This application claims the benefit and priority of Italian Patent Application No. TO2014A000153 filed Feb. 24, 2014. The entire disclosure of the above application is incorporated herein by reference.
The present invention relates a latch for a door of a motor vehicle.
This section provides background information related to the present disclosure which is not necessarily prior art.
In the following description and accompanying Claims, the term “door” is used broadly speaking to indicate any member movable between an open position and a closed position respectively opening and closing an access opening to an inner compartment of a vehicle, and therefore also includes boot and bonnet lids and rear hatches, in addition to the side doors of vehicles referred to in the description purely by way of example.
As is known, the vehicle doors normally comprise a frame-like top portion defining a window frame closed by a movable window when this is raised, and a box-like bottom portion comprising an outer panel and an inner panel joined at one end by an end edge and defining in between a cavity normally housing the window, when this is lowered, and various component parts fixed to the panels, such as a latch and a window regulating device.
A conventional latch typically includes a supporting body fixed to the vehicle door, a striker fixed to a frame of the vehicle door, a closure assembly carried by the supporting body and adapted to releasably engage the striker, and a release mechanism which is operatively connected to an outer handle of the door and can be selectively activated to release the closure assembly from the striker. More in detail, the closure assembly includes a ratchet which defines an open cylindrical seat, and a pawl. The ratchet is elastically loaded toward an opening position in which the ratchet enables engagement and disengagement between the striker and the seat of the ratchet. Furthermore, the ratchet is rotatably movable between the opening position and a closing position in which the ratchet holds the striker and prevents the disengagement of the striker from the closure assembly. The pawl is elastically loaded toward the ratchet for keeping the ratchet in the closing position. However, the pawl may be moved away from the ratchet by the release mechanism so as to allow the ratchet to elastically return to the opening position.
One conventional latch is known from EP-A-1371799, in which the release mechanism includes an extension lever which is operatively connected to the outer handle of the door, and a release lever which is hinged to the extension lever and can move from a latched position into an unlatched position when the outer handle of the door is flexed. When the ratchet is in the closing position, the release lever is in the latched position and is disengaged from the pawl. When the outer handle is flexed and the release lever moves from the latched position to the unlatched position, an end portion of the release lever moves the pawl away from the ratchet so as to allow the ratchet to return in the opening position. The release mechanism also includes an inertia actuated lever which is operatively coupled to the release lever for securing the release lever in the latched position. In greater detail, the inertia lever is hinged to a frame of the latch and comprises a detent tab for selectively engaging the release lever in the latched position. In a normal situation, the inertia lever is arranged in a release position, in which the detent tab is offset from the release lever in order to allow the release lever to move from the latched position to the unlatched position in response to activation of the outside handle. However, in case of collision, the inertia lever moves from the release position to a blocking position in which the detent tab blocks the release lever and prevents it from moving from the latched position into the unlatched position.
Improvements and alternatives to such inertia type latches are desirable.
This section provides a general summary of the disclosure and is not intended to be considered as a comprehensive disclosure of its full scope or all of its objects and features.
It is therefore an object of the present invention to provide an inertia latch for a motor vehicle including such improvements or alternatives.
This object is achieved by a latch for a door of a motor vehicle as claimed in claim 1. In particular, a latch for a door of motor vehicle constructed according to the present invention comprises: a supporting body; a closing assembly adapted to cooperate with a latch striker and which can assume a closing configuration in which it engages said latch striker and keeps it in a fixed position and an open configuration in which it is disengaged from said latch striker, an opening mechanism which can selectively move between a latched configuration in which it leaves the closing assembly in the closing configuration and an unlatched configuration in which it causes the closing assembly to move from the closing configuration to the opening configuration; and an inertia lever which is fitted to the supporting body and can move with respect to the supporting body from a first position to a second position.
A blocking lever is movable between a release position in which it allows the opening mechanism to move from the latched configuration to the unlatched configuration and a stable blocking position in which the blocking lever prevents, either directly or indirectly, the opening mechanism from moving from the latched configuration to the unlatched configuration. The inertia lever and the blocking lever are coupled in such a way that the movement of the inertia lever from the first position to the second position causes the movement of the blocking lever from the release position to the stable blocking position.
