alignment.
In other presently disclosed alternative arrangements, a latch assembly may further include a lock for mounting relative to the associated enclosure for locking the first and second associated doors whenever such doors are closed.
Still other variations may comprise a latch assembly wherein such interior chamber may comprise a u-shaped channel formed by such housing, with such passive bolt mounted therein for inward sliding movement along such interior chamber relative to such housing whenever such passive bolt is engaged by such catch engagement member, without moving such active bolt; such bolts may have respective outward ends forming angled surfaces for contact with such engagement members for respectively being driven by such engagement members in an inward direction relative to such housing; and such bolts may have respective inward ends forming pins disposed for securing respective ends of their paired springs. Further, such alternative latch assembly may further include a cap plate for selectively enclosing such u-shaped channel for maintaining such springs and inward ends of such bolts in such interior chamber; a pair of mating stop members formed respectively on such active bolt and such passive bolt for limiting the range of inward movement of such active bolt; and a pair of cradles formed in such interior chamber for respectively receiving such pair of springs in parallel, non-axial alignment.
Yet another presently disclosed exemplary embodiment relates to a latch assembly for mounting on a cabinet having at least respective paired first and second doors. Such exemplary latch assembly preferably comprises respective pusher and catch members for respective mounting on such first and second doors; and a latch module. Such latch module is preferably for mounting on such cabinet between such pusher and catch members, and having a housing defining an interior chamber along an elongated axis of such housing, and having a pair of slam bolts received in such interior chamber for respective closing engagement of such bolts depressed into such latch module housing whenever respectively engaged by such pusher and catch members. Further, preferably, such bolts are partially nested relative to each other so that depressing one bolt into such latch housing extends the other bolt out of the opposite side of the latch module housing while depressing such other bolt into such latch housing passes by the one bolt without changing position of such one bolt in such latch module housing.
Exemplary variations of such latch assembly may further comprise a pair of mating stop members formed respectively on such bolts for limiting the range of depressing movement of such one bolt into such latch module housing. In others, such slam bolts may be respectively associated with springs received within such latch module housing. In still others, such latch assembly may further comprise a u-shaped channel formed by such latch module housing and forming such interior chamber thereof; and may further include a cap plate for selectively closing such u-shaped channel for maintaining such springs and inward ends of such bolts in such interior chamber.
In yet other present alternatives of such latch assembly embodiments, such bolts may have respective outward ends forming angled surfaces for contact with such pusher and catch members for respectively being depressed by such pusher and catch members into such latch module housing; and such bolts may also have respective inward ends forming pins disposed for securing respective ends of their associated springs.
In still other variations, such exemplary latch assembly embodiments may in some instances further comprise a pair of cradles formed in such interior chamber for respectively receiving such pair of springs in parallel, non-axial alignment.
In others of the foregoing, they may further include a lock for mounting relative to the associated enclosure for locking the first and second associated doors whenever such doors are closed.
Still others of the foregoing may further include a second set of respective pusher and catch members for respective mounting on such first and second doors; and a second latch module for mounting on such cabinet between such second set of respective pusher and catch members.
It is intended to be understood by those of ordinary skill in the art from the complete disclosure herewith that the presently disclosed subject matter equally relates to apparatus as well as corresponding and/or related methodologies. One exemplary presently disclosed methodology relates to subject matter for locking a cabinet having at least respective paired first and second doors. Such methodology preferably comprises mounting respective pusher and catch members on the respective first and second doors; and mounting a latch module on the cabinet between the pusher and catch members. Preferably, such latch module has a housing defining an interior chamber along an elongated axis of such housing, and has a pair of slam bolts received in such interior chamber for respective closing engagement of such bolts depressed into such latch module housing whenever respectively engaged by such pusher and catch members. Further, preferably, such bolts are partially nested relative to each other so that depressing one bolt into such latch housing extends the other bolt out of the opposite side of the latch module housing while depressing such other bolt into such latch housing passes by the one bolt without changing position of such one bolt in such latch module housing.
