N/A
N/A
1. Field of the Invention
The present invention relates to the field of oilfield drilling equipment, and in particular to rotating control devices.
2. Description of the Related Art
Conventional offshore drilling techniques involve using hydraulic pressure generated by a preselected fluid inside the wellbore to control pressures in the formation being drilled. However, a majority of known resources, gas hydrates excluded, are considered economically undrillable with conventional techniques. Pore pressure depletion, the need to drill in deeper water, and increasing drilling costs indicate that the amount of known resources considered economically undrillable will continue to increase. Newer techniques, such as underbalanced drilling and managed pressure drilling, have been used to control pressure in the wellbore. These techniques present a need for pressure management devices, such as rotating control devices (RCDs) and diverters.
RCDs have been used in conventional offshore drilling. An RCD is a drill-through device with a rotating seal that contacts and seals against the drill string (drill pipe, casing, drill collars, kelly, etc.) for the purposes of controlling the pressure or fluid flow to the surface. Rig operators typically bolt a conventional RCD to a riser below the rotary table of a drilling rig. However, such a fixed connection has presented health, safety, and environmental (HSE) problems because retrieving the RCD has required unbolting the RCD from the riser, requiring personnel to go below the rotary table of the rig in the moon pool to disconnect the RCD. In addition to the HSE concerns, the retrieval procedure is complex and time consuming, decreasing the operational efficiency of the rig. Furthermore, space in the area above the riser typically limits the drilling rig operator's ability to install equipment on top of the riser.
U.S. Pat. No. 6,129,152 proposes a flexible rotating bladder and seal assembly that is hydraulically latchable with its rotating blow-out preventer housing. U.S. Pat. No. 6,457,529 proposes a circumferential ring that forces dogs outward to releasably attach an RCD with a manifold. U.S. Pat. No. 7,040,394 proposes inflatable bladders/seals. U.S. Pat. No. 7,080,685 proposes a rotatable packer that may be latchingly removed independently of the bearings and other non-rotating portions of the RCD. The '685 patent also proposes the use of an indicator pin urged by a piston to indicate the position of the piston. It is also known in the prior art to manually check the position of a piston in an RCD with a flashlight after removal of certain components of the RCD. However, this presents HSE problems as it requires personnel to go below the rotary table of the rig to examine the RCD, and it is time consuming.
Pub. No. US 2004/0017190 proposes a linear position sensor and a degrading surface to derive an absolute angular position of a rotating component. U.S. Pat. No. 5,243,187 proposes a body having a plurality of saw tooth-shaped regions which lie one behind the other, and two distance sensors for determining a rotational angle or displacement of the body.
The above discussed U.S. Pat. Nos. 5,243,187; 6,129,152; 6,457,529; 7,040,394; and 7,080,685; and Pub. No. US 2004/0017190 are hereby incorporated by reference for all purposes in their entirety. U.S. Pat. Nos. 6,129,152; 7,040,394 and 7,080,685 are assigned to the assignee of the present invention.
It would be desirable to retrieve an RCD or other oilfield device positioned below the rotary table of the rig without personnel having to go below the rotary table. It would also be desirable to remotely determine with confidence the position of the latch(s) relative to an RCD.
A latch assembly may be bolted or otherwise fixedly attached to a housing section, such as a riser or bell nipple positioned on a riser. A hydraulically actuated piston in the latch assembly may move from a second position to a first position, thereby moving a retainer member, which may be a plurality of spaced-apart dog members or a C-shaped member, to a latched position. The retainer member may be latched with an oilfield device, such as an RCD or a protective sleeve. The process may be reversed to unlatch the retainer member and to remove the oilfield device. A second piston may urge the first piston to move to the second position, thereby providing a backup unlatching mechanism. A latch assembly may itself be latchable to a housing section, using a similar piston and retainer member mechanism as used to latch the oilfield device to the latch assembly.
A method and system are provided for remotely determining whether the latch assemblies are latched or unlatched. In one embodiment, a comparator may compare a measured fluid value of the latch assembly hydraulic fluid with a predetermined fluid value to determine whether the latch assembly is latched or unlatched. In another embodiment, a comparator may compare a first measured fluid value of the latch assembly hydraulic fluid with a second measured fluid value of the hydraulic fluid to determine whether the latch assembly is latched or unlatched.
In another embodiment, an electrical switch may be positioned with a retainer member, and the switch output interpreted to determine whether the latch assembly is latched or unlatched. In another embodiment, a mechanical valve may be positioned with a piston, and a fluid value measured to determine whether the latch assembly is latched or unlatched. In another embodiment, a latch position indicator sensor, preferably an analog inductive proximity sensor, may be positioned with, but without contacting, a piston or a retainer member, and the sensor output interpreted to determine whether the latch assembly is latched or unlatched. The sensor may preferably detect the distance between the sensor and the targeted piston or retainer member. In one embodiment, the surface of the piston or retainer member targeted by the sensor may be inclined. In another embodiment, the surface of the piston or retainer member targeted by the sensor may contain more than one metal. The sensor may also detect movement of the targeted piston or retainer member. In another embodiment, more than one sensor may be positioned with a piston or a retainer member for redundancy. In another embodiment, sensors make physical contact with the targeted piston and/or retainer member.
A better understanding of the present invention can be obtained when the following detailed description of various disclosed embodiments is considered in conjunction with the following drawings, in which:
FIG. 39B1a is a cross-section elevational detail view of the upper latch subassembly of
FIG. 39B1b is a detail view of the upper latch subassembly of
FIG. 39B2a is a cross-section elevational detail view of the lower latch subassembly of
FIG. 39B2b is the same view as FIG. 39B2a except with the lower retainer member latched resulting in the lower indicator pin protruding or extending further from the RCD;
FIG. 39B3a is a cross-section elevational detail view of the upper latch subassembly of
FIG. 39B3b is the same view as FIG. 39B3a except with the upper retainer member latched resulting in the upper indicator pin protruding or extending further from the RCD;
FIG. 39B4a is a cross-section elevational detail view of the upper latch subassembly of
FIG. 39B4b is the same view as FIG. 39B4a except with the upper retainer member latched resulting in the upper indicator pin protruding or extending further from the RCD;
Although the following is sometimes described in terms of an offshore platform environment, all offshore and onshore embodiments are contemplated. Additionally, although the following is described in terms of oilfield drilling, the disclosed embodiments can be used in other operating environments and for drilling for non-petroleum fluids.
Turning to
A landing formation 206 of the housing section 200 engages a shoulder 208 of the rotating control device 100, limiting downhole movement of the rotating control device 100 when positioning the rotating control device 100. The relative position of the rotating control device 100 and housing section 200 and latching assembly 210 are exemplary and illustrative only, and other relative positions can be used.
As best shown in the dual hydraulic latch assembly embodiment of
Returning now to
The second or auxiliary annular piston 222 is also shown as hydraulically actuated using hydraulic port 230 and its corresponding gun-drilled passageway. Increasing the relative pressure on port 230 causes the piston 222 to push or urge the piston 220 into the second or unlatched position, should direct pressure via port 234 fail to move piston 220 for any reason.
The hydraulic ports 230, 232 and 234 and their corresponding passageways shown in
Thus, the rotating control device illustrated in
An assortment of seals is used between the various elements described herein, such as wiper seals and O-rings, known to those of ordinary skill in the art. For example, each piston 220 preferably has an inner and outer seal to allow fluid pressure to build up and force the piston in the direction of the force. Likewise, seals can be used to seal the joints and retain the fluid from leaking between various components. In general, these seals will not be further discussed herein.
For example, seals 224A and 224B seal the rotating control device 100 to the latch assembly 210. Although two seals 224A and 224B are shown in
In addition to the first latch subassembly comprising the pistons 220 and 222 and the retainer member 218, the dual hydraulic latch assembly 300 embodiment illustrated in
As with the first latch subassembly, the piston 302 moves to a first or latching position. However, the retainer member 304 instead expands radially outwardly, as compared to inwardly, from the latch assembly 300 into a latching formation 311 in the housing section 310. Shown in
Shoulder 208 of the rotating control device 100 in this embodiment lands on a landing formation 308 of the latch assembly 300, limiting downward or downhole movement of the rotating control device 100 in the latch assembly 300. As stated above, the latch assembly 300 can be manufactured for use with a specific housing section, such as housing section 310, designed to mate with the latch assembly 300. In contrast, the latch assembly 210 of
Cables (not shown) can be connected to eyelets or rings 322A and 322B mounted on the rotating control device 100 to allow positioning of the rotating control device 100 before and after installation in a latch assembly. The use of cables and eyelets for positioning and removal of the rotating control device 100 is exemplary and illustrative, and other positioning apparatus and numbers and arrangements of eyelets or other attachment apparatus, such as discussed below, can be used.
Similarly, the latch assembly 300 can be positioned in the housing section 310 using cables (not shown) connected to eyelets 306A and 306B, mounted on an upper surface of the latch assembly 300. Although only two such eyelets 306A and 306B are shown in
As best shown in
In the embodiment of a single hydraulic latch assembly 210, such as illustrated in
Turning to
As illustrated in
Although no piston is shown for urging piston 302 similar to the second or auxiliary piston 222 used to disengage the rotating control device from the latch assembly 300, it is contemplated that an auxiliary piston (not shown) to urge piston 302 from the first, latched position to the second, unlatched position could be used, if desired.
In
Furthermore, although
Turning to
Pressure transducer 950 is a conventional pressure transducer and can be of any suitable type or manufacture. In one embodiment, the pressure transducer 950 is a sealed gauge pressure transducer. Additionally, other instrumentation can be inserted into the passage 905 for monitoring predetermined characteristics of the wellbore W.
A plug 940 allows electrical connection to the transducer 950 for monitoring the pressure transducer 950. Electrical connections between the transducer 950 and plug 940 and between the plug 940 to an external monitor are not shown for clarity of the figure.
In one embodiment, illustrated in
Typically, the passageways are holes formed by drilling the applicable element, sometimes known as “gun-drilled holes.” More than one drilling can be used for passageways that are not a single straight passageway, but that make turns within one or more element. However, other techniques for forming the passageways can be used. The positions, orientations, and relative sizes of the passageways illustrated in
The channels of
Turning to
Also shown in
Another plurality of passageways 1105 formed in outer housing element 640 provides fluid communication to chamber 600 between piston 220 and piston 222. Fluid pressure in chamber 600 through passageway 1105 urges piston 220 into the unlatched position, and moves piston 222 away from piston 220. Yet another plurality of passageways 1107 formed in outer housing element 640 provides fluid communication to chamber 600 such that fluid pressure urges piston 222 towards piston 220, and can, once piston 222 contacts piston 220, cause piston 220 to move into the unlatched position as an auxiliary or backup way of unlatching the latch assembly 300 from the rotating control device 100, should fluid pressure via passageway 1105 fail to move piston 220. Although as illustrated in
Turning now to
Turning now to
Although described above in each case as entering chamber 600 or 610 from the corresponding passageways, one skilled in the art will recognize that fluid can also exit from the chambers when the piston is moved, depending on the direction of the move. For example, viewing
Turning now to
In addition to the ports 1210 to 1280,
Turning now to
Block 1400 represents a remote control display for the latch position indicator subsystem of the system S, and is further described in one embodiment in
A fluid supply subsystem 1330 provides a controlled hydraulic fluid pressure to a fluid valve subsystem 1320. As illustrated in
A fluid valve subsystem 1320 controls the provision of fluid to hydraulic fluid lines (unnumbered) that connect to the chambers 1370, 1380 and 1390.
Pressure transducers PT or other pressure measuring devices 1340, 1342, 1344, 1346 and 1348 measure the fluid pressure in the hydraulic lines between the fluid valve subsystem 1320 and the chambers 1370, 1380 and 1390. Control lines 1310 connect the pressure measuring devices 1340, 1342, 1344, 1346 and 1348 to the remote control display 1400. In addition, flow meters FM 1350, 1352, 1354, 1356, 1358 and 1360 measure the flow of hydraulic fluid to the chambers 1370-1390, which can allow measuring the volume of fluid that is delivered to the chambers 1370, 1380 and 1390. Although the system S includes both pressure transducers PT and flow meters FM, either the pressure transducers PT or the flow meters FM can be omitted if desired. Although expressed herein in terms of pressure transducers PT and flow meters FM, other types of pressure and flow measuring devices can be used as desired.
Turning now to
An Off/On control 1430 controls the operation of the pump 1335. A Drill Nipple/Bearing Assembly control 1440 controls a pressure value produced by the pump 1335. The pressure value can be reduced if a drilling nipple or other thin walled apparatus is installed. For example, when the control 1440 is in the “Drill Nipple” position, the pump 1335 can pressurize the fluid to 200 PSI, but when the control is in the “Bearing Assembly” position, the pump 1335 can pressurize the fluid to 1000 PSI. Additionally, an “Off” position can be provided to set the pump pressure to 0 PSI. Other fluid pressure values can be used. For example, in one embodiment, the “Bearing Assembly” position can cause pressurization depending on the position of the Bearing Latch switch 1450, such as 800 PSI if switch 1450 is closed and 2000 PSI if switch 1450 is open.
Control 1450 controls the position of the piston 220, latching the rotating control device 100 to the latch assembly 300 in the “closed” position by moving the piston 220 to the latched position. Likewise, the control 1460 controls the position of the auxiliary or secondary piston 222, causing the piston 222 to move to urge the piston 220 to the unlatched position when the bearing latch control 1460 is in the “open” position. Indicators 1470, 1472, 1474, 1476, 1478, 1480, 1482, 1484, 1486, and 1488 provide indicators of the state of the latch assembly and other useful indicators. As illustrated in
An additional alarm indicator indicates various alarm conditions. Some exemplary alarm conditions include: low fluid, fluid leak, pump not working, pump being turned off while wellbore pressure is present and latch switch being moved to open when wellbore pressure is greater than a predetermined value, such as 25 PSI. In addition, a horn (not shown) can be provided for an additional audible alarm for safety purposes. The display 1400 allows remote control of the latch assembly 210 and 300, as well as remote indication of the state of the latch assembly 210 and 300, as well as other related elements.
In one embodiment, the predetermined volume value is a range of predetermined volume values. The predetermined volume value can be experimentally determined. An exemplary range of predetermined volume values is 0.9 to 1.6 gallons of hydraulic fluid, including 2 gallon to account for air that may be in either the chamber or the hydraulic line. Other ranges of predetermined volume values are contemplated.
As can now be understood,
Various changes in the details of the illustrated apparatus and construction and the method of operation may be made. In particular, variations in the orientation of the rotating control device 100, latch assemblies 210, 300, housing section 310, and other system components are possible. For example, the retainer members 218 and 304 can be biased radially inward or outward. The pistons 220, 222, and 302 can be a continuous annular member or a series of cylindrical pistons disposed about the latch assembly. Furthermore, while the embodiments described above have discussed rotating control devices, the apparatus and techniques disclosed herein can be used to advantage on other tools, including rotating blowout preventers.
All movements and positions, such as “above,” “top,” “below,” “bottom,” “side,” “lower,” and “upper” described herein are relative to positions of objects as viewed in the drawings such as the rotating control device. Further, terms such as “coupling,” “engaging,” “surrounding,” and variations thereof are intended to encompass direct and indirect “coupling,” “engaging,” “surrounding,” and so forth. For example, the retainer member 218 can engage directly with the rotating control device 100 or can be engaged with the rotating control device 100 indirectly through an intermediate member and still fall within the scope of the disclosure.
