BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an assembled view of a slide rail assembly according to a preferred embodiment of the present invention;
FIG. 2 is an exploded, isometric view of FIG. 1;
FIG. 3 is an enlarged view of a latch member of the slide rail assembly of FIG. 2;
FIG. 4 is an inverted view of part of FIG. 2;
FIG. 5 is an assembled view of FIG. 4;
FIG. 6 is an enlarged view of a circled portion VI of FIG. 5; and
FIGS. 7-9 are lateral views of the slide rail assembly of FIG. 1 in three using states.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIGS. 1 and 2, in a preferred embodiment of the invention, a latch mechanism is provided for retaining a slide rail assembly which includes a first slide rail 10, and a second slide rail 20. The latch mechanism includes a latch member 30, a release member 40, a resilient member 50, a stop member 60 mounted on the first slide rail 10, a mounting member 80, and two posts 90.
Referring to FIGS. 3 and 4, the second slide rail 20 defines two mounting holes 21 therein at a predetermined retaining position of the second slide rail 20 and the first slide rail 10. A bent tab 22 is formed on the second slide rail 20 between the two mounting holes 21. Two through holes 24 are defined in the second slide rail 20 in the vicinity of the mounting holes 21.
The latch member 30 has two opposite sides, wherein one side comprises two stepped portions 312, and a space 31 between the stepped portions 312, and wherein the other side is stepped and comprises two inclined portions 34 at opposite ends thereof, a cutout 32 between the two inclined portions 34, and a recess portion 36 that is generally V-shaped and has a first driven portion 362 and a second driven portion 364. The cutout 32 has a first and a second stop surface 322, 324 formed from two sidewalls thereof respectively. Two arc-shaped slots 38 are defined in opposite ends of the latch member 30.
The release member 40 is elongated, and includes an operating portion 42 arranged at one end thereof, a cam 44 formed from an opposite end thereof, and a plurality of tabs 46 extending from a middle portion thereof. The cam 44 is V-shaped, and forms a first driving portion 442 and a second driving portion 444 at two sides thereof respectively.
The resilient member 50 is generally V-shaped, and preferably made by bending a resilient steel wire. The stop member 60 includes a protrusion 62 bent from a side thereof.
The mounting member 80 is generally rectangular and includes a stepped side surface. Two mounting holes 82 are defined in the mounting member 80.
Referring also to FIGS. 5 and 6, in assembly, the release member 40 is attached to the second slide rail 20. The mounting member 80 is mounted on the second slide rail 20 by two screws 84 extending through the mounting holes 82 of the mounting member 80 to engage in the through holes 24 of the second slide rail 20 respectively. The tabs 46 of the release member 40 are located under the mounting member 80. The latch member 30 is attached to the second slide rail 20. The cam 44 of the release member 40 is received in the recess portion 36 of the latch member 30. A middle portion of the resilient member 50 is held under the bent tab 22 of the second slide rail 20, and two distal ends of the resilient member 50 engage with the stepped portions 312 of the latch member 30 respectively. Two posts 90 extend through the slots 38 of the latch member 30 to be screwed into the mounting holes 21 of the second slide rail 20 respectively, thus the latch member 30 is movably mounted to the second slide rail 20. The stop member 60 is mounted to one end of the first slide rail 10 opposing the latch member 30.
Referring also to FIG. 7, when pushing the second slide rail 20 to slide into the first slide rail 10, the leading inclined portion 34 of the latch member 30 rides over the protrusion 62 of the stop member 60, thereby biasing the latch member 30 counter-clockwise against the resilient member 50 until the protrusion 62 of the stop member 60 slides into the cutout 32 of the latch member 30.
Referring also to FIG. 8, after the protrusion 62 of the stop member 60 enter into the cutout 32 of the latch member 30, the resilient member 50 rebounds to return the latch member 30 to its original position, thus the protrusion 62 of the stop member 60 is locked in the cutout 32 of the latch member 30. Therefore, the protrusion 62 of the stop member 60 is confined by the first stop surface 322 or the second stop surface 324 of the cutout 32 of the latch member 30 to avoid the second slide rail 20 moving outward or inward relative to the first slide rail 10.
Referring also to FIG. 9, in releasing the second slide rail 20 from the first slide rail 10, push the operating portion 42 of the release member 40 inward along the second slide rail 20. The first driving portion 442 of the cam 44 engages with the first driven portion 362 of the latch member 30 to bias the latch member 30 counter-clockwise. The first stop surface 322 of the latch member 30 disengages from the protrusion 62 of the stop member 60 which allows the second slide rail 20 outward without allowing inward movement relative to the first slide rail 10. The same principle applies when pushing the release member 40 outward along the second slide rail 20. The second driving portion 444 of the cam 44 pushes the second driven portion 364 of the latch member 30 to bias the latch member 30 clockwise. The second stop surface 324 of the latch member 30 disengages from the protrusion 62 of the stop member 60 which allows the second slide rail 20 inward without allowing outward movement relative to the first slide rail 10.
When the latch member 30 leaves the protrusion 62 of the stop member 60, releasing the operating portion 42 of the release member 40, the resilient member 50 rebounds to return the latch member 30 to its original position. The first driven portion 362 or the second driven portion 364 of the latch member 30 drives the cam 44 of the release member 40 to return the release member 40 to its original position.
The protrusion 62 may extend from the first slide rail 10 directly. A spring can be placed between the release member 40 and the second slide rail 20 for returning the release member 40 to its original position.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.