This object is also achieved by a latch for a door of a motor vehicle as claimed in claim 22. In particular, a latch for a door of motor vehicle constructed according to the present invention comprises: a supporting body; a closing assembly adapted to cooperate with a latch striker and which can assume a closing configuration in which it engages the latch striker and keeps it in a fixed position, and an open configuration in which it is disengaged from said latch striker; an opening mechanism which can selectively move between a latched configuration in which it leaves the closing assembly in the closing configuration and an unlatched configuration in which it causes the closing assembly to move from the closing configuration to the opening configuration; and an inertia activated blocking mechanism which can be move under inertia action from a release configuration in which it allows the opening mechanism to move from the latched configuration to the unlatched configuration to a stable blocking configuration in which it prevents said opening mechanism from moving from the latched configuration to unlatched configuration.
In accordance to the latch constructed as above, the opening mechanism comprises: a first lever operatively connected to an outer handle of said door and which moves between a first latched position in which it is leaves the closing mechanism in the dosed configuration and a first unlatched position in which it causes the closing mechanism to move in the open configuration; and a second lever operatively connected to an inner handle of the door and which moves between a second latched position in which it is leaves the closing mechanism in the dosed configuration, and a second unlatched position in which it causes the closing mechanism to move in the open configuration. The displacement of the second lever from the second latched position to the second unlatched position causes the movement of the inertia activated blocking mechanism back from the stable blocking configuration to the release configuration.
This object is also achieved by a latch for a door of a motor vehicle as claimed in claim 23. In particular, a latch for a door of motor vehicle constructed according to the present invention comprises: a supporting body; a closing assembly adapted to cooperate with a latch striker and which can assume a closing configuration in which it engages the latch striker and keeps it in a fixed position and an open configuration in which it is disengaged from the latch striker; an opening mechanism, which can selectively move between a latched configuration in which it leaves the closing assembly in the closing configuration and an unlatched configuration in which it causes closing assembly to move from the closing configuration to the opening configuration; and an inertia activated blocking mechanism which can be move under the inertia action from a release configuration in which it allows the opening mechanism to move from the latched configuration to the unlatched configuration to a stable blocking configuration in which it prevents the opening mechanism from moving from the latched configuration to unlatched configuration.
In accordance with the latch constructed as above, the opening mechanism comprises: a first lever operatively connected to an outer handle of the door and which moves between a first latched position in which it is leaves the closing mechanism in the dosed configuration and a first unlatched position in which it causes the closing mechanism to move in the open configuration; and a second lever operatively connected to an inner handle of the door and which moves between a second latched position in which it is leaves the closing mechanism in the closed configuration and a second unlatched position in which it causes the closing mechanism to move in the open configuration. The blocking lever when set in the stable blocking position prevents the first lever from moving from the first latched position to the first unlatched position.
This object is also achieved by a latch for a door of a motor vehicle as claimed in claim 24. In particular, a latch for a door of motor vehicle constructed according to the present invention comprises: a supporting body; a closing assembly adapted to cooperate with a latch striker and which can assume a closing configuration in which it engages the latch striker and keeps it in a fixed position, and an open configuration in which it is disengaged from the latch striker; an opening mechanism which can selectively move between a latched configuration in which it leaves the closing assembly in the closing configuration, and an unlatched configuration in which it causes closing assembly to move from the closing configuration to the opening configuration; and an inertia lever is fitted to the supporting body and can move with respect to the supporting body from a first position to a second position.