As depicted, the active seal assembly 2105 includes a bladder support housing 2135 mounted within the plurality of bearings 2125. The bladder support housing 2135 is used to mount bladder 2130. Under hydraulic pressure, bladder 2130 moves radially inward to seal around a tubular, such as a drilling pipe or tubular (not shown). In this manner, bladder 2130 can expand to seal off a borehole using the rotating control device 2100.
As illustrated in
Generally, fluid is supplied to the chamber 2150 under a controlled pressure to energize the bladder 2130. Essentially, the hydraulic control maintains and monitors hydraulic pressure within pressure chamber 2150. Hydraulic pressure P1 is preferably maintained by the hydraulic control between 0 to 200 PSI above a wellbore pressure P2. The bladder 2130 is constructed from flexible material allowing bladder surface 2175 to press against the tubular at approximately the same pressure as the hydraulic pressure P1. Due to the flexibility of the bladder, it also may conveniently seal around irregular shaped tubular string, such as a hexagonal Kelly. In this respect, the hydraulic control maintains the differential pressure between the pressure chamber 2150 at pressure P1 and wellbore pressure P2. Additionally, the active seal assembly 2105 includes support fingers 2180 to support the bladder 2130 at the most stressful area of the seal between the fluid pressure P1 and the ambient pressure.
The hydraulic control may be used to de-energize the bladder 2130 and allow the active seal assembly 2105 to release the seal around the tubular. Generally, fluid in the chamber 2150 is drained into a hydraulic reservoir (not shown), thereby reducing the pressure P1. Subsequently, the bladder surface 2175 loses contact with the tubular as the bladder 2130 becomes de-energized and moves radially outward. In this manner, the seal around the tubular is released allowing the tubular to be removed from the rotating control device 2100.
In the embodiment shown in
While
As shown in
Startup Operation
Turning now to
Continuing on the flowchart of
Assuming that the power unit is within the above parameters, valves V80 and V90 are placed in their open positions, as shown in
Continuing review of the flowchart of
When the PLC program has checked all of the above parameters the power unit will be allowed to start. Referring to the control console CC in
When shutdown of the unit desired, the PLC program checks to see if conditions are acceptable to turn the power unit off. For example, the wellbore pressure P2 should be below 50 PSI. Both the enable button PB10 must be pressed and the power switch SW10 must be turned to the OFF position within 3 seconds to turn the power unit off.
Latching Operation System Circuit
Closing the Latching System
Focusing now on
The retainer member LP, primary piston P and secondary piston SP of the latching system are mechanically illustrated in
With the above described startup operation achieved, the hydraulics switch SW20 on the control console CC is turned to the ON position. This allows the pump P1 to compensate to the required pressure later in the PLC program. The bearing latch switch SW40 on console CC is then turned to the CLOSED position. The program then follows the process outlined in the CLOSED leg of SW40 described in the flowcharts of
Primary Latching System Opening
Similar to the above latch closing process, the PLC program follows the OPEN leg of SW40 as discussed in the flowchart of
Secondary Latching System Opening
The PLC program following the OPEN leg of SW40 and the OPEN leg of SW50, described in the flowchart of
Alarms
During the running of the PLC program, certain sensors such as flow meters and pressure transducers are checked. If the values are out of tolerance, alarms are activated. The flowcharts of
Latch Leak Detection System
FM30/FM40 Comparison
Usually the PLC program will run a comparison where the secondary piston SP is “bottomed out” or in its latched position, such as shown in
In this comparison, if there are no significant leaks, the flow volume value or flow rate value measured by flow meter FM30 should be equal to the flow volume value or flow rate value, respectively, measured by flow meter FM40 within a predetermined tolerance. If a leak is detected because the comparison is outside the predetermined tolerance, the results of this FM30/FM40 comparison would be displayed on display monitor DM on control console CC, as shown in
FM30/FM50 Comparison
In a less common comparison, the secondary piston SP would be in its “full up” position. That is, the secondary piston SP has urged the primary piston P, when viewing
If the compared FM30/FM50 values are within a predetermined tolerance, then no significant leaks are considered detected. If a leak is detected, the results of this FM30/FM50 comparison would be displayed on display monitor DM on control console CC, preferably in a text message, such as “ALARM100—Fluid Leak”. Furthermore, if the values from flow meter FM30 and flow meter FM50 are not within a predetermined tolerance, the corresponding light LT100 would be displayed on the control console CC.
FM30/FM40+FM50 Comparison
Sometimes the primary piston P is in its full unlatched position and the secondary piston SP is somewhere between its bottomed out position and in contact with the fully unlatched piston P. In this comparison, the flow volume value or flow rate value measured by the flow meter FM30 to move piston P to its latched position is measured. If the secondary piston SP is sized so that it does not block line FM40L, fluid between secondary piston SP and piston P is evacuated by line FM40L. The flow meter FM40 then measures the flow volume value or flow rate value via line FM40L. This measured value from flow meter FM40 is compared to the measured value from flow meter FM30. Also, the flow value beneath secondary piston SP is evacuated via line FM50L and measured by flow meter FM50.
If the flow value from flow meter FM30 is not within a predetermined tolerance of the compared sum of the flow values from flow meter FM40 and flow meter FM50, then the corresponding light LT100 would be displayed on the control console CC. This detected leak is displayed on display monitor DM in a text message.
Measured Value/Predetermined Value
An alternative to the above leak detection methods of comparing measured values is to use a predetermined or previously calculated value. The PLC program then compares the measured flow value in and/or from the latching system to the predetermined flow value plus a predetermined tolerance.
It is noted that in addition to indicating the latch position, the flow meters FM30, FM40 and FM50 are also monitored so that if fluid flow continues after the piston P has moved to the closed or latched position for a predetermined time period, a possible hose or seal leak is flagged.
For example, alarms ALARM90, ALARM100 and ALARM110, as shown in below Table 2, could be activated as follows:
Alarm ALARM90—primary piston P is in the open or unlatched position. The flow meter FM40 measured flow value is compared to a predetermined value plus a tolerance to indicate the position of piston P. When the flow meter FM40 reaches the tolerance range of this predetermined value, the piston P is indicated in the open or unlatched position. If the flow meter FM40 either exceeds this tolerance range of the predetermined value or continues to read a flow value after a predetermined time period, such as an hour, the PLC program indicates the Alarm ALARM90 and its corresponding light and text message as discussed herein.
Alarm ALARM100—secondary piston SP is in the open or unlatched position. The flow meter FM50 measured flow value is compared to a predetermined value plus a tolerance to indicate the position of secondary piston SP. When the flow meter FM50 reaches the tolerance range of this predetermined value, the secondary piston SP is indicated in the open or unlatched position. If the flow meter FM50 either exceeds this tolerance range of the predetermined value or continues to read a flow value after a predetermined time period, such as an hour, the PLC program indicates the alarm ALARM1100 and its corresponding light and text message as discussed herein.
Alarm ALARM110—primary piston P is in the closed or latched position. The flow meter FM30 measured flow value is compared to a predetermined value plus a tolerance to indicate the position of primary piston P. When the flow meter FM30 reaches the tolerance range of this predetermined value, the primary piston P is indicated in the closed or latched position. If the flow meter FM30 either exceeds this tolerance range of the predetermined value or continues to read a flow value after a predetermined time period, such as an hour, the PLC program indicates the alarm ALARM110 and its corresponding light and text message as discussed herein.
Other Latch Position Indicator Embodiments
Additional methods are contemplated to indicate the position of the primary piston P and/or secondary piston SP in the latching system. One example would be to use an electrical sensor, such as a linear displacement transducer, to measure the distance the selected piston has moved. This type of sensor is a non-contact sensor as it does not make physical contact with the target, and will be discussed below in detail. The information from the sensor may be remotely used to indirectly determine whether the retainer member is latched or unlatched based upon the position of the piston.
Another method could be drilling the housing of the latch assembly for a valve that would be opened or closed by either the primary piston P, as shown in the embodiment of
If a flow value and/or pressure is detected in the respective flow meter and/or pressure transducer communicating with passage OUP, then the valve is indicated open. This open valve indicates the piston is in the open or unlatched position. If no flow value and/or pressure is detected in the respective flow meter and/or pressure transducer communicating with passage OUP, then the valve is indicated closed. This closed valve indicates the piston is in the closed or latched position. This information may then be remotely used to indirectly determine whether the retainer member is latched or unlatched depending upon the position of the piston. The above piston position would be shown on the console CC, as shown in
Other embodiments of latch position indicator systems using latch position indicator sensors are shown in
Returning to
Latch position indicator sensor 3090, as well as the latch position indicator sensors (3172, 3192, 3240, 3382, 3392, 3396, 3452, 3472, 3530, 4012, 4026, 4060, 4048, 4280, 4290, 4350) shown in
Other types of sensors, both contact type and non-contact type, for measuring distance and/or movement are contemplated for all embodiments of the invention, including, but not limited to, magnetic, electric, capacitive, eddy current, inductive, ultrasonic, photoelectric, photoelectric-diffuse, photoelectric-retro-reflective, photoelectric-thru-beam, optical, laser, mechanical, magneto-inductive, magneto-resistive, giant magneto-resistive (GMR), magno-restrictive, Hall-Effect, acoustic, ultrasonic, auditory, radio frequency identification, radioactive, nuclear, ferromagnetic, potentiometric, wire coil, limit switches, encoders, linear position transducers, linear displacement transducers, photoelectric distance sensors, magneto-inductive linear position sensors, and inductive distance sensors. It is contemplated that different types of sensors may be used with the same latch assembly, such as latch assembly 3100 in
It is also contemplated for all embodiments of the invention that a signal inducing device, such as a magnet, an active radio frequency identification device, a radioactive pill, or a nuclear transmitting device, may be mounted on piston 3050, similar to those shown in Pub. No. US 2008/0236819, that may be detected by a receiving device or a sensor mounted on latching assembly 3020 to determine the position of piston 3050. The '819 publication, assigned to the assignee of the present invention, is incorporated by reference for all purposes in its entirety. It is also contemplated that a signal inducing device may be mounted on a retainer member, such as retainer member 3040, as shown in
Although an RCD 3010 is shown in
Turning to
Returning to
As with all embodiments of the invention, it is contemplated that different types of oilfield devices may be latched with the latch assemblies such as latch assembly 4000. Retainer member 4004 may need to move inwardly a greater distance for other latched equipment than it does for RCD 4002. Blocking shoulders slot 4008 allows retainer member 4004 to move a limited travel distance (even a distance considered to be an override position) or until engaged with different outer diameter inserted oilfield devices. It is contemplated that a blocking shoulder slot, such as blocking shoulder slot 4008, may be used with all embodiments of the invention. As will be discussed below, it is contemplated that the anticipated movement of retainer member 4004 for different latched oilfield devices may be programmed into the PLC.
First piston 4022 has an inclined or ramped exterior surface 4024. Latch position indicator sensor housing 4028 is attached with latch assembly 4000. Latch position indicator sensor 4026 is mounted with housing 4028. Sensor 4026 can detect the distance from the sensor 4026 to the targeted inclined surface 4024, including while piston 4022 moves. Enlarged views of a housing and sensor similar to housing 4028 and sensor 4026 are shown in
Although multiple sensors are shown in
Sensor 4048 is positioned axially in relation to second piston 4072. It is contemplated that sensor 4048 may be sealed from hydraulic pressure. Sensor 4048 can detect the distance from the sensor 4048 to the targeted second piston bottom surface 4080, including while second piston 4072 moves. Sensor 4048 transmits an electrical signal through lines (4052, 4058) connected with inner conductive rings 4050 mounted on the inner body 4084 of latch assembly 4000. Inner conductive rings 4050 are positioned with outer conductive rings 4082 on the outer body 4086 of latch assembly 4000. It is contemplated that conductive rings (4050, 4082) may be made of a metal that conducts electricity with minimal resistance, such as copper. The output signal from sensor 4048 travels through lines (4053, 4058) and may be interpreted to remotely determine the position and/or movement of second piston 4072, and therefore indirectly the position and/or movement of retainer member 4004, as will be discussed in detail below. Second fitting 4056 is sealingly mounted with latch assembly 4000. As can also be understood, sensor 4048 is a non-contact type sensor in that it does not make physical contact with second piston 4072. However, as will be discussed in detail below, contact type sensors that do make contact with second piston 4072 are contemplated. The information from sensor 4048 may be used remotely to indirectly determine whether retainer member 4004 is latched or unlatched from the position of second piston 4072.
Reservoir 4020 may contain pressurized fluid, such as a hydraulic fluid, such as water, with or without cleaning additives. However, other fluids (liquid or gas) are contemplated. The fluid may travel through lines (4032, 4034, 4040) to clean off debris around and on the sensors (4026, 4036) or targeted inclined surfaces (4024, 4038). One-way gate valve 4042 allows the fluid to travel out of latch assembly 4000. While not illustrated, it is contemplated that directed nozzles, such as a jet nozzle, could be positioned in lines 4032, 4034 to enhance the pressured cleaning of the sensors. Also, it is contemplated that pumps could be provided to provide pressurized fluid. For example, one pump could be provided in line 4032 and a second pump could be provided in line 4034. Where applicable, a gravity flow having a desirable head pressure could be used. Alternatively, it is also contemplated that the same hydraulic fluid used to move pistons (4022, 4072) may be used to clean debris around and on the sensors (4026, 4036) or targeted inclined surfaces (4024, 4038). It is contemplated that the fluid cleaning system shown in
Turning to
Latch position indicator sensor housing 3194 is positioned with latch assembly 3100 adjacent to the first latch subassembly of latch assembly 3100. Latch position indicator sensor 3192 is mounted with housing 3194. Sensor 3192 can detect the distance from the sensor 3192 to the targeted top surface 3190 of piston 3130, including while piston 3130 moves. Sensor 3192 and housing 3194 may be pressure sealed from the hydraulic fluid above piston 3130. Enlarged views of a housing and sensor similar to housing 3194 and sensor 3192 are shown in
Latch position indicator sensor housing 3170 is attached with housing section 3110 adjacent to the second latch subassembly of latch assembly 3100. Latch position indicator sensor 3172 is mounted with housing 3170. Sensor 3172 can detect the distance from the sensor 3172 to the targeted exterior surface 3180 of retainer member 3160, including while retainer member 3160 moves. Sensor 3172 transmits electrical signals through line 3174. The output signal from sensor 3172 may be interpreted remotely to directly determine the position of retainer member 3160, as will be discussed in detail below. Sensor 3172 is mounted axially in relation to retainer member 3160. Sensor 3172 is a non-contact type sensor.