In some embodiments of the foregoing, such exemplary methodology may optionally further include mounting a lock on the cabinet for selectively locking the first and second associated doors whenever such doors are closed, whereby two respective doors are locked by a single lock.
In other present alternatives, a pair of mating stop members may be formed respectively on such bolts for limiting the range of depressing movement of such one bolt into such latch module housing.
In still other present variations of presently disclosed methodology, such slam bolts may be respectively associated with springs received within such latch module housing; such bolts may have respective outward ends forming angled surfaces for contact with such pusher and catch members for respectively being depressed by such pusher and catch members into such latch module housing; and such bolts may have respective inward ends forming pins disposed for securing respective ends of their associated springs.
In yet other variations of presently disclosed methodology, steps may be included for further including providing a second set of respective pusher and catch members respectively mounted on such first and second doors; and providing a second latch module mounted on such cabinet between such second set of respective pusher and catch members.
In certain alternative arrangements of presently disclosed subject matter involving a lock, such first and second doors may be relatively elongated and such latch modules may be spaced at a distance relative to each other, and such lock may be mounted in a central location relative to such two spaced latch modules.
Additional objects and advantages of the presently disclosed subject matter are set forth in, or will be apparent to, those of ordinary skill in the art from the detailed description herein. Also, it should be further appreciated that modifications and variations to the specifically illustrated, referred and discussed features, elements, and steps hereof may be practiced in various embodiments and uses of the presently disclosed subject matter without departing from the spirit and scope of the subject matter. Variations may include, but are not limited to, substitution of equivalent means, features, or steps for those illustrated, referenced, or discussed, and the functional, operational, or positional reversal of various parts, features, steps, or the like.
Still further, it is to be understood that different embodiments, as well as different presently preferred embodiments, of the presently disclosed subject matter may include various combinations or configurations of presently disclosed features, steps, or elements, or their equivalents including combinations of features, parts, or steps or configurations thereof not expressly shown in the figures or stated in the detailed description of such figures. Additional embodiments of the presently disclosed subject matter, not necessarily expressed in the summarized section, may include and incorporate various combinations of aspects of features, components, or steps referenced in the summarized objects above, and/or other features, components, or steps as otherwise discussed in this application. Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the remainder of the specification.
A full and enabling disclosure of the presently disclosed subject matter, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Repeat use of reference characters throughout the present specification and appended drawings is intended to represent same or analogous features, elements, or steps of the present subject matter.
Referring to
While the presently disclosed subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, the scope of the present disclosure is by way of example rather than by way of limitation, and the subject disclosure does not preclude inclusion of such modifications, variations and/or additions to the presently disclosed subject matter as would be readily apparent to one of ordinary skill in the art.
This application claims the benefit of previously filed U.S. Provisional Patent Application entitled “THREE POINT LATCH,” assigned U.S. Ser. No. 61/857,064, filed Jul. 22, 2013, and which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1013553 | Johnson | Jan 1912 | A |
2489154 | Relton | Nov 1949 | A |
4179143 | Shy | Dec 1979 | A |
4235463 | Benevenuta | Nov 1980 | A |
4457146 | Weinerman | Jul 1984 | A |
4703981 | Stewart | Nov 1987 | A |
4793643 | Ahad et al. | Dec 1988 | A |
5078437 | Borgmeyer et al. | Jan 1992 | A |
5570912 | Mullich | Nov 1996 | A |
6023953 | Vickers et al. | Feb 2000 | A |
6120071 | Picard et al. | Sep 2000 | A |
6729701 | Carter et al. | May 2004 | B2 |
7458621 | Fujihara et al. | Dec 2008 | B2 |
8888147 | Blanck et al. | Nov 2014 | B2 |
20050127692 | Sanders | Jun 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20150022070 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61857064 | Jul 2013 | US |