A blocking lever is movable between a release position in which it allows the opening mechanism to move from the latched configuration to the unlatched configuration and a stable blocking position in which it prevents, either directly or indirectly, the opening mechanism from moving from the latched configuration to the unlatched configuration. The inertia lever and the blocking lever are coupled in such a way that the movement of the inertia lever from the first position to the second position causes the movement of the blocking lever from the release position to the stable blocking position. The blocking lever is hinged about an axis and movable in a plane transversal to the axis between the release position and the stable blocking position.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
A preferred, non-limiting embodiment of the present invention will be described by way of example with reference to the accompanying drawings, in which:
One or more example embodiments will now be described more fully with reference to the accompany drawings. The example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
Referring to
In greater detail, latch 1 comprises: a supporting body 11 fixed in known manner to door 2; a closure assembly 12 carried by supporting body 11 and engaging a striker 8 integrally carried to a fixed part of motor vehicle 1; and an opening mechanism 13 which may operated by a user to disengage striker 8 from closure assembly 12. Furthermore, supporting body 11 comprises a hollow shell 14 (only partially shown in
Shell 14 is shown only with reference to a plate 15 and a wall 16 projecting from plate 15 and substantially orthogonal to wall 16. The closure assembly 12 comprises: a ratchet 20 hinged to plate 15 about an axis A extending orthogonal to the plane on which plate 15 lies; a pawl 21 hinged to plate 15 about an axis B extending orthogonal to the plane on which plate 15 lies and parallel to and staggered from axis B; and a pawl lever 26, which is coaxial with pawl 21 and angularly movable with pawl 21 about axis B. More precisely, ratchet 20 comprises a seat 17 bounded by a pair of teeth 22, 23 and configured for receiving striker 8. Accordingly to an aspect, the seat can be u-shaped.
Ratchet 20 is loaded by a spring 19 toward an opening position (not shown) in which seat 17 faces a direction C which is orthogonal to axes A, B along which striker 8 may enter or exit that seat 17. Spring 19 is interposed between plate 15 and ratchet 20 and, according to an aspect, is a spiral wound about axis A. In particular, spring 19 is wound about a pin 18 which extends about axis A. As best shown in
According to an aspect, pawl 21 comprises: a plate 30 hinged about axis B to plate 15 and lying on a plane orthogonal to axis B, and a tooth 31 defined by plate 30. As best shown in
According to an aspect, and as best shown in
When lever 41 is in the unlatched position, opening mechanism 13 is in the unlatched configuration. When lever 41 is in the latched position, opening mechanism 13 is in the latched configuration. In particular, when inner handle 5 is flexed, lever 41 is displaced from the latched position to the unlatched position. Inner handle 5 is elastically loaded towards a not-flexed position and remains in the not flexed position during a collision and under an acceleration directed parallel to direction C. Furthermore, lever 41 is elastically loaded towards the respective latched position.
According to an aspect, lever 40 is movable between a latched position, as best shown in
In more detail, lever 40 lies on a plane orthogonal to axis D and comprises: a main portion 42 hinged to supporting body 11 about axis D; an arm 43 which protrudes from portion 42 and has an end 44 operatively connected to handle 6; and an arm 45, which protrudes from portion 42 in a sloped way with respect to arm 43 and defines a tooth 46. Lever 40 further comprises a tooth 65 protruding from main portion 42.
Latch 1 also comprises a spring 47, which is interposed between supporting body 11 and lever 40 and is adapted to elastically load lever 40 towards the latched position. In detail, spring 47 is wound about axis D about a pin 48 protruding from main portion 42 and has opposite ends connected to arm 43 of lever 40 and supporting body 11. According to an aspect, portion 42 is cylindrical, however other shaped of the portion can be used without departing from the scope of the subject disclosure.
Upon action of outer handle 6 on end 43, lever 40 rotates in the first direction—anticlockwise in
As best shown in
Latch 1 also comprises a spring 35 interposed between pawl lever 26 and lever 41. Still more precisely, spring 35 is wound about an axis parallel to axes A. B and D, and comprises opposite ends 36, 37. End 36 is fitted to arm 55 of lever 41 while end 37 is fitted to tooth 31 of pawl lever 26.