As discussed above, it is contemplated that fluid used in different hydraulic configurations may be used to clean debris off sensor 3172 and the targeted exterior surface 3180 of retainer member 3160. It is contemplated that the same hydraulic fluid used to move the pistons (3130, 3160) in latch assembly 3100 may be used. Alternatively, it is also contemplated that the fluid may be stored in a separate reservoir. The fluid may move through one or more passageways in housing section 3110 or latch assembly 3100. It is contemplated that the same cleaning system and method may be used with all embodiments of the invention. Also, it contemplated that the cleaning system may be used with all of the sensors on an embodiment, such as sensor 3192 in
Turning to
Latch position indicator sensor housing 3250 is attached with housing section 3200 adjacent to the second latch subassembly 3270. Latch position indicator sensor 3240 is positioned with housing 3250. Sensor 3240 can detect the distance from the sensor 3240 to the exterior surface 3230 of retainer member 3220, including while retainer member 3220 moves. Sensor 3240 is a non-contact type sensor. Sensor 3240 transmits electrical signals through line 3260. The output signal from sensor 3240 may be interpreted remotely to directly determine the movement and/or position of retainer member 3220, as will be discussed in detail below.
When latching assembly 3300 is positioned with housing section 3320, alignment groove 3332 on the latch assembly 3300 aligns with alignment member 3334 on the surface of housing section 3320 to insure that openings (3322, 3326) in housing section 3320 align with corresponding openings (3324, 3328) in latch assembly 3300. The use and shape of member 3334 and groove 3332 are exemplary and illustrative only and other formations and shapes and other alignment means may be used. Auxiliary piston 3330 in the first subassembly has urged first piston 3340 into the second position. Retainer member 3350 has moved radially outwardly to the unlatched position. When retainer member 3350 moves inwardly into the latched position it contacts latching formation 3312 on oilfield device 3310.
Continuing with
Continuing with
Still continuing with
Turning now to
Continuing with
Latch position indicator sensor housing 3470 is positioned with housing section 3320 adjacent to the second or lower latch subassembly of latch assembly 3400. Latch position indicator sensor 3472 is mounted with sensor housing 3470 and it can detect the distance from the sensor 3472 to the exterior surface 3464 of retainer member 3462, including while member 3462 moves. Sensor 3472 may be wireless or, as shown in
Turning now to
Latch position indicator sensor 4110 is sealingly positioned in latch assembly 4100 adjacent to the first retainer member 4106. Sensor 4110 can detect the distance from the sensor 4110 to the inclined surface 4108 of retainer member 4106, including while retainer member 4106 moves. Sensor 4110 may be wireless or, as shown in
Latch position indicator sensor 4128 is attached with latch assembly 4100 adjacent to the first latch subassembly of latch assembly 4100. Sensor 4128 can detect the distance from the sensor 4128 to the inclined surface 4132 of piston 4118, including while piston 4118 moves. Sensor 4118 may be wireless or, as shown in
Latch position indicator sensor 4122 is sealingly positioned axially in relation to first piston 4118. Sensor 4122 is a contact type sensor in that it makes physical contact with the target first piston top surface 4192 when first piston 4118 is in the unlatched position. Sensor 4122 does not make contact with piston 4118 when piston 4118 is in the latched position, as shown in
Second piston 4120 has an inclined or ramped exterior surface 4136. Latch position indicator sensor 4134 is positioned so as to detect the distance from the sensor 4134 to the targeted inclined surface 4136, including while second piston 4120 moves. Sensor 4134 transmits an electrical signal through line 4138. The output signal from sensor 4134 may be interpreted to remotely determine the position and/or movement of second piston 4120, and therefore indirectly the position and/or movement of retainer member 4106. Sensor 4134 is sealingly mounted laterally in relation to second piston 4120. Sensor 4134 is a contact type sensor in that it makes physical contact with inclined surface 4136. Contact and non-contact type sensors may be used interchangeably for all the embodiments of the invention. As can further be understood, the information from sensor 4134 may be used remotely to indirectly determine whether retainer member 4106 is latched or unlatched from the position of second piston 4120.
Sensor 4140 is sealingly positioned axially in relation to second piston 4120. That is, it is contemplated that sensor 4140 may be sealed from, among other elements, hydraulic pressure and debris. Sensor 4140 can detect the distance from the sensor 4140 to the targeted second piston bottom surface 4142, including, for a limited distance, while second piston 4120 moves. Sensor 4140 transmits an electrical signal through lines, generally indicated as 4144, connected with inner conductive rings, similar to ring 4146, mounted on the inner body 4194 of latch assembly 4100. Inner conductive rings are positioned with outer conductive rings, similar to ring 4148, on the outer body 4196 of latch assembly 4100. It is contemplated that conductive rings (4146, 4148) may be made of a metal that conducts electricity with minimal resistance, such as copper. The output signal from sensor 4140 travels through lines, generally indicated as 4144, and line 4145 and may be interpreted to remotely determine the position and/or movement of second piston 4120, and therefore indirectly the position and/or movement of retainer member 4106. As can also be understood, sensor 4140 is a contact type sensor in that it makes physical contact with second piston 4120 for a limited travel distance or for its full travel distance.
Latch position indicator sensor 4180 is sealingly positioned adjacent to the second or lower latch subassembly of latch assembly 4100. Latch position indicator sensor 4180 is positioned with housing section 4164 so that it can detect the distance from the sensor 4180 to the exterior surface 4182 of retainer member 4166, including while member 4166 moves for a limited travel distance or for its full travel distance. Sensor 4180 may be wireless or, as shown in
For redundancy, sensor 4170 is positioned laterally in relation to retainer member 4166. It is contemplated that retainer member 4166 may be made substantially from one metal, such as steel, and that insert 4168 may be made substantially from another metal, such as copper or aluminum. Other metals and combination of metals and arrangements are contemplated. Distinguished from the other sensors in
Continuing with
Turning to
Turning to the right “unlatched” side of the vertical break line BL, upper and lower retainer members (4260, 4310) are unlatched, and active seal 4220 is deflated or unengaged with drill string 4230. Upper and lower pistons (4250, 4300) are in their unlatched positions. As can now be understood, in the latched position shown on the left side of the break line BL, RCD 4240 is in operational mode, and active seal 4220 and inner bearing housing 4370 may rotate with drill string 4230. As shown on the right side when RCD 4240 is not in operational mode, packer 4210 may be removed for repair or replacement of seal 4220 while the bearing assembly with inner and outer bearing housings (4370, 4360) with bearings 4273 are left in place. Further, the RCD 4240 may be completely removed from diverter housing 4200 when lower retainer member 4310 is unlatched. As can now be understood, the positions of upper and lower pistons (4250, 4300) may be used to determine the positions of their respective retainer members (4260, 4310).
Upper piston indicator pin 4270 is attached with the top surface of upper piston 4250 and travels in channel 4271. It is contemplated that pin 4270 may either be releasably attached with piston 4250 or fabricated integral with it. When upper piston 4250 is in the latched position as shown on the left side of the break line BL, upper retainer member 4260 is in its inward latched position. Sensor 4280 is positioned axially in relation to upper pin 4270. Sensor 4280 is a non-contact type sensor, such as described above and below, that does not make physical contact with the top of pin 4270 when piston 4250 is in its latched position. Sensor 4280 also does not make contact with pin 4270 when upper piston 4250 is in its unlatched position, as the piston 4250 is shown on the right side of the break line BL. Sensor 4280 may be positioned in a transparent sealed housing 4281, so that the position of pin 4270 may also be monitored visually. However, it is also contemplated that there could be no housing 4281. The information from sensor 4280 may be remotely used to indirectly determine the position of retainer member 4260.
For redundancy, sensor 4290 is positioned laterally in relation to upper pin 4270. Pin 4270 has an inclined reduced diameter opposed conical surface 4272. Sensor 4290 may measure the distance from sensor 4290 to the target inclined surface 4272. Sensor 4290 is a non-contact line-of-sight sensor that is preferably an analog inductive sensor. The information from sensor 4290 may be remotely used to indirectly determine the position of retainer member 4260.
Lower piston indicator pin 4320 engages the bottom surface of lower piston 4300 and travels in channel 4321. It is contemplated that pin 4320 may be releasably attached or integral with piston 4300. When lower piston 4300 is in the latched position as shown on the left side of the vertical break line BL, lower retainer member 4310 is in its inward latched position. Sensor 4330 is positioned axially in relation to lower pin 4320. Sensor 4330 is a non-contact type sensor that does not make contact with pin 4320. Sensor 4330 may be positioned in a transparent housing so that the position of pin 4320 may also be monitored visually. The information from sensor 4330 may be remotely used to indirectly determine the position of lower retainer member 4310. For redundancy, sensor 4350 is positioned laterally in relation to lower pin 4320. Pin 4320 has an inclined reduced diameter opposed conical surface 4340. Sensor 4350 may measure the distance from sensor 4350 to the target inclined surface 4340. Sensor 4350 is a non-contact sensor that is preferably an analog inductive sensor. The information from sensor 4350 may be remotely used to indirectly determine the position of lower retainer member 4310.
FIGS. 39B1a shows the lower end of upper indicator pin 4270 of
Turning to FIG. 39B2a, lower piston 4300 is in the unlatched position, allowing the lower retainer member 4310 to move to the radially outward or unlatched position. The upper end of lower indicator pin 4400 is threadedly and releasably attached with threads 4301 to lower piston 4300. Other attachment means are contemplated. The sensor is a contact potentiometer type circuit, generally indicated as 4410A, shown in a transparent housing or cover 4410. It is contemplated that electric current may be run through circuit sensor 4410A that includes wire coiled end 4420 of lower pin 4400. FIG. 39B2b shows lower piston 4300 is in the latched position resulting in lower retainer member 4310 moving to the radially inward or latched position so that lower pin 4400 further protrudes or extends from RCD 4240. This information could be transmitted wireless or be hardwired to a remote location. As can now be understood, the electrical current information from circuit sensor 4410A may be remotely used to indirectly determine the position of lower retainer member 4310 from the position of lower piston 4300.
Turning to
Turning to FIG. 39B4a, upper indicator pin 4520 is retracted into the RCD 4240 as upper piston 4250 is in the unlatched position allowing the upper retainer member 4260 to move to the unlatched position. While end 4524 of upper pin 4520 is shown visible extending from its channel, it could be flush with or retracted within its channel top. Contact type sensor 4522 is mounted with bracket 4526 on RCD 4240. It is contemplated that a transparent housing may also be used to enclose sensor 4522 and pin end 4524. As shown in FIG. 39B4b, sensor 4522 makes contact with end 4524 of upper pin 4520 when upper piston 4250 is in the latched position. When upper piston 4250 is in the unlatched position, sensor 4522 does not make contact with pin 4520. Sensor 4522 may be an electrical, magnetic, or mechanical type sensor using a coil spring, although other types of sensors are contemplated. It is contemplated that a sensor that makes continuous contact with upper pin 4520 through the full travel of pin 4520 may also be used. The information from sensor 4522 may be used to remotely indirectly determine the position of upper retainer member 4260 from the position of upper piston 4250.
Using the embodiments in
It is contemplated that rather than threshold values, a bandwidth of values may be used to determine the “First Condition” or the “Second Condition.” As an example, in
The PLC may also monitor the change of rate and/or output of the sensor (3090, 3382, 3392, 3452) signal output. The change of rate and/or output will establish whether the piston (3050, 3360, 3340, 3440) is moving. For example, if the piston (3050, 3360, 3340, 3440) is not moving, then the change of rate and/or output should be zero. It is contemplated that monitoring the change of rate and/or output of the sensor may be useful for diagnostics. For redundancy, any combination or permutations of the following three conditions may be required to be satisfied to establish if the latch has opened or closed: (1) the threshold value (or the bandwidth) must be met, (2) the piston must not be moving, and/or (3) the hydraulic system must have regained pressure. Also, as can now be understood, several different conditions may be monitored, yet there may be some inconsistency between them. For example, if the threshold value has been met and the piston is not moving, yet the hydraulic system has not regained pressure, it may indicate that the retainer member is latched, but that there is a leak in the hydraulic system. It is contemplated that the PLC may be programmed to make a determination of the latch position based upon different permutations or combinations of monitored values or conditions, and to indicate a problem such as leakage in the hydraulic system based upon the values or conditions. It is further contemplated for all embodiments that the information from the sensors may be transmitted to a remote offsite location, such as by satellite transmission. It is also contemplated that the sensor outputs may be transmitted remotely to a PLC at the well site. The information from the PLC may also be recorded, such as for diagnostics, on hard copy or electronically. This information may include, but is not limited to, pressures, temperatures, flows, volumes, and distances. For example, it may be helpful to determine whether the distance a retainer member has moved to latch an RCD has progressively changed over time, particularly in recent usages, which may signal a problem. It is further contemplated that this electronically recorded information could be manipulated to provide desired information of the operation of the well and sent hardwired or via satellite to remote locations such as a centralized worldwide location for a service provider and/or its customers/operators.
Method of Operation
For the single hydraulic latch assembly (210, 3020, 4000) and the first subassembly of the dual hydraulic latch assembly (300, 3100, 3300, 3400, 4100), the latch position indicator sensor may be calibrated during installation of the oilfield device into the latch assembly. The oilfield device may be inserted with the latch assembly open (unlatched). The latch position indicator sensor may be adjusted for the preferred sensor when the LED illuminates or a specific current output level is achieved, such as 7 milli-Amperes as shown in
As can now be understood, a latch position indicator system that uses a latch position indicator sensor to detect the position of the target piston or retainer member can be used in combination with, or mutually exclusive from, a system that measures one or more hydraulic fluid values and provides an indirect indication of the status of the latch. For example, if the piston that is being investigated is damaged or stuck, the indirect fluid measurement system may give an incorrect assessment of the latch position, such as a false positive. However, assuming that the piston is the target of the sensor, the latch position indicator system should accurately determine that the piston has not moved. Moreover, fluid metrics can be adversely affected by temperature, and specifically cold temperatures, leading to incorrect results. If desired, only one sensor is needed for the direct measurement system to determine if the oilfield device is latched, which eliminates wires and simplifies the PLC interface. While assembly, installation, and calibration may be made easier with a sensor, application will usually dictate the appropriate latch position indicator system to be used.
The latch position indicator measurement system using a sensor also allows for the measurement of motion, which provides for redundancy and increased safety. The latch position indicator system minimizes the affects of mechanical tolerance errors on detection of piston position. The latch position indicator system can insure that the piston or retainer member travels a minimum amount, and/or can detect that the piston or retainer member movement did not exceed a maximum amount. The latch position indicator system may be used to detect that certain oilfield devices were moved, or parts were replaced, such as replacement of bearings, installation of a test plug, or installation of wear bushings. This may be helpful for diagnostics. The retainer member may move a different amount to latch or unlatch an RCD than it moves to latch or unlatch another oilfield device having a different size or configuration. Blocking shoulders slots such as blocking shoulders slots (4008, 4116) shown is respective
It should be understood that the latch position indicator system using a sensor is contemplated for use either individually or in combination with an indirect measurement system such as a hydraulic measurement system. While the latch position indicator system with the latch position indicator sensor may be the primary system for detecting position, a system that measures one or more hydraulic fluid values and provides an indirect indication of the status of the latch may be used for a redundant system. Further, the latch position indicator system with the sensor may be used to calibrate the hydraulic measurement system to insure greater accuracy and confidence in the system. The backup hydraulic measurement system may then be more accurately relied upon should the latch position indicator system with the sensor malfunction. It is contemplated that the two systems in combination may also assist in leak detection of the hydraulic system of the latch assembly. For example, if the latch position indicator system with the sensor indicates that the retainer member has moved to the latched position, but the hydraulic measurement system shows that a greater amount of fluid flow than normal was required to move the retainer member, then there may be a leak in the hydraulic system. Redundant sensors may be used to insure greater accuracy of the sensors, and signal when one of the sensors may begin to malfunction.
