The invention pertains to a latch mechanism adapted for use in a sash window assembly. More specifically, the invention pertains to a latch mechanism which includes a bolt having a protrusion which projects in the direction of travel of the window sash within a window frame at the end of a bolt, which is adapted for extending into the side jambs, and which is adapted for selectively engaging a pocket brace.
Tiltable window assemblies have previously incorporated tilt latches at the end of the window sash opposite the pivot bar of the tilt mechanism. The previous latch mechanisms have generally provided additional mechanical support for maintaining the window sash so as to be in plane with the non-tiltable direction of travel of the window sash within the window frame.
Prior tilt latches have included a bolt, which travels within a latch housing, and which selectively engages the side jamb of the window frame. The bolts generally have an angled surface at the end of the bolt and on the side of the bolt, that engages the side jamb. When the angled surface of the bolt engages the side jamb as the window sash moves from a tilted position to a non-tilted position, the angled surface of the bolt causes the bolt to at least momentarily deflect inward until it clears the obstructing portion of the side jamb.
The other side of the end of the bolt that engages the side jamb as the window sash moves from a non-tilted position to a tilted position, is generally perpendicular to the direction of tilting movement. The generally perpendicular side of the bolt, when it engages the obstructing portion of the side jamb does not deflect the bolt, but engages the side jamb and resists movement in a tilting direction. Generally the sash is rotationally locked in a non-tilt position within the window frame until the end of the bolt of the tilt latch, which is generally biased toward engagement, is manually retracted and released from the side jamb. An early example of such a tilt latch is described in Menns, U.S. Pat. No. 1,862,757.
Window can be subjected to extreme weather conditions, where the required response to the extreme weather conditions are often dictated by building codes. Building codes are increasingly requiring that the windows survive increasingly extreme weather conditions. One such example includes high winds or large pressure differentials between indoor and outdoor pressures, which can be associated with tornadoes and/or hurricanes. Windows may also be expected to survive an impact from flying debris.
Historically, accepted wisdom suggested that one open the window slightly during a tornado or a hurricane, so as to provide an air path via which the air pressure on the interior side of the window can more easily be equated to the air pressure on the external side of the window. However, more recently, the generally accepted wisdom now suggests, that one should maintain the window in a closed position. This is because storms, which have high winds, like hurricanes, are often accompanied by rain. By opening the window during such a storm, one may be subjecting the interior of the building to potential water damage, where the pressure equalizing effects are now viewed as having only a marginal effect.
As the requirements become increasingly stringent, the building techniques and the components used in the construction of a window assembly need to keep pace or stay ahead of the stricter standards, in order to be able to sell into the market. Consequently, there is a need to develop building techniques and/or better components and incorporate them into the window assemblies, in order to enhance the integrity of the window, and allow it to withstand greater and greater harmful forces, as required by the building codes.
Many currently used window assemblies include plastic extruded jamb liners, which can deflect when under relatively high levels of stress. Similarly, the top and bottom rails, as well as the stiles of the window sash for many window assemblies are also made from extruded plastic components, which are then welded together at the joints. The plastic extruded top and bottom rails can similarly bow and/or deflect, when significant external forces are applied.
As the window sash bows and/or deflects, the ends of the top and bottom rails can be deflected away from the side jamb toward the center of the window assembly. This in turn can pull the attached tilt latch assemblies away from and out of engagement with the side jamb. As a result, the tilt latch assemblies may no longer prevent the tilt motion of the window sash. Additionally the tilt latch assemblies may no longer anchor the non-pivot point side of the window sash within the window frame. This then becomes a weak point in the window construction, and a likely point for failure, when extreme forces are applied.
Consequently, it would be beneficial to develop a tilt-latch, which resists bowing and/or deflection of the window sash, and which does not readily release from the side jamb when the window sash bows and/or is deflected.
A latch mechanism adapted for being coupled to a window sash is provided, which travels within a window frame. The latch mechanism includes a main housing, a bolt, and a tension device. The main housing has a sidewall, which includes one or more sidewall sections which extends around at least a portion of the housing and defines an interior space, and has an opening in said sidewall at one end of said housing. The sidewall forms a channel within the interior space of the main housing having an end that coincides with said opening.
The bolt is substantially located within the housing and travels along the channel. The bolt has a first end which is adapted for extending through the opening of the housing and extending into the side jamb of a window frame. A first end of the bolt has a protrusion, which projects in the direction of travel of the window sash within the window frame. The tension device is coupled between the bolt and the main housing for biasing the bolt toward a position where the bolt extends at least partially through the opening. When the window sash travels within the window frame, the protrusion at the first end of said bolt moves between an engaged position and a disengaged position relative to the window frame.
In at least one embodiment of the invention, the protrusion is adapted to engage a cross member, which interrupts at least a portion of a channel opening of a jamb pocket in a side jamb of the window frame, when the window sash is in an engaged position relative to the window frame.
In at least a further embodiment of the invention, an interior surface of the protrusion and an interior contact surface of the cross member are angled in a direction, which biases the window sash in a direction opposite to an applied force, when the force is applied to an external facing surface of the window sash, and when the force is sufficient to bow the window sash and bring the sides of the window sash closer together.
A further aspect of the present invention provides for a pocket brace adapted to be coupled to a window frame including a side jamb having a jamb pocket with a channel opening. The pocket brace includes a cross member, which interrupts a portion of the channel opening, wherein said cross member is adapted to engage a protrusion projecting from the bolt of a latch mechanism, which projects in the direction of travel of the window sash within the window frame.
In a further embodiment of the invention, the pocket brace additionally includes at least one side flange coupled to a respective end of the cross member, which extends around at least a portion of the interior surface of the jamb pocket away from the channel opening.