Latch 1 also comprises a groove 38 and a pin 39, which slides inside groove 38 and extends parallel to axes A, B, D. Pin 39 engages groove 38 and can be contacted by arm 45 of lever 40, when lever 40 rotates in the first direction—anticlockwise with reference to
Latch 1 further comprises an inertia-activated blocking mechanism 49, which is structured to prevent opening mechanism 13 from accidentally moving from the latched configuration to the unlatched configuration, under the acceleration resulting from a collision of motor vehicle 3, especially a side collision. The acceleration has generally a main component along direction C.
In greater detail, blocking mechanism 49 comprises an inertia lever 50 which is fixed to supporting body 11. Inertia lever 50 is hinged to supporting body 11 about an axis E and can rotate about axis E. Inertia lever 50 rotates, due to its mass, about axis E from a first position (
Inertia lever 50 comprises, in turn, an arm 61 hinged about axis E to supporting body 11 and a pin 62 protruding from arm 61 and arranged on the opposite side of arm 61 with respect to axis E. With reference to
As best shown in
Inertia activated blocking mechanism 49 further comprises a blocking lever 80 which is movable between a release position (
Blocking lever 80 is hinged to supporting body 11 about an axis F and rotates in the second direction—clockwise in
Blocking lever 80 comprises: a main plate 81, which lies on a plane orthogonal to axis F; and a pin 82 protruding from plate 81 parallel to axis F. Plate 81 also comprises a pair of walls inclined and incident with one another and defining a hollow vane 83. Vane 83 is arranged on the side of inertia lever 50 and on the opposite side of pin 82. In the embodiment shown, blocking lever 80 further comprises: a first end hinged to supporting body 11 about axis F; and a second end, opposite to the first end, and defining vane 83. Axis F is, in the embodiment shown, parallel to axis A, B, D and E. Axis F is, in the embodiment shown, in also interposed between axis D and axes A, B.
Latch 1 comprises a spring 90 interposed between blocking lever 80 and inertia lever 50. Blocking lever 80 has a neglectable mass, so that its position is not affected by the acceleration along direction C during the collision. As best shown in
When inertia lever 50 moves in the second position, as a result of the acceleration acting parallel to direction C, the elastic action of spring 90 displaces blocking lever 80 in the stable blocking position. Sa best shown in
With reference to
Blocking lever 80, under the action of spring 90, comes back in the release position and disengages inertia lever 50. Inertia lever 50 rotates, under the action of spring 90, about axis E in the first direction—anticlockwise in
The operation of latch 1 is more fully described in the following, starting from a configuration, as best shown in
Still more precisely, surface 58a tooth 56 is angularly spaced from appendix 32 of pawl 21, when levers 40, 41 are in the respective latched positions. Additionally, inertia lever 50 and blocking lever 80 are kept in a stable way by spring 90 in the first position and in the release position respectively. Accordingly, pin 62 of inertia lever 50 is disengaged from tooth 65 of lever 40. Pin 82 of blocking lever 80 is detached from tooth 57 of lever 41.
When handle 6 is flexed, lever 40 rotates in the first direction—anticlockwise in
Ratchet 20 can therefore elastically rotate in the second direction about axis A and under the action of spring 19 up to reach the opening position (not-shown) in which seat 17 is aligned with direction C. In case of collision of motor vehicle 3, especially of lateral impact against door 2, supporting body 11 is subjected to an acceleration directed along direction C both in a first sense (downwards in
The elastic action of spring 90 rotates blocking lever 80 about axis F in the second direction—clockwise with reference to
Furthermore, when inertial lever 50 reaches the second position, pin 62 abuts against tooth 65 of lever 40, thus preventing the accidental rotation of lever 40 from the latched position to the unlatched position in the first direction—anticlockwise in
After the collision of motor vehicle 3, it is possible to arrange ratchet 20 in the open configuration, by simply actuating inner handle 5. As a matter of fact, the actuation of inner handle 5 causes the rotation in the second direction—anticlockwise in
Accordingly, blocking lever 80 moves back from the stable blocking position towards the release position. In the meanwhile, pawl lever 26 and pawl 21 rotate in the second direction—clockwise in
The rotation about axis F of blocking lever 80 from the stable blocking position to the release position causes, thanks to the elastic action of spring 90, the rotation about axis E of inertia lever 50 from the second position to the first position in the first direction—anticlockwise in
With reference to
Inertia lever 50′ of latch 1′ differs from inertia lever 50 of latch 1 in that it no longer comprises pin 62. Inertia lever 50′ of latch 1′ also differs from inertia lever 50 of latch 1 in that arm 61 comprises a groove 63′. Groove 63′ is shaped as an arc having center on axis E. Groove 63′ is delimited, on the side of axis D, by an abutting surface 64′ defined by arm 61 and is, on the opposite side, open. Groove 63′ is, in the embodiment shown, a relief defined inside arm 61 of inertia lever 50′.