The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the details of the illustrated apparatus and construction and the method of operation may be made without departing from the spirit of the invention.
This application is: (1) a continuation of U.S. application Ser. No. 12/322,860 filed on Feb. 6, 2009, now U.S. Pat. No. 8,826,988, which is a continuation-in-part of U.S. application Ser. No. 10/995,980 filed on Nov. 23, 2004, now U.S. Pat. No. 7,487,837; and this application is (2) a continuation of U.S. application Ser. No. 12/322,860 filed on Feb. 6, 2009, now U.S. Pat. No. 8,826,988, which is a continuation-in-part of U.S. application Ser. No. 11/366,078 filed on Mar. 2, 2006, now U.S. Pat. No. 7,836,946, which is a continuation-in-part of U.S. application Ser. No. 10/995,980 filed on Nov. 23, 2004, now U.S. Pat. No. 7,487,837, all of which applications are hereby incorporated by reference for all purposes in their entirety and are assigned to the assignee of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
517509 | Williams | Apr 1894 | A |
1157644 | London | Oct 1915 | A |
1472952 | Anderson | Nov 1923 | A |
1503476 | Childs et al. | Aug 1924 | A |
1528560 | Myers et al. | Mar 1925 | A |
1546467 | Bennett | Jul 1925 | A |
1560763 | Collins | Nov 1925 | A |
1700894 | Joyce et al. | Feb 1929 | A |
1708316 | MacClatchie | Apr 1929 | A |
1769921 | Hansen | Jul 1930 | A |
1776797 | Sheldon | Sep 1930 | A |
1813402 | Hewitt | Jul 1931 | A |
1831956 | Harrington | Nov 1931 | A |
1836470 | Humason et al. | Dec 1931 | A |
1902906 | Seamark | Mar 1933 | A |
1942366 | Seamark | Jan 1934 | A |
2036537 | Otis | Apr 1936 | A |
2038140 | Stone | Apr 1936 | A |
2071197 | Burns et al. | Feb 1937 | A |
2124015 | Stone et al. | Jul 1938 | A |
2126007 | Gulberson et al. | Aug 1938 | A |
2144682 | MacClatchie | Jan 1939 | A |
2148844 | Stone et al. | Feb 1939 | A |
2163813 | Stone et al. | Jun 1939 | A |
2165410 | Penick et al. | Jul 1939 | A |
2170915 | Schweitzer | Aug 1939 | A |
2170916 | Schweitzer et al. | Aug 1939 | A |
2175648 | Roach | Oct 1939 | A |
2176355 | Otis | Oct 1939 | A |
2222082 | Young | Jan 1940 | A |
2199735 | Beckman | May 1940 | A |
2211122 | Howard | Aug 1940 | A |
2233041 | Alley | Feb 1941 | A |
2243340 | Hild | May 1941 | A |
2243439 | Pranger et al. | May 1941 | A |
2287205 | Stone | Jun 1942 | A |
2303090 | Pranger et al. | Nov 1942 | A |
2313169 | Penick et al. | Mar 1943 | A |
2325556 | Taylor, Jr. et al. | Jul 1943 | A |
2338093 | Caldwell | Jan 1944 | A |
2480955 | Penick | Sep 1949 | A |
2506538 | Bennett | May 1950 | A |
2529744 | Schweitzer, Jr. | Nov 1950 | A |
2609836 | Knox | Sep 1952 | A |
2628852 | Voytech | Feb 1953 | A |
2646999 | Barske | Jul 1953 | A |
2649318 | Skillman | Aug 1953 | A |
2731281 | Knox | Jan 1956 | A |
2746781 | Jones | May 1956 | A |
2760750 | Schweitzer, Jr. et al. | Aug 1956 | A |
2760795 | Vertson | Aug 1956 | A |
2764999 | Stanbury | Oct 1956 | A |
2808229 | Bauer et al. | Oct 1957 | A |
2808230 | McNeill et al. | Oct 1957 | A |
2846178 | Minor | Aug 1958 | A |
2846247 | Davis | Aug 1958 | A |
2853274 | Collins | Sep 1958 | A |
2862735 | Knox | Dec 1958 | A |
2886350 | Horne | May 1959 | A |
2904357 | Knox | Sep 1959 | A |
2927774 | Ormsby | Mar 1960 | A |
2929610 | Stratton | Mar 1960 | A |
2962096 | Knox | Nov 1960 | A |
2995196 | Gibson et al. | Aug 1961 | A |
3023012 | Wilde | Feb 1962 | A |
3029083 | Wilde | Apr 1962 | A |
3032125 | Hiser et al. | May 1962 | A |
3033011 | Garrett | May 1962 | A |
3052300 | Hampton | Sep 1962 | A |
3096999 | Ahlstone et al. | Jul 1963 | A |
3100015 | Regan | Aug 1963 | A |
3128614 | Auer | Apr 1964 | A |
3134613 | Regan | May 1964 | A |
3176996 | Barnett | Apr 1965 | A |
3203358 | Regan et al. | Aug 1965 | A |
3209829 | Haeber | Oct 1965 | A |
3216731 | Dollison | Nov 1965 | A |
3225831 | Knox | Dec 1965 | A |
3259198 | Montgomery et al. | Jul 1966 | A |
3268233 | Brown | Aug 1966 | A |
3285352 | Hunter | Nov 1966 | A |
3288472 | Watkins | Nov 1966 | A |
3289761 | Smith et al. | Dec 1966 | A |
3294112 | Watkins | Dec 1966 | A |
3302048 | Gray | Jan 1967 | A |
3313345 | Fischer | Apr 1967 | A |
3313358 | Postlewaite et al. | Apr 1967 | A |
3323773 | Walker | Jun 1967 | A |
3333870 | Watkins | Aug 1967 | A |
3347567 | Watkins | Oct 1967 | A |
3360048 | Watkins | Dec 1967 | A |
3372761 | van Gils | Mar 1968 | A |
3387851 | Cugini | Jun 1968 | A |
3397928 | Galle | Aug 1968 | A |
3400938 | Williams | Sep 1968 | A |
3401600 | Wood | Sep 1968 | A |
3405763 | Pitts et al. | Oct 1968 | A |
3421580 | Fowler et al. | Jan 1969 | A |
3424197 | Yanaigisawa | Jan 1969 | A |
3443643 | Jones | May 1969 | A |
3445126 | Watkins | May 1969 | A |
3452815 | Watkins | Jul 1969 | A |
3472518 | Harlan | Oct 1969 | A |
3476195 | Galle | Nov 1969 | A |
3481610 | Slator et al. | Dec 1969 | A |
3485051 | Watkins | Dec 1969 | A |
3492007 | Jones | Jan 1970 | A |
3493043 | Watkins | Feb 1970 | A |
3503460 | Gadbois | Mar 1970 | A |
3522709 | Vilain | Aug 1970 | A |
3529835 | Lewis | Sep 1970 | A |
3561723 | Cugini | Feb 1971 | A |
3583480 | Regan | Jun 1971 | A |
3587734 | Shaffer | Jun 1971 | A |
3603409 | Watkins | Sep 1971 | A |
3621912 | Wooddy, Jr. | Nov 1971 | A |
3631834 | Gardner et al. | Jan 1972 | A |
3638721 | Harrison | Feb 1972 | A |
3638742 | Wallace | Feb 1972 | A |
3653350 | Koons et al. | Apr 1972 | A |
3661409 | Brown et al. | May 1972 | A |
3664376 | Watkins | May 1972 | A |
3667721 | Vulasinovic | Jun 1972 | A |
3677353 | Baker | Jul 1972 | A |
3724862 | Biffle | Apr 1973 | A |
3741296 | Murman et al. | Jun 1973 | A |
3779313 | Regan | Dec 1973 | A |
3815673 | Bruce et al. | Jun 1974 | A |
3827511 | Jones | Aug 1974 | A |
3847215 | Herd | Nov 1974 | A |
3868832 | Biffle | Mar 1975 | A |
3872717 | Fox | Mar 1975 | A |
3924678 | Ahlstone | Dec 1975 | A |
3934887 | Biffle | Jan 1976 | A |
3952526 | Watkins et al. | Apr 1976 | A |
3955622 | Jones | May 1976 | A |
3965987 | Biffle | Jun 1976 | A |
3976148 | Maus et al. | Aug 1976 | A |
3984990 | Jones | Oct 1976 | A |
3987662 | Hara et al. | Oct 1976 | A |
3992889 | Watkins et al. | Nov 1976 | A |
3999766 | Barton | Dec 1976 | A |
4037890 | Kurita et al. | Jul 1977 | A |
4046191 | Neath | Sep 1977 | A |
4052703 | Collins, Sr. et al. | Oct 1977 | A |
4053023 | Herd et al. | Oct 1977 | A |
4063602 | Howell et al. | Dec 1977 | A |
4087097 | Bossens et al. | May 1978 | A |
4091881 | Maus | May 1978 | A |
4098341 | Lewis | Jul 1978 | A |
4099583 | Maus | Jul 1978 | A |
4109712 | Regan | Aug 1978 | A |
4143880 | Bunting et al. | Mar 1979 | A |
4143881 | Bunting | Mar 1979 | A |
4149603 | Arnold | Apr 1979 | A |
4154448 | Biffle | May 1979 | A |
4157186 | Murray et al. | Jun 1979 | A |
4183562 | Watkins et al. | Jan 1980 | A |
4200312 | Watkins | Apr 1980 | A |
4208056 | Biffle | Jun 1980 | A |
4216835 | Nelson | Aug 1980 | A |
4222590 | Regan | Sep 1980 | A |
4249600 | Bailey | Feb 1981 | A |
4281724 | Garrett | Aug 1981 | A |
4282939 | Maus et al. | Aug 1981 | A |
4285406 | Garrett et al. | Aug 1981 | A |
4291772 | Beynet | Sep 1981 | A |
4293047 | Young | Oct 1981 | A |
4304310 | Garrett | Dec 1981 | A |
4310058 | Bourgoyne, Jr. | Jan 1982 | A |
4312404 | Morrow | Jan 1982 | A |
4313054 | Martini | Jan 1982 | A |
4326584 | Watkins | Apr 1982 | A |
4335791 | Evans | Jun 1982 | A |
4336840 | Bailey | Jun 1982 | A |
4337653 | Chauffe | Jul 1982 | A |
4345769 | Johnston | Aug 1982 | A |
4349204 | Malone | Sep 1982 | A |
4353420 | Miller | Oct 1982 | A |
4355784 | Cain | Oct 1982 | A |
4361185 | Biffle | Nov 1982 | A |
4363357 | Hunter | Dec 1982 | A |
4367795 | Biffle | Jan 1983 | A |
4378849 | Wilks | Apr 1983 | A |
4383577 | Pruitt | May 1983 | A |
4384724 | Derman | May 1983 | A |
4386667 | Millsapps, Jr. | Jun 1983 | A |
4387771 | Jones | Jun 1983 | A |
4398599 | Murray | Aug 1983 | A |
4406333 | Adams | Sep 1983 | A |
4407375 | Nakamura | Oct 1983 | A |
4413653 | Carter, Jr. | Nov 1983 | A |
4416340 | Bailey | Nov 1983 | A |
4423776 | Wagoner et al. | Jan 1984 | A |
4424861 | Carter, Jr. et al. | Jan 1984 | A |
4427072 | Lawson | Jan 1984 | A |
4439068 | Pokladnik | Mar 1984 | A |
4440232 | LeMoine | Apr 1984 | A |
4440239 | Evans | Apr 1984 | A |
4441551 | Biffle | Apr 1984 | A |
4444250 | Keithahn et al. | Apr 1984 | A |
4444401 | Roche et al. | Apr 1984 | A |
4448255 | Shaffer et al. | May 1984 | A |
4456062 | Roche et al. | Jun 1984 | A |
4456063 | Roche | Jun 1984 | A |
4457489 | Gilmore | Jul 1984 | A |
4478287 | Hynes et al. | Oct 1984 | A |
4480703 | Garrett | Nov 1984 | A |
4484753 | Kalsi | Nov 1984 | A |
4486025 | Johnston | Dec 1984 | A |
4497592 | Lawson | Feb 1985 | A |
4500094 | Biffle | Feb 1985 | A |
4502534 | Roche et al. | Mar 1985 | A |
4509405 | Bates | Apr 1985 | A |
4524832 | Roche et al. | Jun 1985 | A |
4526243 | Young | Jul 1985 | A |
4527632 | Chaudot | Jul 1985 | A |
4529210 | Biffle | Jul 1985 | A |
4531580 | Jones | Jul 1985 | A |
4531591 | Johnston | Jul 1985 | A |
4531593 | Elliott et al. | Jul 1985 | A |
4531951 | Burt et al. | Jul 1985 | A |
4533003 | Bailey | Aug 1985 | A |
4540053 | Baugh et al. | Sep 1985 | A |
4546828 | Roche | Oct 1985 | A |
4553429 | Evans et al. | Nov 1985 | A |
4553591 | Mitchell | Nov 1985 | A |
D282073 | Bearden et al. | Jan 1986 | S |
4566494 | Roche | Jan 1986 | A |
4575426 | Bailey | Mar 1986 | A |
4595343 | Thompson et al. | Jun 1986 | A |
4597447 | Roche et al. | Jul 1986 | A |
4597448 | Baugh | Jul 1986 | A |
4610319 | Kalsi | Sep 1986 | A |
4611661 | Hed et al. | Sep 1986 | A |
4615544 | Baugh | Oct 1986 | A |
4618314 | Hailey | Oct 1986 | A |
4621655 | Roche | Nov 1986 | A |
4623020 | Nichols | Nov 1986 | A |
4626135 | Roche | Dec 1986 | A |
4630680 | Elkins | Dec 1986 | A |
4632188 | Schuh et al. | Dec 1986 | A |
4646826 | Bailey et al. | Mar 1987 | A |
4646844 | Roche et al. | Mar 1987 | A |
4651830 | Crotwell | Mar 1987 | A |
4660863 | Bailey et al. | Apr 1987 | A |
4688633 | Barkley | Aug 1987 | A |
4690220 | Braddick | Sep 1987 | A |
4697484 | Klee et al. | Oct 1987 | A |
4709900 | Dyhr | Dec 1987 | A |
4712620 | Lim et al. | Dec 1987 | A |
4719937 | Roche et al. | Jan 1988 | A |
4722615 | Bailey et al. | Feb 1988 | A |
4727942 | Galle et al. | Mar 1988 | A |
4736799 | Ahlstone | Apr 1988 | A |
4745970 | Bearden et al. | May 1988 | A |
4749035 | Cassity | Jun 1988 | A |
4754820 | Watts et al. | Jul 1988 | A |
4757584 | Pav et al. | Jul 1988 | A |
4759413 | Bailey et al. | Jul 1988 | A |
4765404 | Bailey et al. | Aug 1988 | A |
4783084 | Biffle | Nov 1988 | A |
4807705 | Henderson et al. | Feb 1989 | A |
4813495 | Leach | Mar 1989 | A |
4817724 | Funderburg, Jr. et al. | Apr 1989 | A |
4822212 | Hall et al. | Apr 1989 | A |
4825938 | Davis | May 1989 | A |
4828024 | Roche | May 1989 | A |
4832126 | Roche | May 1989 | A |
4836289 | Young | Jun 1989 | A |
4844406 | Wilson | Jul 1989 | A |
4848472 | Hopper | Jul 1989 | A |
4865137 | Bailey et al. | Sep 1989 | A |
4882830 | Cartensen | Nov 1989 | A |
4909327 | Roche | Mar 1990 | A |
4949796 | Williams | Aug 1990 | A |
4955436 | Johnston | Sep 1990 | A |
4955949 | Bailey et al. | Sep 1990 | A |
4962819 | Bailey et al. | Oct 1990 | A |
4971148 | Roche et al. | Nov 1990 | A |
4984636 | Bailey et al. | Jan 1991 | A |
4995464 | Watkins et al. | Feb 1991 | A |
5009265 | Bailey et al. | Apr 1991 | A |
5022472 | Bailey et al. | Jun 1991 | A |
5028056 | Bemis et al. | Jul 1991 | A |
5035292 | Bailey et al. | Jul 1991 | A |
5040600 | Bailey et al. | Aug 1991 | A |
5048621 | Bailey et al. | Sep 1991 | A |
5062450 | Bailey et al. | Nov 1991 | A |
5062479 | Bailey et al. | Nov 1991 | A |
5072795 | Delgado et al. | Dec 1991 | A |
5076364 | Hale et al. | Dec 1991 | A |
5082020 | Bailey et al. | Jan 1992 | A |
5085277 | Hopper | Feb 1992 | A |
5101897 | Leismer et al. | Apr 1992 | A |
5137084 | Gonzales et al. | Aug 1992 | A |
5145006 | June | Sep 1992 | A |
5147559 | Brophey et al. | Sep 1992 | A |
