The present disclosure relates to latch assemblies using a reverse draw motion to releasably connect a first item to a second item.
This section provides background information related to the present disclosure which is not necessarily prior art.
Components such as radio units and electronic equipment are commonly connected to support frames or cabinets to promote sealing from atmospheric conditions such as water, dirt, humidity and the like. The components can be connected using releasable connectors such as latches to permit ease of disassembly for maintenance, or to release the component for easier transportation, such as when the component needs to be moved.
Known latches used for these applications commonly include a draw mechanism that operates by rotation of a latch arm which draws the component and frame toward each other to affect the releasable connection. Draw mechanism latch designs commonly require access to a side of both the component and the frame or cabinet, therefore requiring that access space be provided to initially engage a hook or catch member and for the necessary arc of rotation of the latch arm to set or release the latch.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
According to several embodiments of the present disclosure, a latch assembly includes a housing having a cavity created between a first end wall and a second end wall. The housing further includes a journal member extending from the second end wall, and a swing arm aperture created in the second end wall. A swing arm member having a swing arm is positioned partially within the cavity and has a portion of the swing arm extending freely through the at least one swing arm aperture and away from the housing along a longitudinal axis. A keeper/catch member is rotatably connected to the journal member and has a keeper longitudinal axis. Rotation of the keeper/catch member from an initial orientation having the keeper longitudinal axis rotated away from parallel alignment with the portion longitudinal axis to a second orientation having the keeper longitudinal axis approximately parallel with or oppositely positioned with respect to the portion longitudinal axis creates a pushing force acting through the keeper/catch member.
According to still further embodiments, rotation of the keeper/catch member from the initial orientation to the second orientation creates an over-center locking condition of the housing and a pushing force acting through the keeper/catch member. The first and second swing arms each include a pin aperture located proximate to an arm end. The pin apertures are coaxially aligned on an aperture alignment axis, whereby the pushing force created by the keeper/catch member acts against a pin slidably received through the pin apertures used to mount the latch assembly to a first component.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Referring to
A keeper/catch member 30 is rotatably connected to the first and second journal members 24, 26. Keeper/catch member 30 includes a first curved surface 32 defining one end, which is oppositely positioned with respect to a second curved surface 34 defining a second end. Keeper/catch member 30 further includes a planar surface 36 oppositely oriented with respect to a concave surface 38. In use, first curved surface 32 is positioned proximate to second end wall 28 of housing 12.
First and second swing arm apertures 40, 42 are created through second end wall 28. Extending individually through the first and second swing arm apertures 40, 42 are each of a first swing arm 44 and a second swing arm 46. First and second elongated slots 18, 20 are provided for clearance when first and second swing arms 44, 46 are slidably disposed through housing 12 as they are inserted through first and second swing arm apertures 40, 42. First and second swing arms 44, 46 form a portion of a swing arm member 48. After inserting the first and second swing arms 44, 46 through the first and second swing arm apertures 40, 42, a first roll pin 50 is inserted through first swing arm 44 and, similarly, a second roll pin 52 is inserted through second swing arm 46. First and second roll pins 50, 52 prevent the release of first and second swing arms 44, 46 following their insertion in a swing arm extension direction “A” by an opposite motion in a retraction direction “B”. First swing arm 44 further includes a first pin aperture 54 oriented substantially perpendicular to first swing arm 44 and created in a first semicircular end 56. Similarly, a second pin aperture 58 is created in second swing arm 46 at a second semicircular end 60 of second swing arm 46. The first and second pin apertures 54, 58 are coaxially aligned on an aperture alignment axis 62.
Referring to
Following the rotational connection of keeper/catch member 30 to housing 12, the first and second swing arms 44, 46 of swing arm member 48 are slidably inserted in the swing arm extension direction “A” and extend through first and second swing arm apertures 40, 42, respectively. A joining end 80, is oriented substantially perpendicular to each of first and second swing arms 44, 46 and together with first and second swing arms 44, 46 define a substantially U-shape for swing arm member 48. Swing arm member 48 can be made of a metal material or a polymeric material molded in the shape shown.
Each of the first and second swing arms 44, 46 are divisible into two portions. First swing arm 44 includes a first arm first portion 82 and a first arm second portion 84. A first arm mid aperture 86 is created substantially between first arm first portion 82 and first arm second portion 84. Second swing arm 46 is similarly created having a second arm first portion 88 and a second arm second portion 90 with a second arm mid aperture 92 created between the portions. First and second arm mid apertures 86, 92 individually receive the first and second roll pins 50, 52 after first arm second portion 84 and second arm second portion 90 extend through the first and second swing arm apertures 40, 42 and outwardly with respect to second end wall 28. The proximity of the first and second swing arms 44, 46 to opposite ends of keeper retention pin 76 prevent keeper retention pin 76 from sliding free from either of first or second journal members 24, 26.