Blocking lever 80′ differs from blocking lever 80 by a pin 100′ hinged to supporting body 11 about axis F; and three arms 101′, 102′, 103′ which radially protrude from pin 100′ with respect to axis F. Arm 101′ precedes arm 102′ and arm 102′ precedes arm 103′, proceeding about axis F in the second direction—clockwise—when blocking lever 80′ is in the release position (
Furthermore, arm 101′ comprises an element 104′ which engages groove 63′. Element 104′ defines an end of arm 101′ opposite with respect to axis F. When inertia lever 50′ is in the first position and blocking lever 80′ is in the release position, element 104′ is disengaged from the trajectory of lever 40 from the respective latched position to the respective unlatched position (
As best shown in
Arm 102′ extends towards pawl lever 26 and pawl 21. Arm 101′ and arm 102′ comprise respective surfaces 105′, 106′ adjacent to each other and defining a vane 10T on the side of inertia lever 50′.
When inertia lever 50′ is in the first position and blocking lever 80′ is in the release position (
Latch 1′ also differs from latch 1 for comprising a spring 90′ in place of spring 90. Spring 90′ is interposed between supporting body 11 and arm 103′ of blocking lever 80′. Furthermore, spring 90′ pre-loads blocking lever 80′ either towards the release position or towards the stable blocking position. In other words, spring 90′ is bi-stable. Spring 90′ comprises a cylindrical main portion 91′ wound about an axis parallel to axes A, B, D, E, F and a pair of arms having respective ends 92′, 93′ fixed to arm 103′ and to supporting body 11 respectively.
Latch 1′ also differs from latch 1 in that, when blocking lever 80′ is set in the stable blocking position, inertia lever 50′ can rebound between the second position and the first position. Furthermore, the activation of inner handle 5 and the rotation of lever 41 in the first direction moves back inertia lever 50′ in the first position.
The operation of latch 1′ is similar to unit 1 and is described only insofar as it differs from that of latch 1. In particular, during a normal operation of motor vehicle 3 and when ratchet 20 is in the closing position, spring 90′ keeps blocking lever 80′ in the release position and inertia lever 50′ is kept in the first position (
In this configuration, tooth 57′ of lever 41 contacts surface 105′ of arm 101′ and tooth 56 is disengaged from surface 106′ of arm 102′. In this way, the rotation of lever 41 from the latched position to the unlatched position does not interfere with blocking lever 80′. Accordingly, when outer handle 6 is actuated, levers 40, 41 rotate from the respective unlatched position to the respective latched positions.
In case of collision of motor vehicle 3, especially of lateral impact against door 2, supporting body 11 is subjected to an acceleration directed along direction C both in a first sense (downwards in
At this stage, and as shown in
When blocking lever 80′ is in the stable blocking position, inertial lever 50′ can rebound between the first position and the second position under the variation of the orientation of the acceleration due to the collision. However, the rebounds of inertia lever 50′ between the first position and the second position does not affect the position of blocking lever 80′. This is due to the fact that groove 63′ can move with respect to element 104′, when inertia lever 50′ rotates back in the first direction—anticlockwise in
After the collision of motor vehicle 3, it is possible to displace ratchet 20 in the open configuration, by simply actuating inner handle 5. As a matter of fact, the actuation of inner lever handle 5 causes the rotation in the first direction—anticlockwise in
With reference to
Latch 1″ differs from latch 1 in that blocking lever 80″ moves from the release position (shown in
Latch 1″ also differs from latch 1 in that blocking lever 80″ abuts against a housing 130″ defined by supporting body 11, when blocking lever 80″ is in the stable blocking position. Axis G″ is orthogonal to axes A, B, D, E and parallel to and staggered from direction C.