5154231 | Bailey et al. | Oct 1992 | A |
5163514 | Jennings | Nov 1992 | A |
5165480 | Wagoner et al. | Nov 1992 | A |
5178215 | Yenulis et al. | Jan 1993 | A |
5182979 | Morgan | Feb 1993 | A |
5184686 | Gonzalez | Feb 1993 | A |
5195754 | Dietle | Mar 1993 | A |
5213158 | Bailey et al. | May 1993 | A |
5215151 | Smith et al. | Jun 1993 | A |
5224557 | Yenulis et al. | Jul 1993 | A |
5230520 | Dietle et al. | Jul 1993 | A |
5243187 | Hettlage | Sep 1993 | A |
5251869 | Mason | Oct 1993 | A |
5255745 | Czyrek | Oct 1993 | A |
5277249 | Yenulis et al. | Jan 1994 | A |
5279365 | Yenulis et al. | Jan 1994 | A |
5305839 | Kalsi et al. | Apr 1994 | A |
5320325 | Young et al. | Jun 1994 | A |
5322137 | Gonzales | Jun 1994 | A |
5325925 | Smith et al. | Jul 1994 | A |
5348107 | Bailey et al. | Sep 1994 | A |
5375476 | Gray | Dec 1994 | A |
5427179 | Bailey et al. | Jun 1995 | A |
5431220 | Bailey | Jul 1995 | A |
5443129 | Bailey et al. | Aug 1995 | A |
5492017 | Jennings | Feb 1996 | A |
5495872 | Gallagher et al. | Mar 1996 | A |
5529093 | Gallagher et al. | Jun 1996 | A |
5588491 | Tasson et al. | Dec 1996 | A |
5607019 | Kent | Mar 1997 | A |
5647444 | Williams | Jul 1997 | A |
5657820 | Bailey | Aug 1997 | A |
5662171 | Brugman et al. | Sep 1997 | A |
5662181 | Williams et al. | Sep 1997 | A |
5671812 | Bridges | Sep 1997 | A |
5678829 | Kalsi et al. | Oct 1997 | A |
5735502 | Levett et al. | Apr 1998 | A |
5738358 | Kalsi et al. | Apr 1998 | A |
5755372 | Cimbura | May 1998 | A |
5823541 | Dietle et al. | Oct 1998 | A |
5829531 | Hebert et al. | Nov 1998 | A |
5848643 | Carbaugh et al. | Dec 1998 | A |
5873576 | Dietle et al. | Feb 1999 | A |
5878818 | Hebert et al. | Mar 1999 | A |
5901964 | Williams et al. | May 1999 | A |
5944111 | Bridges | Aug 1999 | A |
6007105 | Dietle et al. | Dec 1999 | A |
6016880 | Hall et al. | Jan 2000 | A |
6017168 | Fraser, Jr. | Jan 2000 | A |
6036192 | Dietle et al. | Mar 2000 | A |
6050348 | Richarson et al. | Apr 2000 | A |
6076606 | Bailey | Jun 2000 | A |
6102123 | Bailey et al. | Aug 2000 | A |
6102673 | Mott et al. | Aug 2000 | A |
6109348 | Caraway | Aug 2000 | A |
6109618 | Dietle | Aug 2000 | A |
6112810 | Bailey | Sep 2000 | A |
6120036 | Kalsi et al. | Sep 2000 | A |
6129152 | Hosie et al. | Oct 2000 | A |
6138774 | Bourgoyne, Jr. et al. | Oct 2000 | A |
6170576 | Bailey | Jan 2001 | B1 |
6202745 | Reimert et al. | Mar 2001 | B1 |
6209663 | Hosie | Apr 2001 | B1 |
6213228 | Saxman | Apr 2001 | B1 |
6227547 | Dietle et al. | May 2001 | B1 |
6230824 | Peterman et al. | May 2001 | B1 |
6244359 | Bridges et al. | Jun 2001 | B1 |
6263982 | Hannegan et al. | Jul 2001 | B1 |
6273193 | Hermann et al. | Aug 2001 | B1 |
6315302 | Conroy et al. | Nov 2001 | B1 |
6315813 | Morgan et al. | Nov 2001 | B1 |
6325159 | Peterman et al. | Dec 2001 | B1 |
6334619 | Dietle et al. | Jan 2002 | B1 |
6343654 | Brammer | Feb 2002 | B1 |
6352129 | Best | Mar 2002 | B1 |
6354385 | Ford et al. | Mar 2002 | B1 |
6361830 | Schenk | Mar 2002 | B1 |
6375895 | Daemen | Apr 2002 | B1 |
6382634 | Dietle et al. | May 2002 | B1 |
6386291 | Short et al. | May 2002 | B1 |
6413297 | Morgan et al. | Jul 2002 | B1 |
6450262 | Regan | Sep 2002 | B1 |
6454007 | Bailey | Sep 2002 | B1 |
6457529 | Calder et al. | Oct 2002 | B2 |
6470975 | Bourgoyne et al. | Oct 2002 | B1 |
6478303 | Radcliffe | Nov 2002 | B1 |
6494462 | Dietle | Dec 2002 | B2 |
6504982 | Greer, IV | Jan 2003 | B1 |
6505691 | Judge | Jan 2003 | B2 |
6520253 | Calder | Feb 2003 | B2 |
6536520 | Snider et al. | Mar 2003 | B1 |
6536525 | Haugen et al. | Mar 2003 | B1 |
6547002 | Bailey et al. | Apr 2003 | B1 |
6554016 | Kinder | Apr 2003 | B2 |
6561520 | Kalsi et al. | May 2003 | B2 |
6581681 | Zimmerman et al. | Jun 2003 | B1 |
6607042 | Hoyer et al. | Aug 2003 | B2 |
RE38249 | Tasson et al. | Sep 2003 | E |
6655460 | Bailey et al. | Dec 2003 | B2 |
6685194 | Dietle et al. | Feb 2004 | B2 |
6702012 | Bailey et al. | Mar 2004 | B2 |
6708762 | Haugen et al. | Mar 2004 | B2 |
6720764 | Relton et al. | Apr 2004 | B2 |
6725924 | Davidson et al. | Apr 2004 | B2 |
6725951 | Looper | Apr 2004 | B2 |
6732804 | Hosie et al. | May 2004 | B2 |
6749172 | Kinder | Jun 2004 | B2 |
6767016 | Gobeli et al. | Jul 2004 | B2 |
6843313 | Hult | Jan 2005 | B2 |
6851476 | Gray et al. | Feb 2005 | B2 |
6877565 | Edvardsen | Apr 2005 | B2 |
6886631 | Wilson et al. | May 2005 | B2 |
6896048 | Mason et al. | May 2005 | B2 |
6896076 | Nelson et al. | May 2005 | B2 |
6904981 | van Riet | Jun 2005 | B2 |
6913092 | Bourgoyne | Jul 2005 | B2 |
6945330 | Wilson et al. | Sep 2005 | B2 |
6968895 | Mosing et al. | Nov 2005 | B2 |
7004444 | Kinder | Feb 2006 | B2 |
7007913 | Kinder | Mar 2006 | B2 |
7011167 | Ebner et al. | Mar 2006 | B2 |
7025130 | Bailey et al. | Apr 2006 | B2 |
7028777 | Wade et al. | Apr 2006 | B2 |
7032691 | Humphreys | Apr 2006 | B2 |
7040394 | Bailey et al. | May 2006 | B2 |
7044237 | Leuchtenberg | May 2006 | B2 |
7073580 | Wilson et al. | Jul 2006 | B2 |
7077212 | Roesner et al. | Jul 2006 | B2 |
7080685 | Bailey et al. | Jul 2006 | B2 |
7086481 | Hosie et al. | Aug 2006 | B2 |
7152680 | Wilson et al. | Dec 2006 | B2 |
7159669 | Bourgoyne et al. | Jan 2007 | B2 |
7165610 | Hopper | Jan 2007 | B2 |
7174956 | Williams et al. | Feb 2007 | B2 |
7178600 | Luke et al. | Feb 2007 | B2 |
7191840 | Pietras et al. | Mar 2007 | B2 |
7198098 | Williams | Apr 2007 | B2 |
7204315 | Pia | Apr 2007 | B2 |
7219729 | Bostick et al. | May 2007 | B2 |
7237618 | Williams | Jul 2007 | B2 |
7237623 | Hannegan | Jul 2007 | B2 |
7240727 | Williams | Jul 2007 | B2 |
7243958 | Williams | Jul 2007 | B2 |
7255173 | Hosie et al. | Aug 2007 | B2 |
7258171 | Bourgoyne et al. | Aug 2007 | B2 |
7278494 | Williams | Oct 2007 | B2 |
7278496 | Leuchtenberg | Oct 2007 | B2 |
7296628 | Robichaux et al. | Nov 2007 | B2 |
7308954 | Martin-Marshall | Dec 2007 | B2 |
7325610 | Giroux et al. | Feb 2008 | B2 |
7334633 | Williams et al. | Feb 2008 | B2 |
7347261 | Markel et al. | Mar 2008 | B2 |
7350590 | Hosie et al. | Apr 2008 | B2 |
7363860 | Wilson et al. | Apr 2008 | B2 |
7367411 | Leuchtenberg | May 2008 | B2 |
7380590 | Hughes | Jun 2008 | B2 |
7380591 | Williams | Jun 2008 | B2 |
7380610 | Williams | Jun 2008 | B2 |
7383876 | Gray et al. | Jun 2008 | B2 |
7389183 | Gray | Jun 2008 | B2 |
7392860 | Johnston | Jul 2008 | B2 |
7413018 | Hosie et al. | Aug 2008 | B2 |
7416021 | Williams | Aug 2008 | B2 |
7416226 | Williams | Aug 2008 | B2 |
7448454 | Bourgoyne et al. | Nov 2008 | B2 |
7451809 | Noske et al. | Nov 2008 | B2 |
7475732 | Hosie et al. | Jan 2009 | B2 |
7487837 | Bailey et al. | Feb 2009 | B2 |
7513300 | Pietras et al. | Apr 2009 | B2 |
7559359 | Williams | Jul 2009 | B2 |
7635034 | Williams | Dec 2009 | B2 |
7650950 | Leuchtenberg | Jan 2010 | B2 |
7654325 | Giroux et al. | Feb 2010 | B2 |
7669649 | Williams | Mar 2010 | B2 |
7699109 | May et al. | Apr 2010 | B2 |
7708089 | Williams | May 2010 | B2 |
7712523 | Snider et al. | May 2010 | B2 |
7717169 | Williams | May 2010 | B2 |
7717170 | Williams | May 2010 | B2 |
7726416 | Williams | Jun 2010 | B2 |
7743823 | Hughes et al. | Jun 2010 | B2 |
7762320 | Williams | Jul 2010 | B2 |
7766100 | Williams | Aug 2010 | B2 |
7779903 | Bailey et al. | Aug 2010 | B2 |
7789132 | Williams | Sep 2010 | B2 |
7789172 | Williams | Sep 2010 | B2 |
7793719 | Snider et al. | Sep 2010 | B2 |
7798250 | Williams | Sep 2010 | B2 |
7802635 | Leduc et al. | Sep 2010 | B2 |
7823665 | Sullivan | Nov 2010 | B2 |
7836946 | Bailey et al. | Nov 2010 | B2 |
7836973 | Belcher et al. | Nov 2010 | B2 |
7926593 | Bailey et al. | Apr 2011 | B2 |
8408297 | Bailey et al. | Apr 2013 | B2 |
8826988 | Gray | Sep 2014 | B2 |
20010050185 | Calder et al. | Dec 2001 | A1 |
20020070014 | Kinder | Jun 2002 | A1 |
20030106712 | Bourgoyne et al. | Jun 2003 | A1 |
20030164276 | Snider et al. | Sep 2003 | A1 |
20040017190 | McDearmon et al. | Jan 2004 | A1 |
20040084220 | Bailey et al. | May 2004 | A1 |
20050000698 | Bailey et al. | Jan 2005 | A1 |
20050051324 | Mosing et al. | Mar 2005 | A1 |
20050151107 | Shu | Jul 2005 | A1 |
20050161228 | Cook et al. | Jul 2005 | A1 |
20060037782 | Martin-Marshall | Feb 2006 | A1 |
20060108119 | Bailey et al. | May 2006 | A1 |
20060144622 | Bailey et al. | Jul 2006 | A1 |
20060157282 | Tilton et al. | Jul 2006 | A1 |
20060191716 | Humphreys | Aug 2006 | A1 |
20070051512 | Markel et al. | Mar 2007 | A1 |
20070095540 | Kozicz et al. | May 2007 | A1 |
20070163784 | Bailey et al. | Jul 2007 | A1 |
20080169107 | Redlinger et al. | Jul 2008 | A1 |
20080210471 | Bailey et al. | Sep 2008 | A1 |
20080236819 | Foster et al. | Oct 2008 | A1 |
20080245531 | Noske et al. | Oct 2008 | A1 |
20090025930 | Iblings et al. | Jan 2009 | A1 |
20090101351 | Hannegan et al. | Apr 2009 | A1 |
20090101411 | Hannegan et al. | Apr 2009 | A1 |
20090139724 | Gray et al. | Jun 2009 | A1 |
20090152006 | Leduc et al. | Jun 2009 | A1 |
20090166046 | Edvardson et al. | Jul 2009 | A1 |
20090200747 | Williams | Aug 2009 | A1 |
20090211239 | Askeland | Aug 2009 | A1 |
20090236144 | Todd et al. | Sep 2009 | A1 |
20090301723 | Gray | Dec 2009 | A1 |
20100008190 | Gray et al. | Jan 2010 | A1 |
20100025047 | Sokol | Feb 2010 | A1 |
20100175882 | Bailey et al. | Jul 2010 | A1 |
20110024195 | Hoyer | Feb 2011 | A1 |
20110036638 | Sokol | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
199927822 | Sep 1999 | AU |
200028183 | Sep 2000 | AU |
200028183 | Sep 2000 | AU |
2363132 | Sep 2000 | CA |
2447196 | Apr 2004 | CA |
2 527 395 | May 2006 | CA |
2527395 | May 2006 | CA |
2 692 209 | Aug 2010 | CA |
0290250 | Nov 1988 | EP |
0290250 | Nov 1988 | EP |
267140 | Mar 1993 | EP |
1375817 | Jan 2004 | EP |
1519003 | Mar 2005 | EP |
1659260 | May 2006 | EP |
1 830 034 | Sep 2007 | EP |
2 216 498 | Aug 2010 | EP |
2 636 841 | Sep 2013 | EP |
1161299 | Aug 1969 | GB |
2 019 921 | Nov 1979 | GB |
2019921 | Nov 1979 | GB |
2067235 | Jul 1981 | GB |
2106961 | Apr 1983 | GB |
2362668 | Nov 2001 | GB |
2 394 741 | May 2004 | GB |
2394741 | May 2004 | GB |
2449010 | Aug 2007 | GB |
20055480 | Nov 2005 | NO |
WO 9945228 | Sep 1999 | WO |
WO 9950524 | Oct 1999 | WO |
WO 9951852 | Oct 1999 | WO |
WO 9950524 | Dec 1999 | WO |
WO 0052299 | Sep 2000 | WO |
WO 0052300 | Sep 2000 | WO |
WO 0250398 | Jun 2002 | WO |
WO 03071091 | Aug 2003 | WO |
WO 2006088379 | Aug 2006 | WO |
WO 2007092956 | Aug 2007 | WO |
WO 2008133523 | Nov 2008 | WO |
WO 2008156376 | Dec 2008 | WO |
WO 2009017418 | Feb 2009 | WO |
Entry |
---|
US 6,708,780, 3/2004, Bourgoyne et al. (withdrawn). |
The Modular T BOP Stack System, Cameron Iron Works© 1985 (4 pages). |
Cameron HC Collet Connector, © 1996 Cooper Cameron Corporation, Cameron Division (14 pages). |
Riserless drilling: circumventing the size/cost cycle in deep-water—Conoco, Hydril project seek enabling technologies to drill in deepest water depths economically, May 1986 Offshore Drilling Technology (6 pages). |
Williams Tool Company—Home Page—Under Construction Williams Rotating Control Heads (2 pages); Seal-Ability for the pressures of drilling (2 pages); Williams Model 7000 Series Rotating Control Heads (1 page); Williams Model 7000 & 7100 Series Rotating Control Heads (2 pages); Williams Model IP1000 Rotating Control Head (2 pages); Williams Conventional Models 8000 & 9000 (2 pages); Applications Where Using a Williams rotating control head while drilling is a plus (1 page); Williams higher pressure rotating control head systems are Ideally Suited for New Technology Flow Drilling and Closed Loop Underbalanced Drilling (UBD) Vertical and Horizontal (2 pages); and How to Contact US (2 pages), 16 pages (total). |
Offshore—World Trends and Technology for Offshore Oil and Gas Operations, Mar. 1998, Seismic: Article entitled, “Shallow Flow Diverter JIP Spurred by Deepwater Washouts” (3 pages including cover page, table of contents and p. 90). |