Prior to inserting swing arm member 48 into housing 12, a biasing member is provided which can contact joining end 80 and abut against second end wall 28. According to several embodiments, the biasing member can include first, second, and third biasing members 94, 96, 98. First, second, and third biasing members 94, 96, 98 are positioned between opposed first and second swing arm inner walls 100, 102 and can contact joining end 80. First, second, and third biasing members 94, 96, 98 are shown as compression springs but can also be biasing members of differing designs. As non-limiting examples only, the biasing members can be leaf springs or a resilient material such as a rubber material able to longitudinally compress similar to the deflection of a compression spring.
Once the first and second spring arms 44, 46 are received through housing 12, opposite ends of the biasing members contact joining end 80 and can contact or be positioned proximate to second end wall 28 of housing 12. Compression of the biasing members therefore permits continued extension of the first and second swing arms 44, 46 in the swing arm extension direction “A” until a compression limit of the biasing members is reached.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
With continued reference to
Referring to
Referring to
Referring to
Referring to
Referring to
Commonly known latch assemblies, such as latch assembly 200, act oppositely with respect to latch assemblies 10 of the present disclosure. Latch assemblies 200 act by pulling a first component, such as back plane assembly 144, into engagement with the second component, such as battery pack 146. To accomplish this, latch assemblies 200 include a latch body 202, which is fixedly connected to battery pack 146. A hook member 204, similar to hook member 152, is fixedly connected to communication component 142. Latch assembly 200 operates by engaging a latch pin 206, which is translated by rotation of a lever arm 208 with respect to an arc of rotation “R”. Lever arm 208 is rotatably connected to latch body 202 using a lever arm pin 210. By rotating the lever arm 208 about arc of rotation “R”, latch pin 206 provides a pulling force with respect to hook member 204, which pulls back plane assembly 144 in a pull direction “T”, which can be substantially parallel to pushing direction “M”. The configuration of latch assembly 200 normally prevents its use when connected to an end face of a component and, therefore, generally limits the use of latch assemblies 200 to applications where the latch assembly is coupled to components that are oriented substantially parallel and co-planar to each other.
Referring to
Housing 12 is oriented in an initial position as shown in
Referring to
Latch assembly 10 can also bring a communication component engagement surface 158 of communication component 142 close to or substantially in contact with a back plane engagement surface 160 of back plane assembly 144. Because of the angular orientation of the swing arms 44, 46 (only second arm second portion 90 of second swing arm 46 is visible in this view), an over-center locked condition is created when housing 12 contacts component outer wall 156, which resists the release of latch assembly 10 until the user manually pulls tab member 14 in the release arc of rotation “N”. The over-center locked condition is achieved because in the latched condition of latch assembly 10, keeper retention pin 76 is positioned outboard or away from a line of action 162 extending through the longitudinal axis of pin 148 and a point of contact 164 between housing 12 and component outer wall 156.
Latch assembly 10 includes housing 12 having cavity 130 created between first end wall 16 and second end wall 28 of the housing 12. The housing 12 further includes first and second journal members 24, 26 extending from the second end wall 28; first and second swing arm apertures 40, 42 created in the second end wall 28; and tab member 14 extending away from the first end wall 16. Swing arm member 48 has joining end 80 positioned within the cavity 120 and has first and second swing arms 44, 46 integrally connected to the joining end 80 each having the portion 84, 90 extending freely through one of the first and second swing arm apertures 40, 42 and away from the housing 12. The portions 84, 90 each have their portion longitudinal axes 141, 141′ aligned parallel to each other. Keeper/catch member 30 is rotatably connected to the first and second journal members 24, 26 and has keeper longitudinal axis 155. Rotation of the keeper/catch member 30 from an initial orientation having the keeper longitudinal axis 155 rotated away from parallel alignment with the portion longitudinal axis 141, 141′ of the first and second swing arms 44, 46 to a second orientation having the keeper longitudinal axis 155 aligned approximately parallel with the portion longitudinal axis 141, 141′ of the first and second swing arms 44, 46 by rotation of the housing 12 using the tab member 14, creating the over-center locking condition and creating pushing force “M” acting through the keeper/catch member 30.
Referring again to
Latch assemblies 10 of the present disclosure offer several advantages. By use of the over-center alignment provided by latch assemblies 10, a closed or latched position will remain in the closed or latched position until manually released by a user. The orientation of keeper/catch member 30 rotatably connected using keeper retention pin 76 causes a pushing force to be applied against a hook member such that a component to be joined is pushed into engagement with a second component in lieu of being pulled into contact, which is common with known latch assemblies. Latch assemblies 10 also permit installation of at least one end of the latch assembly to a component face, which is perpendicularly oriented with respect to the second component outer wall. This provides for greater flexibility of use for latch assemblies 10.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.