Additionally, latch 1″ differs from latch 1 in that lever 41 comprises a further tooth 59″ which is angularly interposed about axis D between teeth 52 and arm 55.
In greater detail, blocking lever 80″ differs from blocking lever 80 by a hub 120″ which can slide relative to supporting body 11 along an axis G″ and can rotate about axis G″ with respect to supporting body 11, an arm 121″ and an arm 122″, which project from hub 120″ and on a first side of hub 120″, and an arm 123″, which projects from hub 120″ on a second side, opposite to first side, of hub 120″.
Inertia lever 50″ and levers 40, 41 are arranged on the first side of axis G″. Ratchet 20 is arranged on the second side of axis G″.
Arms 121″, 122″, 123″ are integral with hub 120″. As best shown in
Arm 121″ is contacted and thrust by pin 62″ of inertia lever 50 parallel to axis G″, when the latter reaches the second position, under the acceleration resulting parallel to direction C from the collision of door 2 of motor vehicle 3. Arm 122″ is rotatable about axis G″ together with hub 120″ between a raised position, in which it is arranged above lever 40 and, therefore, is disengaged from lever 40 (
Furthermore, arm 122′ is in arranged in the lowered position, when hub 120″ reaches the stable blocking position, after having rotated about axis G″ as of the intermediate position in the first direction—anticlockwise in
Arm 123″ is rotatable about axis G″ together with hub 120″ between a lowered position, in which it is arranged below housing 130″ and a raised position, in which it is elastically loaded by spring 90″ against housing 130″. In particular, arm 123″ is set in the lowered position, when hub 120″ moves parallel to axis G″ between the release position and the intermediate position. Furthermore, arm 123″ is set in the raised position, when blocking lever 80″ has reached the stable blocking position, after having rotated about axis G″ as of the intermediate position in the first direction—anticlockwise in
As best shown in
As best shown in
Surface 139″ is arranged, along axis G″, on the side of plate 131b″ and is interposed between surface 138a″ and plate 131b″. Surfaces 138″, 139″ are inclined with respect to the plane of plate 15 of supporting body 11. Surface 139″ is closer than surface 138″ to plate 5 and to hub 120″.
Latch 1″ also differs from latch 1 in that spring 90″ extends along direction G″ and is interposed between housing 130″ and hub 120″. In particular, and as best shown in
Furthermore, spring 90″ exerts on hub 120″ an elastic pre-loading torque directed about axis G″ and towards the stable blocking position of blocking lever 80″, i.e. towards surface 139″ of housing 130″ and in the first direction—anticlockwise with reference to
Additionally, latch 1″ also differs from latch 1 in that, when blocking lever 80″ is set in the stable blocking position, inertia lever 50″ can rebound between the second position and the first position. Furthermore, the activation of inner handle 5 and the rotation of lever 41 in the first direction moves back inertia lever 50′ in the first position.