Williams Tool Co., Inc. Rotating Control Heads and Strippers for Air, Gas, Mud, and Geothermal Drilling Worldwide—Sales Rental Service, © 1988 (19 pages). |
Williams Tool Co., Inc. 19 page brochure © 1991 Williams Tool Co., Inc. (19 pages). |
FIG. 19 Floating Piston Drilling Choke Design: May of 1997 (1 page). |
Blowout Preventer Testing for Underbalanced Drilling by Charles R. “Rick” Stone and Larry A. Cress, Signa Engineering Corp., Houston, Texas (24 pages) Sep. 1997. |
Williams Tool Co., Inc. Instructions, Assemble & Disassemble Model 9000 Bearing Assembly (28 pages including cover page). |
Williams Tool Co., Inc. Rotating Control Heads Making Drilling Safer While Reducing Costs Since 1968, © 1989 (4 pages). |
Williams Tool Company, Inc. International Model 7000 Rotating Control Head, 1991 (4 pages). |
Williams Rotating Control Heads, Reduce Costs Increase Safety Reduce Environmental Impact, 4 pages, ( © 1995). |
Williams Tool Co., Inc. Sales-Rental-Service, Williams Rotating Control Heads and Strippers for Air, Gas, Mud, and Geothermal Drilling, © 1982 (7 pages). |
U.S. Appl. No. 60/079,641, Abandoned, but Priority Claimed in above U.S. Pat. Nos. 6,230,824B1 and 6,102,673 and PCT WO 99/50524, Mar. 27, 1998. |
U.S. Appl. No. 60/122,530, Abandoned, but Priority Claimed in U.S. Pat. No. 6,470,975B1, Mar. 2, 1999. |
Williams Tool Co., Inc., Rotating Control Heads and Strippers for Air, Gas, Mud, Geothermal and Pressure Drilling, © 1991 (19 pages). |
An article—The Brief Jan. '96, The Brief's Guest Columnists, Williams Tool Co., Inc., Communicating Dec. 13, 1995 (Fort Smith, Arkansas), The When? and Why? of Rotating Control Head Usage, Copyright © Murphy Publishing, Inc. 1996 (2 pages). |
A reprint from the Oct. 9, 1995 edition of Oil & Gas Journal, “Rotating control head applications increasing,” by Adam T. Bourgoyne, Jr., Copyright 1995 by PennWell Publishing Company (4 pages). |
1966-1967 Composite Catalog-Grant Rotating Drilling Head for Air Gas or Mud Drilling (1 page). |
1976-1977 Composite Catalog Grant Oil Tool Company Rotating Drilling Head Models 7068, 7368, 8068 (Patented), Equally Effective with Air, Gas, or Mud Circulation Media (3 pages). |
A Subsea Rotating Control Head for Riserless Drilling Applications; Daryl A. Bourgoyne, Adam T. Bourgoyne, and Don Hannegan—1998 (International Association of Drilling Contractors International Deep Water Well Control Conference held in Houston, Texas, Aug. 26-27, 1998) (14 pages). |
Hannegan, “Applications Widening for Rotating Control Heads,” Drilling Contractor, cover page, table of contents and pp. 17 and 19, Drilling Contractor Publications Inc., Houston, Texas, Jul. 1996 (4 pages). |
Composite Catalog, Hughes Offshore 1986-87 Subsea Systems and Equipment, Hughes Drilling Equipment Composite Catalog (pp. 2986-3004) (19 pages). |
Williams Tool Co., Inc. Technical Specifications Model for the Model 7100, (3 pages). |
Williams Tool Co., Inc. Website, Underbalanced Drilling (UBD), The Attraction of UBD (2 pages). |
Williams Tool Co., Inc. Website, “Applications, Where Using a Williams Rotating Control Head While Drilling is a Plus” (2 pages). |
Williams Tool Co., Inc. Website, “Model 7100,” (3 pages). |
Composite Catalog, Hughes Offshore 1982/1983, Regan Products, © Copyright 1982 (Two cover sheets and 4308-27 thru 4308-43, and end sheet). See p. 4308-36 Type KFD Diverter (20 pages). |
Coflexip Brochure; 1—Coflexip Sales Offices, 2—the Flexible Steel Pipe for Drilling and Service Applications, 3—New 5″I.D. General Drilling Flexible, 4—Applications, and 5—Illustration (5 unnumbered pages). |
Baker, Ron, “A Primer of Oilwell Drilling,” Fourth Edition, Published Petroleum Extension Service, The University of Texas at Austin, Austin, Texas, in cooperation with International Association of Drilling Contractors Houston, Texas © 1979 (3 cover pages and pp. 42-49 re Circulation System) (11 pages). |
Brochure, Lock down Lubricator System, Dutch Enterprises, Inc., “Safety with Savings” (cover sheet and 16 unnumbered pages); see above U.S. Pat. No. 4,836,289 referred to therein (16 pages). |
Hydril GL series Annual Blowout Preventers (Patented—see Roche patents above), (cover sheet and 2 pages). |
Other Hydril Product Information (The GH Gas Handler Series Product is Listed), © 1996, Hydril Company (Cover sheet and 19 pages). |
Brochure, Shaffer Type 79 Rotating Blowout Preventer, NL Rig Equipment/NL Industries, Inc., (6 unnumbered pages). |
Shaffer, A Varco Company, (Cover page and pp. 1562-1568) (8 pages). |
Avoiding Explosive Unloading of Gas in a Deep Water Riser When SOBM in Use; Colin P. Leach & Joseph R. Roche—1998 (The Paper Describes an Application for the Hydril Gas Handler, The Hydril GH 211-2000 Gas Handler is Depicted in Figure 1 of the Paper) (9 unnumbered pages). |
Feasibility Study of Dual Density Mud System for Deepwater Drilling Operations; Clovis A. Lopes & A.T. Bourgoyne, Jr.—1997 (Offshore Technology Conference Paper No. 8465); (pp. 257-266) (10 pages). |
Apr. 1998 Offshore Drilling with Light Weight Fluids Joint Industry Project Presentation (9 unnumbered pages). |
Nakagawa, Edson Y., Santos, Helio and Cunha, J.C., “Application of Aerated-Fluid Drilling in Deepwater,” SPE/IACDC 52787 Presented by Don Hannegan, P.E., SPE © 1999 SPE/IADC Drilling Conference, Amsterdam, Holland, Mar. 9-11, 1999 (5 unnumbered pages). |
Brochure: “Inter-Tech Drilling Solutions, Ltd.'s RBOP™ Means Safety and Experience for Underbalanced Drilling,” Inter-Tech Drilling Solutions Ltd./Big D Rentals & Sales (1981) Ltd. And Color “Rotating BOP” (2 unnumbered pages). |
“Pressure Control While Drilling,” Shaffer® A Varco Company, Rev. A (2 unnumbered pages). |
Field Exposure (As of Aug. 1998), Shaffer® A Varco Company (1 unnumbered page). |
Graphic: “Rotating Spherical BOP” (1 unnumbered page). |
“JIP's Worl Brightens Outlook for UBD in Deep Waters” by Edson Yoshihito Nakagawa, Helio Santos and Jose Carlos Cunha, American Oil & Gas Reporter, Apr. 1999, pp. 53, 56, 58-60 and 63 (8 pages). |
“Seal-Tech 1500 PSI Rotating Blowout Preventer,” Undated, 3 pages. |
“RPM System 3000™ Rotating Blowout Preventer, Setting a new standard in Well Control,” by Techcorp Industries, Undated, 4 pages. |
“RiserCap™ Materials Presented at the 1999 LSU/MMS/IADC Well Control Workshop”, by Williams to Company, Inc., Mar. 24-25, pp. 1-14 (14 pages). |
“The 1999 LSU/MMS Well Control Workshop: An overview,” by John Rogers Smith. World Oil, Jun. 1999. Cover page and pp. 4, 41-42, and 44-45 (6 pages). |
DAG OLUF NESSA, “Offshore underbalanced drilling system could revive field developments,” World Oil, vol. 218, No. 10, Oct. 1997, 1 unnumbered page and pp. 83-84, 86, and 88 (6 pages) |
D.O. Nessa, “Offshore underbalanced drilling system could revive field developments,” World Oil Exploration Drilling Production, vol. 218, No. 7, Color pages Of Cover Page and pp. 3, 61-64, and 66, Jul. 1997 (7 pages). |
PCT Search Report, International Application No. PCT/US99/06695, 4 pages (Date of Completion May 27, 1999). |
PCT Search Report, International Application No. PCT/GB00/00731, 3 pages (Date of Completion Jun. 16, 2000). |
National Academy of Sciences—National Research Council, “Design of a Deep Ocean Drilling Ship,” Cover Page and pp. 114-121. (9 pages). |
“History and Development of a Rotating Preventer,” by A. Cress, Rick Stone, and Mike Tangedahl, IADC/SPE 23931, 1992 IADC/SPE Drilling Conference, Feb. 1992, pp. 757-773 (17 pages). |
Helio Santos, Email message to Don Hannegan, et al., 1 page (Aug. 20, 2001). |
Rehm, Bill, “Practical Underbalanced Drilling and Workover,” Petroleum Extension Service, The University of Texas at Austin Continuing & Extended Education, Cover page, title page, copyright page, and pp. 6-6, 11-2, 11-3, G-9, and G-10 (2002) (8 pages). |
Williams Tool Company Inc., “RISERCAP™: Rotating Control Head System for Floating Drilling Rig Applications,” 4 unnumbered pages, ( © 1999 Williams Tool Company, Inc.) (4 pages). |
Antonio C.V.M. Lage, Helio, Santos and Paulo R.C. Silva, Drilling With Aerated Drilling Fluid From a Floating Unit Part 2: Drilling the Well, SPE 71361, 11 pages ( © 2001, Society of Petroleum Engineers, Inc.) (11 pages). |
Helio Santos, Fabio Rosa, and Christian Leuchtenberg, Drilling and Aerated Fluid from a Floating Unit, Part 1: Planning, Equipment, Tests, and Rig Modifications, SPE/ADC 67748, 8 pages ( © 2001 SPE/IADC Drilling Conference). |
E.Y. Nakagawa, H. Santos, J.C. Cunha and S. Shayegi, Planning of Deepwater Drilling Operations with Aerated Fluids, SPE 54283, 7 pages, ( © 1999, Society of Petroleum Engineers). |
E.Y. Nakagawa, H.M.R. Santos and J.C. Cunha, Implementing the Light-Weight Fluids Drilling Technology in Deepwater Scenarios, 1999 LSU/MMS Well Control Workshop Mar. 24-25, 1999, 12 pages (1999). |
Press Release, “Stewart & Stevenson Introduces First Dual Gradient Riser,” Stewart & Stevenson, http:/www.ssss/com/ssss/20000831.asp, 2 pages (Aug. 31, 2000). |
Press Release: “Stewart & Stevenson introduces First Dual Gradient Riser,” Stewart & Stevenson, http:www/ssss/com/ssss/20000831.asp, 2 pages (Aug. 31, 2000). |
Williams Tool Company Inc., “Williams Tool Company Introduces the . . . Virtual Riser™,” 4 unnumbered pages, ( © 1998 Williams Tool Company, Inc.). |
“PETEX Publications,” Petroleum Extension Service, University of Texas at Austin, 12 pages, (last modified Dec. 6, 2002). |
“BG in the Caspian region,” SPE Review, Issue 164, 3 unnumbered pages (May 2003). |
“Field Cases as of Mar. 3, 2003,” Impact Fluid Solutions, 6 pages (Mar. 3, 2003). |
“Determine in the Safe Application of Underbalanced Drilling Technologies in Marine Environments—Technical Proposal,” Maurer Technology, Inc., Cover Page and pp. 2-13 (Jun. 17, 2002) (13 pages). |
Colbert, John W., “John W. Colbert, P.E. Vice President Engineering Biographical Data,” Signa Engineering Corp., 2 unnumbered pages (undated). |
“Technical Training Courses,” Parker Drilling Co., http:/www.parkerdrilling.com/news/tech.html, 5 pages (last visited, Sep. 5, 2003). |
“Drilling equipment: Improvements from data recording to slim hole,” Drilling Contractor, pp. 30-32, Mar./Apr. 2000) (3 pages). |
“Drilling conference promises to be informative,” Drilling Contractor, p. 10 (Jan./Feb. 2002) (1 page). |
“Underbalanced and Air Drilling,” OGCI, Inc., http:/www.ogci.com/course—info.asp?counselD=410, 2 pages, (2003). |
“2003 SPE Calendar,” Society of Petroleum Engineers, Google cache of http:/www.spe.org/spe/cda/views/events/eventMaster/0,1470,1648—2194—632303.00.html; for “mud cap drilling”, 2 pages (2001). |
“Oilfield Glossary: reverse-circulating valve,” Schlumberger Limited, 1 page (2003). |
Murphy, Ross D. and Thompson, Paul B., “A drilling contractor's view of underbalanced drilling,” World Oil Magazine, vol. 223, No. 5, 9 pages (May 2002) (9 pages). |
“Weatherford UnderBalanced Services: General Underbalance Presentation to the DTI,” 71 unnumbered pages, © 2002. |
Rach, Nina M., “Underbalanced near-balanced drilling are possible offshore,” Oil & Gas Journal, Color Copies, pp. 39-44, (Dec. 1, 2003) (6 pages). |
Forrest, Neil et al., Subsea Equipment for Deep Water Drilling Using Dual Gradient Mud System, SPE/IADC Drilling Conference held in Amsterdam, The Netherlands, Feb. 27, 2001 to Mar. 1, 2001, Paper SPE/IADC 67707, © 2001 SPE/IADC Drilling Conference (8 pages); particularly see p. 3, col. 1, ¶ 4 and col. 2, ¶ 5 and Figs. 4-6; cited in 7V below where indicated as “technical background” (8 pages). |
Hannegan, D.M.; Bourgoyne, Jr., A.T.: “Deepwater Drilling with Lightweight Fluids—Essential Equipment Required,” SPE/IADC 67708,pp. 1-6 ( © 2001, SPE/IADC Drilling Conference) (6 pages). |
Hannegan, Don M., “Underbalanced Operations Continue Offshore Movement,” SPE 68491, pp. 1-3, ( © 2001, Societof Petroleum Engineers, Inc.) (3 pages). |
Hannegan, D. and Divine, R., “Underbalanced Drilling—Perceptions and Realities of Today's Technology in Offshore Applications,” IADC/SPE 74448, p. 1-9, ( © 2002, IADC/SPE Drilling Conference) (9 pages). |
