The present invention relates generally to latch assemblies.
Latch assemblies are known in the art and are provided for the latching and the opening of a member such as a door or panel.
In addition, it is oftentimes desired that the lock cylinder of latches generally have the capability of being opened with a master key in addition to a lower level security key. This is particularly true in the case of marine applications where the individual members of a crew need access to individualized areas which the captain of the vessel also needs access to. However, there may be locked areas which are only to be accessible by the captain of the ship. In such cases, the captain would need a high level security key or master key to access his areas and also the crews areas.
In many prior art lock cylinders, the door or panel in which the lock cylinder was installed needed to be as thick as a significant portion of the length of the key which is inserted into the lock cylinder. This resulted in very long lock cylinders which oftentimes would protrude from the back side of the door or panel due to the length of the lock cylinders. Accordingly, due to space limitations it is desired to have a door or closure member which can accommodate a lock cylinder which is thin or in other words where the length of the axis of the lock cylinder is as short as possible so that the lock cylinder when installed in the door does not protrude from the front or back of the door.
A need therefore exists for a lock cylinder for a latch having a master key capability which can be accommodated in doors of a thickness which prior art lock cylinders could not be accommodated in.
A need exists for a low profile ergonometric latch assembly which can be opened by rotation of a handle which has an easy to use manual lock on one side of the latch assembly and a second lock which uses a key on the other side of the latch assembly.
The present invention has been developed in view of the foregoing and to overcome the deficiencies of the prior art.
In accordance with the present invention, it is an object of the invention to provide an ergonometric latch assembly which has an easy to use manual lock on one side of the latch assembly when the slide latch assembly is installed in a door or panel and a second lock on the other side of the slide latch assembly which uses a key. The latch assembly can be actuated by rotation of a handle of the latch.
It is an object to provide an improved lock cylinder having master key capability which is readily adaptable to different thicknesses of doors or closure members.
Another object of the present invention is to provide a door lock that is easy to operate.
A further object of the invention is to provide a lock cylinder which has a very low profile or thickness and which can be used in applications where space and thickness is a limiting factor.
It is a further object of the invention to provide a lock cylinder which can be fitted with two different annular rings, one of which is designed to operate the lock cylinder with only a master key and another which is to operate the lock cylinder with either a master key or a low level security key.
It is still another object of the invention to provide a latch assembly wherein the position of the lock in either the locked or unlocked position does not impact the ability of the user to utilize either the manual key to lock and unlock the latch or the manual toggle button located on the latch.
A further object of this invention is to provide such a lock cylinder with structural components which offers ease of assembly, and reliable operations.
The objects of the present are realized in a latch assembly for fastening and unfastening a closure member to a keeper in a latched position. The latch assembly is moveable between the latched position and an open position. The latch assembly preferably comprises a latching means which preferably comprises a pawl actuator, a first rotary pawl which is rotatable, a second rotary pawl having a lever, said first rotary pawl engaging and rotating the second rotary pawl upon actuation of the lever by the pawl actuator such that said first rotary pawl and said second rotary pawl rotate into a latched position and engage the keeper. The latching means also comprises a biasing means which biases said pawl actuator to the latched position.
An actuator is provided in the slide latch assembly for displacing the pawl actuator. The actuator has a sliding element having a sliding element notch. The locking mechanism of the latch assembly has a toggle button which has a toggle button protuberance. The toggle button is capable of moving the toggle button protuberance such that the toggle button protuberance engages the sliding element notch thereby placing the latch assembly into a locked state in which movement of the sliding element is not permitted. The toggle button is also moveable into a position such that the toggle button protuberance does not engage the sliding element notch thereby placing the slide latch assembly in the unlocked state in which displacement of the sliding element is permitted.
The locking mechanism has a lock cylinder having a lock plug which rotates a locking ring having a locking ring protuberance thereby providing for selective placement of the latch assembly into the locked state or the unlocked state upon rotation of a lock plug by the engagement of the locking ring protuberance with the toggle button.
At least one handle is provided on the latch for actuating the actuator and providing a sliding motion to the sliding element such that the sliding element actuator actuates latching means. Rotation of the handle rotates a first actuator rotation means which in turn rotates a second actuator rotation means which has camlike protuberances which act upon a left sliding element prong or a right sliding element prong so as to move the sliding element such that the sliding element actuates the latching means.