The operation of latch 1″ is similar to unit 1 and is described only insofar as it differs from that of latch 1. In particular, during a normal operation of motor vehicle 3 and when ratchet 20 is in the closing position, spring 90″ is extended and keeps blocking lever 80″ in the release position while inertia lever 50″ is kept in the first position, as shown in
In this configuration, pin 62″ of inertia lever 50″ is disengaged from surface 126″ of arm 121″ of blocking lever 80″. Arm 122″ is in the raised position, in which it is disengaged and spaced from lever 40 and does not interfere with the movement of lever 40 from the respective unlatched position to the unlatched position. Arm 123″ is in the lowered position in which it is spaced from surface 139″ of housing 130″ (
Accordingly, when outer handle 6 is actuated, levers 40, 41 rotate from the respective unlatched positions to the respective latched positions. When latch 1″ is subjected to an acceleration directed along direction C both in a first sense (downwards in
In this way, blocking lever 80″ slides parallel to axis G″ from the release position to the Intermediate position. At the same time, spring 90″ is compressed and applies an elastic torque on the blocking lever 80″ directed about axis G″ and in the first direction—anticlockwise in
In this situation, arm 123″ is in the raised position and is stably arrested by surface 139″ of housing 130″. Arm 122″ is in the lowered position, in which it engages with tooth 65 and is interposed along the trajectory of lever 40 from the respective latched position to the respective unlatched position, as shown in
The stable blocking position is made stable by the fact that surface 139″ contrasts the elastic action of spring 90″ and firmly keeps blocking lever 80″ in the stable blocking position. After the collision of motor vehicle 3, it is possible to displace ratchet 20 in the open configuration, by actuating inner handle 5. The actuation of inner handle 5 causes the rotation in the first direction—anticlockwise in
The rotation of tooth 59″ of lever 41 causes whole blocking lever 80″ rotating about axis B in the second direction—clockwise in
At this stage, spring 90″ extends parallel to axis G″ and thrusts whole blocking lever 80″ in the respective release position (
Advantageously, blocking lever 80, 80′, 80″ is movable between the release position and the stable blocking position, when inertia lever 50, 50′, 50″ oscillates from the first position to the second position. In this way, blocking lever 80, 80′, 80″ is effective in preventing in a stable way lever 40 and, therefore, whole opening mechanism 13, from accidentally moving from the latched position to the unlatched position, under the action of the acceleration directed along direction C and deriving from the collision of motor vehicle 3. As a result, blocking mechanism 49 is capable of securing in a stable way lever 40—and, therefore, whole opening mechanism 13—in the respective latched position, both when the acceleration is directed in a first sense and in a second sense.
Furthermore, the securing of lever 40—and, therefore, of whole opening mechanism 13—in the respective latched position no longer relies on the synchronization between inertia lever 50 and lever 40, as in the known solution discussed in the introductory part of the present description. Accordingly, the operation of blocking mechanism 49 is particularly repeatable when compared with the known solution discussed in the introductory part of the present description.
Spring 90, 90′, 90″ is effective in keeping in a stable way blocking lever 80, 80′, 80″ in the stable blocking position. Furthermore, blocking lever 80, 80′, 80″ can be moved back from the stable blocking position to the release position, by simply flexing inner handle 5 so as to cause the rotation of lever 41. Blocking lever 80, 80′ is hinged about axis F, F′ and is movable in a plane transversal to axis F, F′ between said release position and said stable blocking position. In this way, blocking lever 80, 80′ is easy to move and to control.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. For example, changes may be made to latch 1, 1′, 1″ as described and illustrated herein without, however, departing from the scope defined in the accompanying claims. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
TO2014A0153 | Feb 2014 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
3799596 | Nozomu | Mar 1974 | A |
6042159 | Spitzley | Mar 2000 | A |
6554331 | Ciborowski | Apr 2003 | B2 |
8029032 | Yang | Oct 2011 | B1 |
8727402 | Bejune | May 2014 | B2 |
20070024068 | Wood | Feb 2007 | A1 |
20070080547 | Lee | Apr 2007 | A1 |
20090223263 | Puscas | Sep 2009 | A1 |
20130328325 | Uehara et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
202009017667 | Jun 2011 | DE |
202010010577 | Dec 2011 | DE |
102011010816 | Aug 2012 | DE |
2636827 | Sep 2013 | EP |
2275727 | Sep 1994 | GB |
Entry |
---|
International Search Report dated Nov. 18, 2014. |
Written Opinion dated Nov. 18, 2014. |
Number | Date | Country | |
---|---|---|---|
20150240537 A1 | Aug 2015 | US |