Hannegan, Don M. and Wanzer, Glen: “Well Control Considerations—Offshore Applications of Underbalanced Drilling Technology,” SPE/IADC 79854, pp. 1-14, ( © 2003, SPE/IADC Drilling Conference) (14 pages). |
Bybee, Karen, “Offshore Applications of Underbalanced—Drilling Technology,” Journal of Petroleum Technology, Cover Page and pp. 51-52, (Jan. 2004) (3 pages). |
Bourgoyne, Darryl A.; Bourgoyne, Adam T.; Hannegan, Don; “A Subsea Rotating Control Head for Riserless Drilling Applications,” IADC International Deep Water Well Control Conference, pp. 1-14, (Aug. 26-27, 1998) (see document T) (14 pages). |
Lage, Antonio C.V.M.; Santos, Helio; Silva, Paulo R.C.; “Drilling With Aerated Drilling Fluid From a Floating Unit Part 2: Drilling the Well,” Society of Petroleum Engineers, SPE 71361, pp. 1-11 (Sep. 30-Oct. 3, 2001)(see document BBB) (11 pages). |
Furlow, William; “Shell's seafloor pump, solids removal key to ultra-deep, dual-gradient drilling (Skid ready for commercialization), ”Offshore World Trends and Technology for Offshore Oil and Gas Operations, Cover page, table of contents, pp. 54, 2 unnumbered pages, and 106 (Jun. 2001) (6 pages). |
Rowden, Michael V.: “Advances in riserless drilling pushing the deepwater surface string envelope (Alternative to seawater, CaCl2 sweeps); ”Offshore World Trends and Technology for Offshore Oil and Gas Operations, Cover page, table of contents, pp. 56, 58, and 106 (Jun. 2001) (5 pages). |
Boye, John: “Multi-Purpose Intervention Vessel Presentation,” M.O.S.T. Multi Operational Service Tankers, Weatherford International, Jan. 2004, 43 pages ( © 2003). |
GB Search Report, International Application No. GB 0324939.8, 1 page (Jan. 21, 2004). |
MicroPatent® list of patents citing U.S. Pat. No. 3,476,195, printed on Jan. 24, 2003. |
PCT Search Report, International Application No. PCT/EP2004/052167, 4 pages (Date of Completion Nov. 25, 2004). |
PCT Written Opinion of the International Searching Authority, International Application No. PCT/EP2004/052167, 6 pages. |
Supplementary European Search Report No. EP 99908371, 3 pages (Date of Completion Oct. 22, 2004). |
General Catalog, 1970-1971, Vetco Offshore, Inc., Subsea Systems; cover page, company page and numbered pp. 4800, 4816-4818; 6 pages total, in particular see numbered p. 4816 for “patented” Vetco H-4 connectors (6 pages). |
General Catalog, 1972-73, Vetco Offshore, Inc., Subsea Systems; cover page; company page and numbered pp. 4498, 4509-4510; 5 pages total. |
General Catalog, 1974-75, Vetco Offshore, Inc.; cover page, company page and numbered pp. 5160, 5178-5179; 5 pages total. |
General Catalog, 1976-1977, Vetco Offshore, Inc., Subsea Drilling and Completion Systems; cover page and numbered pp. 5862-5863; 4 pages total. |
General Catalog, 1982-1983, Vetco; cover page and numbered pp. 8454-8455, 8479; 4 pages total. |
Shaffer, A Varco Company: Pressure Control While Drilling System, http:/www.tulsaequipm.com; printed Jun. 21, 2004; 2 pages. |
Performance Drilling by Precision Drilling. A Smart Equation, Precision Drilling, © 2002 Precision Drilling Corporation; 12 pages, in particular see 9th page for “Northland's patented RBOP . . . ”. |
RPM System, 3000™ Rotating Blowout Preventer: Setting a New Standard in Well Control, Weatherford, Underbalanced Systems: © 2002-2005 Weatherford; Brochure #333.01, 4 pages. |
Managed Pressure Drilling in Marine Environments, Don Hannegan, P.E.; Drilling Engineering Association Workshop, Moody Gardens, Galveston, Jun. 22-23, 2004; © 2004 Weatherford, 28 pages. |
Hold™ 2500 RCD Rotating Control Device web page and brochure, http://www.smith.com/hold2500; printed Oct. 27, 2004, 5 pages. |
Rehm, Bill, “Practical Underbalanced Drilling and Workover,” Petroleum Extension Service, The University of Texas at Austin Continuing & Extended Education, cover page, title page, copyright page and pp. 6-1 to 6-9, 7-1 to 7-9 (2002) (21 pages). |
“Pressured Mud Cap Drilling from a Semi-Submersible Drilling Rig,” J.H. Terwogt, SPE, L.B. Makiaho and N. van Beelen, SPE, Shell Malaysia Exploration and Production; B.J. Gedge, SPE, and J. Jenkins, Weatherford Drilling and Well Services (6 pages total); © 2005 (This paper was prepared for presentation at the SPE/IADC Drilling Conference held in Amsterdam, The Netherlands, Feb. 23-25, 2005) (5 pages). |
Tangedahl, M.J., et al., “Rotating Preventers: Technology for Better Well Control,” World Oil, Gulf Publishing Company, Houston, TX, US, vol. 213, No. 10, Oct. 1992, numbered pp. 63-64 and 66 (3 pages). |
European Search Report for EP 05 27 0083, Application No. 05270083.8-2315, European Patent Office, Mar. 2, 2006, corresponding to U.S. Appl. No. 10/995,980, published as US2006/0108119 A1 (now U.S. Pat. No. 7,487,837 B2) (5 pages). |
Netherlands Search Report for NL No. 1026044, dated Dec. 14, 2005 (3 pages). |
Int'l. Search Report for PCT/GB 00/00731 corresponding to U.S. Pat. No. 6,470,975 (Jun. 16, 2000) (2 pages). |
GB0324939.8 Examination Report corresponding to U.S. Pat. No. 6,470,975 (Mar. 21, 2006) (6 pages). |
GB0324939.8 Examination Report corresponding to U.S. Pat. No. 6,470,975 Jan. 22, 2004) (3 pages). |
2003/0106712 Family Lookup Report (Jun. 15, 2006) (5 pages). |
6,470,975 Family Lookup Report (Jun. 15, 2006) (5 pages). |
AU S/N 28183/00 Examination Report corresponding to U.S. Pat. No. 6,470,975 (1 page) (Sep. 9, 2002). |
NO S/N 20013953 Examination Report corresponding to U.S. Pat. No. 6,470,975 w/one page of English translation (3 pages) (Apr. 29, 2003). |
Nessa, D.O. & Tangedahl, M.L. & Saponia, J: Part 1: “Offshore underbalanced drilling system could revive field developments,” World Oil, vol. 218, No. 7, Cover Page, 3, 61-64 and 66 (Jul. 1997); and Part 2: “Making this valuable reservoir drilling/completion technique work on a conventional offshore drilling platform.” World Oil, vol. 218 No. 10, Cover Page, 3, 83, 84, 86 and 88 (Oct. 1997) (see 5A, 5G above and 5I below) (7 pages). |
Int'l. Search Report for PCT/GB 00/00731 corresponding to U.S. Pat. No. 6, 470,975 (4 pages) (Jun. 27, 2000). |
Int'l. Preliminary Examination Report for PCT/GB 00/00731 corresponding to U.S. Pat. No. 6,470,975 (7 pages) (Dec. 14, 2000). |
NL Examination Report for WO 00/52299 corresponding to this U.S. Appl. No. 10/281,534 (3 pages) (Dec. 19, 2003). |
AU S/N 28181/00 Examination Report corresponding to U.S. Pat. No. 6,263,982 (1 page) (Sep. 6, 2002). |
EU Examination Report for WO 00/906522.8-2315 corresponding to U.S. Pat. No. 6,263,982 (4 pages) (Nov. 29, 2004). |
NO S/N 20013952 Examination Report w/two pages of English translation corresponding to U.S. Pat. No. 6,263,982 (4 pages) (Jul. 2, 2005). |
PCT/GB00/00726 Int'l. Preliminary Examination Report corresponding to U.S. Pat. No. 6,263,982 (10 pages) (Jun. 26, 2001). |
PCT/GB00/00726 Written Opinion corresponding to U.S. Pat. No. 6,263,982 (7 pages) (Dec. 18, 2000). |
PCT/GB00/00726 International Search Report corresponding to U.S. Pat. No. 6,263,982 (3 pages (Mar. 2, 1999) (4 pages). |
AU S/N 27822/99 Examination Report corresponding to U.S. Pat. No. 6,138,774 (1 page) (Oct. 15, 2001). |
EU 99908371.0-1266-US99/03888 European Search Report corresponding to U.S. Pat. No. 6,138,774 (3 pages) (Nov. 2, 2004). |
NO S/N 20003950 Examination Report w/one page of English translation corresponding to U.S. Pat. No. 6,138,774 (3 pages) (Nov. 1, 2004). |
PCT/US990/03888 Notice of Transmittal of International Search Report corresponding to U.S. Pat. No. 6,138,774 (6 pages) (Aug. 4, 1999). |
PCT/US99/03888 Written Opinion corresponding to U.S. Pat. No. 6,138,744 (5 pages) (Dec. 21, 1999). |
PCT/US99/03888 Notice of Transmittal of International Preliminary Examination Report corresponding to U.S. Pat. No. 6,138,774 (15 pages) (Jun. 12, 2000). |
EU Examination Report for 05270083.8-2315 corresponding to U.S. Appl. No. 10/995,980, published as US 2006/0108119 A1 (now U.S. Pat. No. 7,487,837 B2) (11 pages) (May 10, 2006). |
Tangedahl, M.J., et al. “Rotating Preventers: Technology for Better Well Control,” World Oil, Gulf Publishing Company, Houston, TX, US, vol. 213, 10/1992, (Oct. 1, 1992) numbered pp. 63-64 and 66 (3 pages) XP 000288328 ISSN: 0043-8790 (see YYYY, 5X above). |
UK Search Report for Application No. GB 0325423.2, searched Jan. 30, 2004 corresponding to above U.S. Pat. No. 7,040,394 (one page). |
UK Examination Report for Application No. GB 0325423.2 (corresponding to above 5Z) dated Jun. 30, 2005 (4 pages). |
Dietle, Lannie L., et al., Kalsi Seals Handbook, Document. 2137 Revision 1, © 1992-2005 Kalsi Engineering, Inc. of Sugar Land, Texas USA; front and back covers and 164 total pages; in particular forward page ii for “Patent Rights”; Appendix A-6 for Kalsi seal part No. 381-6- and A-10 for Kalsi seal part No. 432-32-. as discussed in U.S. Appl. No. 11/366,078 (now U.S. Pat. No. 7,836,946 B2) at number paragraph 70 and 71. (194 pages). |
Fig. 10 and discussion in U.S. Appl. No. 11/366,078, published as US2006/0144622 A1 (now U.S. Pat. No. 7,836,946 B2) of Background of Invention (2 pages). |
Partial European search report R.46 EPC dated Jun. 27, 2007 for European Patent Application EP07103416.9-2315 corresponding to U.S. Appl. No. 11/366,078, published as US 2006/0144622 A1, now U.S. Pat. No. 7,836,946 (5 pages). |
Extended European search report R.44 EPC dated Oct. 9, 2007 for European Patent Application 07103416.9-2315 corresponding to U.S. Appl. No. 11/366,078, published as US-2006/0144622 A1, now U.S. Pat. No. 7,836,946 (8 pages). |
U.S. Appl. No. 60/079,641, Mudlift System for Deep Water Drilling, filed Mar. 27, 1998, abandoned, but priority claimed in above U.S. Pat. No. 6,230,824 B1 and 6,102,673 and PCT WO-99/50524 (107 pages). |
U.S. Appl. No. 60/122,530, Concepts for the Application of Rotating Control Head Technology to Deepwater Drilling Operations, filed Mar. 2, 1999, abandoned, but priority claimed in above U.S. Pat. No. 6,470,975 B1 (54 pages). |
PCT/GB2008/050239 (corresponding to US2008/0210471 A1; now issued as U.S. Pat. No. 7,926,593) Annex to Form PCT/ISA/206 Communication Relating to the Results of the Partial International Search dated Aug. 26, 2008 (4 pages). |
PCT/GB2008/050239 (corresponding to US2008/0210471 A1; now issued as U.S. Pat. No. 7,926,593) International Search Report and Written Opinion of the International Searching Authority (16 pages). |
Vetco Gray Product Information CDE-PI-0007 dated Mar. 1999 for 59.0 Standard Bore CSO Diverter (2 pages) © 1999 by Vetco Gray Inc. |
Vetco Gray Capital Drilling Equipment KFDJ and KFDJ Model “J” Diverters (1 page) (no date). |
Hydril Blowout Preventers Catalog M-9402 D (44 pages) © 2004 Hydril Company LP; see annular and ram BOP seals on p. 41. |
Hydril Compact GK® 7 1/16—3000 & 5000 psi Annular Blowout Preventers, Catalog 9503B © 1999 Hydril Company (4 pages). |
Weatherford Controlled Pressure Drilling Williams® Rotating Marine Diverter Insert (2 pages). |
Weatherford Controlled Pressure Drilling Model 7800 Rotating Control Device © 2007 Weatherford(5 pages). |
Weatherford Controlled Pressure Drilling® and Testing Services Williams® Model 8000/9000 Conventional Heads © 2002-2006 Weatherford(2 pages). |
Weatherford “Real Results Rotating Control Device Resolves Mud Return Issues in Extended-Reach Well, Saves Equipment Costs and Rig Time” ©2007 Weatherford and “Rotating Control Device Ensures Safety of Crew Drilling Surface-Hole Section” © 2008 Weatherford (2 pages). |
Washington Rotating Control Heads, Inc. Series 1400 Rotating Control Heads (“Shorty”) printed Nov. 21, 2008 (2 pages). |
Smith Services product details for Rotating Control Device—RDH 500® printed Nov. 24, 2008 (4 pages). |
American Petroleum Institute Specification for Drill Through Equipment—Rotating Control Devices, API Specification 16RCD, First Edition, Feb. 2005 (84 pages). |