In a still further aspect of the present invention, a method for supporting a window sash including a latch mechanism within a window frame is provided. The method includes moving a window sash between an opened position and a closed position, while the window sash is in an upright position, and engaging a protrusion at the end of a bolt of a latch mechanism to a window frame when said window sash moves toward a closed position, while the window sash is substantially in plane with the direction of movement of the window sash.
Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims and from the accompanying drawings.
While the present invention is susceptible of embodiment in many different forms, there are shown in the drawings and will be described herein in detail specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.
Referring now to the drawings in greater detail, there is illustrated in
The window sashes 12, 14 are coupled to their corresponding window sash balance shoes via a pivot bar, which is attached to the bottom of the window sashes 12, 14. The pivot bar allows the window sash 12, 14 to pivot between a vertical and a horizontal position as shown in
The bolt 30 has a protrusion 38, which projects from the first end 36 of the bolt 30, below a bottom surface of an external sidewall of the bolt 30 immediately adjacent to the protrustion 38 in the direction of travel of the window sash 14 within the window frame. In at least one embodiment, the first end 36 of the bolt 30, and the protrusion 38 projecting from the first end 36 of the bolt 30, to the extent that it shares an affected surface with the first end of the bolt, has an angled surface 40 on the side which, when extended, contacts the side jamb 16, when the window sash 14 moves from a tilted position to a non-tilted position. In the embodiment illustrated in
The angled surface 40, when it contacts the side jamb 16 will bias the end 36 of the bolt 30 into the main housing 24, against the force exerted by a tension device coupled between the bolt 30 and the side walls 28 of the main housing 24 at the side 42 of the channel 32 opposite the opening 34 in the channel 32. In at least one embodiment, the tension device is a spring 44, as illustrated in
The manual release of the latch mechanism 20 can be facilitated by the user engaging or gripping the bolt 30 and applying a force, which biases the bolt away from the opening 34 and out of the jamb pocket of the side jamb 16. The user can grip the bolt 30 via a finger grip 46, coupled to, or integrated with the bolt 30, which extends through the opening 48 in the top plate 26 of the main housing 24. The force applied by the user needs to be sufficient to overcome the force exerted by the tension device, which biases the bolt 30 outward.
In the illustrated embodiment, the latch mechanism 20 is coupled to the top rail of the sash via a pair of fasteners (not shown), which extend through the mounting holes 50 in the top plate 26 of the main housing 24. In at least one embodiment the fasteners, are threaded fasteners, like screws. The latch mechanism 20 can also be retained by the material thickness of the top rail being captivated between the top plate 26 and a pair of tabs 52 extending outward from the side wall 28 of the main housing 24. The tabs have a top surface that can deflect downward to accommodate a certain degree of variance in the thickness of the material forming the top surface 54 of the top rail. At the ends of the top surface of the tabs are prongs 58, which can more readily engage and grip the material thickness of the top surface 54 of the top rail.
Alternatively, wings 68 which extend from each side of the bolt 30 and a slot 69 which extends through the sidewall 26 of the main housing 24 could alternatively or additionally be used to limit the travel of the bolt 30 within the channel 32. Still further the wings could alternatively be associated with the side walls 26 of the main housing 24 and the slot could alternatively be associated with the bolt 30. Protrusions 64 at the end of the channel 32, which is opposite of the opening 34, facilitates coupling one end of the tension device to the main housing 24. The bolt 30 has a related protrusion 66 for coupling the other end of the tension device to the bolt 30.
The first end 76 of the bolt 74, in addition to showing a straight angled surface 82, additionally shows at least one possibility of a curved angled surface 84, using a dashed line. One skilled in the art will readily recognize, that other types of curved surfaces could alternatively be used, without departing from the teachings of the present invention. Similar to the embodiment illustrated in
The protrusions 38, 86, in both embodiments, are adapted for engaging a pocket brace 90 located in the jamb pocket 18 of the side jamb 16 of the window frame. A perspective view of a pocket brace 90, in accordance with at least one aspect of the present invention, is illustrated in
The pocket brace 90 includes a cross member 92, which interrupts at least a portion of the channel opening of the jamb pocket 18. In the embodiment illustrated in
In the illustrated embodiment, the pocket brace 90 is coupled to the jamb pocket 16 via a fastener 98 coupled to one end of one of the side flanges 94. This allows the unattached portion of the pocket brace to flex relative to the anchored end point. This further allows some of the energy that may result from extreme external weather conditions to be absorbed by the flexing of the pocket brace. Additionally, only coupling the pocket brace 90 at one end relaxes the dimensional tolerances of the other dimensions of the pocket brace 90 relative to the jamb pocket 18.
As illustrated in
Additionally, when the protrusion is moved into an engaged position, relative to the pocket brace, as illustrated in
One skilled in the art will readily appreciate that other shapes for the pocket brace are possible without departing from the teachings of the present invention. One such alternative for a pocket brace 110 is illustrated in
Lastly the height of the pocket brace 90 within the jamb pocket 18 can correspond to the height of the window sash 12, 14, when the window sash 12, 14 is in a closed position. In at least one embodiment, the physical height of the pocket brace 90 and/or the amount of overlap between the protrusion 86 and the pocket brace 90, may correspond to the required distance of travel for the window sash 14 to clear the window sill prior to being able to be tilted.
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
1862757 | Menns | Jun 1932 | A |
5139291 | Schultz | Aug 1992 | A |
5671958 | Szapucki et al. | Sep 1997 | A |
6021603 | Prete et al. | Feb 2000 | A |
6230443 | Schultz | May 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040128916 A1 | Jul 2004 | US |