The objects of the present invention are also realized in a lock cylinder configured for a key. Master key functionality is attained by adding an annular ring to the basic lock cylinder structure and modifying the profile of the low level security key. A separate key profile for each key is provided to provide the master key capability. A portion of one of the bits of the master key is machined deeper than the low level security key and has a key stop where the bit abuts the stem. When the lock cylinder is provided with a master annular ring, the lock cylinder can only be operated by the master key and not the limited access low level security key due to the presence of a tab on the master annular ring provided on the front of the lock cylinder which prevents entry of the limited access or low level security key into the lock cylinder. The master key can also operate the lock cylinder when the lock cylinder is fitted with a low level security annular ring which does not have the tab which is present on the master annular ring.
The features, advantages and operation of the present invention will become readily apparent and further understood from a reading of the following detailed description of the invention with the accompanying drawings, in which like numerals refer to like elements, in which:
The latch assembly of the first embodiment of the present invention is shown in
The latching means of the first embodiment also comprises a biasing means 38 which biases the pawl actuator 31 to the latched position. In the embodiment shown the biasing means is a coil spring 38 which acts upon the pawl actuator 31. The other end of the coil spring 38 presses against the bottom of the rotary latch rear cover piece 35 which can be held together with rotary latch front cover piece 39 by pins or screws which extend from rotary latch front cover piece apertures 44 to rotary latch rear cover piece apertures 36.
The pawl actuator 31 of the first embodiment can be inserted into pawl actuator groove 37 and has a notch 32 and the pawl actuator 31 has pawl actuator screw hole 34 for pawl actuator screw 33. Assembly of the rotary latch latching means can be made much easier and the coil spring 38 can be held in a compressed state more easily by the presence of latch elbow 45 which is screwed on at latch elbow connecting means (here an aperture 76) to the rotary latch rear cover piece 35 by screw 47 into a screw hole (not shown) on the rotary latch rear cover piece 35. Latch elbow yoke 46 when rotated into position around pawl actuator screw 33 can hold the pawl actuator 31 in the compressed position in order to provide for ease of assembly. Front cover piece screw holes 81 are provided for the attachment of the latching means to a frame by a screw (not shown).
The latch assembly of the second embodiment of the present invention is shown in
The latching means also comprises a biasing means 38 which biases the single pawl actuator 131 to the latched position. In the embodiment shown the biasing means is a coil spring 38 which acts upon the single pawl actuator 131. In the embodiment shown, the coil spring acts upon a face of the single pawl actuator. The other end of the coil spring 38 presses against the bottom of the single pawl rear cover piece 135 which can be held together with single pawl front cover piece 139 by pins or screws 110 which extend from rotary latch front cover piece apertures 144 to rotary latch rear cover piece apertures 136. Screws 149 as seen in
The single pawl actuator 131 can be inserted into pawl actuator groove 137 and has a notch 132 and the single pawl actuator 131 has pawl actuator screw hole 134 for single pawl actuator screw 133.
Operation of the actuator for either of the two embodiments of the present invention is made by way of reference to the first embodiment of the invention as described below. As shown in
Actuator rear cover plate 52 which has actuator rear cover plate aperture 57 can be mounted on the rear side of a closure member such as a door 29 or a panel and a user of the latch assembly could then insert a key in actuator rear cover plate key aperture 53 and unlock the latch assembly and then pull the rear handle 67 in this preferred embodiment in either the clockwise or counterclockwise direction to open the latch assembly. As seen in
When the actuator 82 is actuated, rod 62 which is attached to hook 84 on slide element 103 drives plunger 72 which is connected at the plunger connecting means 73 to the rod 62 at rod flange 63.
As seen in
Second actuator rotation means 92 mounted on second actuator rotation means pin 94 has a plurality of teeth such as tooth 93 which engages teeth such as tooth 93 of first actuator rotation means 90 which has actuator bar insert 95 so as to provide for engagement of the actuator bar 58. As should be readily apparent from
Biasing means 91 which is preferably a coil spring located in a channel in first rotary means 90 biases the handle of the latch assembly such that when a user turns the handle either in the clockwise or the counterclockwise direction, the handle is biased to the relaxed position in which the latching means is closed and the plunger 72 is withdrawn in the direction of the actuator. Plunger 72 is shown in
Actuator spring 75 which is mounted on actuator spring pin 96, provides resistance against a user from moving the sliding element 103 in the direction of the latching means.
In order to provide for reliable operation of the sliding element 103, the sliding element is provided with second guide means 107 and first guide means 108 for providing for guiding of the movement of the second actuator rotation means 92 and first actuator rotation means 90, respectively.
The slide latch assembly can be locked and unlocked in two different ways: by either the use of a key, most preferably by low level security key 1 or master key 12 as shown in
The toggle button 60 has a toggle button protuberance 61. The toggle button 60 is capable of moving the toggle button protuberance 61 such that the toggle button protuberance 61 engages the sliding element notch 55 thereby placing the latch assembly into a locked state in which movement of the sliding element 103 is not permitted. The toggle button 60 is also moveable by, in the preferred embodiment shown, the rotation of the toggle button 60 about mounting block protuberance 83 such that the toggle button protuberance 61 does not engage the sliding element notch 55 thereby placing the latch assembly in the unlocked state in which displacement of the sliding element 103 is permitted. Toggle button 60 is mounted by way of toggle button aperture 79 on mounting block protuberance 83 which is on mounting block 64.
In the embodiment shown in
The lock plug 8 can be provided for access by the low level security key 1 or the master key 12 as described in detail below.
The above described invention permits a user to rotate front handle 66 or rear handle 67 and actuate the actuator in the direction of the pawl actuator 31 and allows the user to latch a door or panel in which the latch assembly is installed to a keeper.
In a preferred embodiment of the present invention, the latch assembly is adapted for use with a low level security key and/or a master key.
As seen in
The low level security key stop 6 has a depth equal to the difference between the distance from the top of the low level security key stop bit 15 to the axis of low level security key 1 and the distance from the top of the low level security key stop 6 to the axis of the low level security key, wherein the depth of the low level security key stop 6 is less than the depth of the master key stop 16.
When the lower level security key 1 or master key 12 is inserted, one or more of the bitted bits 5 engage tumblers (not shown) in the lock plug 8 and lock shell 10 which in the locked state extend from lock plug apertures 24 in the lock plug 8 into corresponding lock shell apertures 24 in lock shell 10. After insertion of the low level security key 1, the bitted bits 5 push and align the tumblers which are preferably biased by a biasing means such as a coil spring into positions such that none of the tumblers contacts simultaneously both the lock plug 8 and the lock shell 10 thereby permitting rotation of the lock shell 10 relative to lock plug 8. A user then turns grip portion 3 of the low level security key 1 in a clockwise direction as seen in
Lock cylinder 13 of
In
In the same way if a user were to try to insert the low level security key 1 in the lock cylinder 13 while the lock cylinder 13 is fitted with a master annular ring, the bit 15 would be blocked from entering the lock cylinder 13 by tab 18 on the master annular ring 17.
Preferably, the lock plug 8 is located concentric to and rotatable inside of and relative to said lock shell 10, and said lock plug 8 is configured for insertion of said master key 12 or said low level security key 1.
Low level security annular ring 7 as shown in
Tab 18 extends into an interior portion of the ring formed by the master annular ring 17 and the tab 18 permits insertion of the master key stop bit 25 into the lock plug 8 until the master key stop 16 contacts the tab 18 on the master annular ring 17.
Actuator 28 on master annular ring 17 or low level annular ring 7 which are both preferably in the form of a ring actuate the means by which the latch or lock in which the lock cylinder 13 is unlocked when a user unlocks the lock cylinder 13 and rotates either the master key 12 or low level security key 1.
As can be seen by a comparison of
Many changes can be made in the above-described invention without departing from the intent and scope thereof. It is therefore intended that the above description be read in the illustrative sense and not in the limiting sense. Substitutions and changes can be made without departing from the scope and intent of the invention.
Number | Name | Date | Kind |
---|---|---|---|
998642 | Shean | Jul 1911 | A |
1247052 | Wilson | Nov 1917 | A |
2540686 | Milburn | Feb 1951 | A |
2844020 | Chittum et al. | Jul 1958 | A |
3175376 | Cantwell | Mar 1965 | A |
3532373 | Poe | Oct 1970 | A |
3857594 | Pastva, Jr. | Dec 1974 | A |
4643005 | Logas | Feb 1987 | A |
5265920 | Kaup et al. | Nov 1993 | A |
5495731 | Riznik | Mar 1996 | A |
5765410 | Kwan et al. | Jun 1998 | A |
6622535 | Chiang et al. | Sep 2003 | B2 |
20020104339 | Saner | Aug 2002 | A1 |
20030160463 | Tonges | Aug 2003 | A1 |
20050092042 | Constantinou et al. | May 2005 | A1 |
20060196236 | Gruenendahl | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
0021820 | Jun 1980 | EP |
0619409 | Oct 1994 | EP |
410434 | Dec 1910 | FR |
0495573 | Nov 1938 | GB |
1467539 | Mar 1977 | GB |
2239042 | May 1991 | GB |
2391583 | Feb 2004 | GB |
Number | Date | Country | |
---|---|---|---|
20050229657 A1 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
60562816 | Apr 2004 | US |