Weatherford Drilling & Intervention Services Underbalanced Systems RPM System 3000™ Rotating Blowout Preventer, Setting a New Standard in Well Control, An Advanced Well Control System for Underbalanced Drilling Operations, Brochure #333.00, © 2002 Weatherford (4 pages). |
Medley, George; Moore, Dennis; Nauduri, Sagar; Signa Engineering Corp.; SPE/IADC Managed Pressure Drilling & Underbalanced Operations (PowerPoint presentation; 22 pages). |
Secure Drilling Well Controlled, Secure Drilling™ System using Micro-Flux Control Technology, © 2007 Secure Drilling (12 pages). |
The LSU Petroleum Engineering Research & Technology Transfer Laboratory, 10-rate Step Pump Shut-down and Start-up Example Procedure for Constant Bottom Hole Pressure Manage Pressure Drilling Applications (8 pages). |
United States Department of the Interior Minerals Management Service Gulf of Mexico OCS Region NTL No. 2008-G07; Notice to Lessees and Operators of Federal Oil, Gas, and Sulphur Leases in the Outer Continental Shelf, Gulf of Mexico OCS Region, Managed Pressure Drilling Projects; Issue Date: May 15, 2008; Effective Date: Jun. 15, 2008; Expiration Date: Jun. 15, 2013 (9 pages). |
Gray, Kenneth; Dynamic Density Control Quantifies Well Bore Conditions in Real Time During Drilling; American Oil & Gas Reporter, Jan. 2009 (4 pages). |
Kotow, Kenneth J.; Pritchard, David M.; Riserless Drilling with Casing: A New Paradigm for Deepwater Well Design, OTC-19914-PP, © 2009 Offshore Technology Conference, Houston, TX May 4-7, 2009 (13 pages). |
Hannegan, Don M.; Managed Pressure Drilling—A New Way of Looking at Drilling Hydraulics—Overcoming Conventional Drilling Challenges; SPE 2006-2007 Distinguished Lecturer Series presentation (29 pages); see all but particularly see FIGS. 14-20; cited in 7V below where indicated as “document cited for other reasons”. |
Turck Works Industrial Automation; Factor 1 Sensing for Metal Detection, cover page, first page and numbered pages 1.157 to 1.170 (16 pages) (printed in Jan. 2009). |
Balluff Sensors Worldwide; Object Detection Catalog 08/09—Industrial Proximity Sensors for Non-Contact Detection of Metallic Targets at Ranges Generally under 50 mm (2 inches); Linear Position and Measurement; Linear Position Transducers; Inductive Distance Sensors; Photoelectric Distance Sensors; Magneto-Inductive Linear Position Sensors; Magnetic Linear/Rotary Encoder System; printed Dec. 23, 2008 (8 pages). |
Inductive Sensors AC 2-Wire Tubular Sensors, Balluff product catalog pp. 1.109-1.120 (12 pages) (no date). |
Inductive Sensors DC 2-Wire Tubular Sensors, Balluff product catalog pp. 1.125-1.136 (12 pages) (no date). |
Inductive Sensors Analog Inductive Sensors, Balluff product catalog pp. 1.157-1.170 (14 pages) (no date). |
Inductive Sensors DC 3-/4-Wire Inductive Sensors, Balluff product catalog pp. 1.72-1.92 (21 pages). |
Selecting Position Transducers: How to Choose Among Displacement Sensor Technologies; How to Choose Among Draw Wire, LVDT, RVDT, Potentiometer, Optical Encoder, Ultrasonic, Magnetostrictive, and Other Technologies; © 1996-2010, Space Age Control, Inc., printed Jan. 11, 2009 (7 pages) (www..spaceagecontrol.com/selpt.htm). |
Liquid Flowmeters, Omega.com website; printed Jan. 26, 2009 (13 pages). |
Super Autochoke—Automatic Pressure Regulation Under All Conditions © 2009 M-I, LLC; MI Swaco website; printed Apr. 2, 2009 (1 page). |
Extended European Search Report R.61 EPC dated Sep. 16, 2010 for European Patent Application 08166660.4-1266/2050924 corresponding to U.S. Appl. No. 11/975,554, now US 2009/0101351 A1 (7 pages). |
Office Action from the Canadian Intellectual Property Office dated Nov. 13, 2008 for Canadian Application No. 2,580,177 corresponding to U.S. Appl. No. 11/366,078, published as US-2006/0144622 A1, now U.S. Pat. No. 7,836,946 B2 (3 pages). |
Response to European Patent Application No. 08719084.9 (corresponding to the present published application US2008/0210471 A1, now issued as U.S. Pat. No. 7,926,593) dated Nov. 16, 2010 (4 pages). |
Office Action from the Canadian Intellectual Property Office dated Apr. 15, 2008 for Canadian Application No. 2,527,395 corresponding to U.S. Appl. No. 10/995,980, published as US-2006/0108119 A1, now U.S. Pat. No. 7,487,837 B2 (3 pages). |
Office Action from the Canadian Intellectual Property Office dated Apr. 9, 2009 for Canadian Application No. 2,527,395 corresponding to U.S. Appl. No. 10/995,980, published as US-2006/0108119 A1, now U.S. Pat. No. 7,487,837 B2 (2 pages). |
Office Action from the Canadian Intellectual Property Office dated Dec. 15, 2009 for Canadian Application No. 2,681,868 corresponding to U.S. Appl. No. 10/995,980, published as US-2006/0108119 A1, now U.S. Pat. No. 7,487,837 B2 (2 pages). |
Examiner's First Report on Australian Patent Application No. 2005234651 from the Australian Patent Office dated Jul. 22, 2010 corresponding to U.S. Appl. No. 10/995,980, published as US-2006/0108119 A1, now U.S. Pat. No. 7,487,837 B2 (2 pages). |
Office Action from the Canadian Intellectual Property Office dated Sep. 9, 2010 for Canadian Application No. 2,707,738 corresponding to U.S. Appl. No. 10/995,980, published as US-2006/0108119 A1, now U.S. Pat. No. 7,487,837 B2 (2 pages). |
Web page of Ace Wire Spring & Form Company, Inc. printed Dec. 8, 2009 for “Garter Springs—Helical Extension & Compression” www.acewirespring.com/garter-springs.html (1 page). |
Extended European Search Report (R 61 EPC) dated Mar. 4, 2011 for European Application No. 08166658.8-1266/2053197 corresponding to U.S. Appl. No. 11/975,946, published as US 2009-0101411 A1 (13 pages). |
Canadian Intellectual Property Office Office Action dated Dec. 7, 2010, Application No. 2,641,238 entitled “Fluid Drilling Equipment” for Canadian Application corresponding to U.S. Appl. No. 11/975,946, published as US 2009-0101411 A1 (4 pages). |
Grosso, J.A., “An Analysis of Well Kicks on Offshore Floating Drilling Vessels,” SPE 4134, Oct. 1972, pp. 1-20, © 1972 Society of Petroleum Engineers (20 pages). |
Bourgoyne, Jr., Adam T., et al., “Applied Drilling Engineering,” pp. 168-171, © 1991 Society of Petroleum Engineers (6 pages). |
Wagner, R.R., et al., “Surge Field Tests Highlight Dynamic Fluid Response,” SPE/IADC 25771, Feb. 1993, pp. 883-892, © 1993 SPE/IADC Drilling Conference (10 pages). |
Solvang, S.A., et al., “Managed Pressure Drilling Resolves Pressure Depletion Related Problems in the Development of the HPHT Kristin Field,” SPE/IADC 113672, Jan. 2008, pp. 1-9, © 2008 IADC/SPE Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition (9 pages). |
Rasmussen, Ovle Sunde, et al., “Evaluation of MPD Methods for Compensation of Surge-and-Swab Pressures in Floating Drilling Operations,” IADC/SPE 108346, Mar. 2007, pp. 1-11, © 2007 IADC/SPE Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition (11 pages). |
Shaffer Drill String Compensator available from National Oilwell Varco of Houston, Texas, printed Mar. 23, 2010 from http://www.nov.com/ProductDisplay.aspx?ID=4954&taxID=121&terms=drill+string+compensators (1 page). |
Shaffer Crown Mounted Compensator available from National Oilwell Varco of Houston, Texas, printed Mar. 23, 2010 from http://www.nov.com/ProductDisplay.aspx?ID=4949&taxID=121&terms=active+drill+string+compensator (3 pages). |
Active heave compensator available from National Oilwell Varco of Houston, Texas, printed Mar. 23, 2010 from http://www.nov.com/ProductDisplay.aspx?ID=3677&taxID=740&terms=active+heave+compensator (3 pages). |
Durst, Doug, et al., “Subsea Downhole Motion Compensator (SDMC): Field History, Enhancements, and the Next Generation,” IADC/SPE 59152, Feb. 2000, pp. 1-12, © 2000 Society of Petroleum Engineers, Inc. (12 pages). |
Sensoy, Taner, et al., Weatherford Secure Drilling Well Controlled Report “Surge and Swab effects due to the Heave motion of floating rigs”, Nov. 10, 2009 (7 pages). |
Hargreaves, David, et al., “Early Kick Detection for Deepwater Drilling: New Probabilistic Methods Applied in the Field”, SPE 71369, © 2001, Society of Petroleum Engineers, Inc. (11 pages). |
HH Heavy-Duty Hydraulic Cylinders catalog, The Sheffer Corporation, printed Mar. 5, 2010 from http://www.sheffercorp.com/layout—contact.shtm (27 pages). |
Unocal Baroness Surface Stack Upgrade Modifications (5 pages). |
Thomson, William T., Professor of Engineering, University of California, “Vibration Theory and Applications”, © 1848, 1953, 1965 by Prentice-Hall, Inc. title page, copyright page, contents page and numbered pp. 3-9 (10 pages). |
Active Heave Compensator, Ocean Drilling Program, www.oceandrilling.org (3 pages). |
3.3 Floating Offshore Drilling Rigs (Floaters); 3.3.1. Technologies Required by Floaters; 3.3.2. Drillships; 3.3.3. Semisubmersible Drilling Rig; 4.3.4. Subsea Control System; 4.4. Prospect of Offshore Production System (5 pages). |
Weatherford® Real Results First Rig Systems Solutions for Thailand Provides Safer, More Efficient Operations with Stabmaster® and Automated Side Doors, © 2009 Weatherford document No. 6909.00 discussing Weatherford's Integrated Safety Interlock System (ISIS) (1 page). |
U.S. Appl. No. 61/205,209, filed Jan. 15, 2009; Abandoned, but priority claimed in US2010/0175882A1 (24 pages). |
Smalley® Steel Ring Company, Spirolox®; pages from website http://www.spirolox.com/what—happened.php printed Apr. 27, 2010 (5 pages). |
Extended European Search Report (R 61 EPC) dated Aug. 25, 2011 for European Application No. 11170537.2-2315 (see NPL “6L” above) corresponding to U.S. Appl. No. 13/048,497 published as US2011/0168932 A1 on Jul. 14, 2011 and its divisional of U.S. Appl. No. 12/080,170, filed Mar. 31, 2008, now U.S. Pat. No. 7,926,593 (5 pages). |
Canadian Intellectual Property Office Action date May 16, 2011, Application No. 2,692,209 entitled “Latch Position Indicator System and Method” for Canadian Application corresponding to U.S. Appl. No. 12/322,860, now US Patent Publication US-2009-0139724-A1 (2 pages). |
Extended European Search Report ( R 61 EPC) dated Feb. 22, 2012 for European Application No. 10152946.9-2315/2216498 corresponding to U.S. Appl. No. 12/322,860, published as US2009-0139724 A1 on Jun. 4, 2009 (our matter 63) (7 pages). |
Extended European Search Report ( R 61 EPC) dated Feb. 28, 2012 for European Application No. 10150906.5-2315/2208855 corresponding to U.S. Appl. No. 12/643,093, published as US2010-0175882 A1 on Jul. 15, 2010 (our matter 64) (8 pages). |
European Patent Office, Communication pursuant to Article 94(3) EPC, Application No. 10 152 946.9-2315, Weatherford/Lamb Inc. dated Mar. 12, 2012 (our matter 63EP) (6 pages). |
Extended European Search Report R.61 EPC dated Jul. 8, 2013 for European Patent Application 13169036.4-1610 corresponding to U.S. Appl. No. 11/366,078, now U.S. Pat. No. 7,836,946 B2 (our matter 53) (9 pages). |
Extended European Search Report R.61 EPC dated Aug. 12, 2013 for European Patent Application 13169038.0-1610 corresponding to U.S. Appl. No. 11/366,078, now U.S. Pat. No. 7,836,946 B2 (our matter 53) (4 pages). |
Extended European Search Report R.61 EPC dated Aug. 16, 2013 for European Patent Application 08166660.13169036.4-1610 corresponding to U.S. Appl. No. 11/366,078, now U.S. Pat. No. 7,836,946 B2 (our matter 53) (6 pages). |
Examiner's First Report on Australian Patent Application No. 2012202558 from the Australian Patent Office dated Nov. 28, 2012 corresponding to U.S. Appl. No. 10/995,980, now U.S. Pat. No. 7,487,837 B2 (our matter 51) (3 pages). |
Canadian Office Action from the Canadian Intellectual Property Office in Canadian Application 2,527,395 dated Jan. 25, 2013 corresponding to U.S. Appl. No. 10/995,980, now U.S. Pat. No. 7,487,837 B2 (our matter 51) (3 pages). |
Norwegian Office Action and Search Report dated Sep. 21, 2014, Application No. 20055480 entitled “Riser Rotating Control Device” for Norwegian Application corresponding U.S. Pat. No. 7,487,837 B2 (our matter 51) from which the present application claims priority (5 pages). |
European Office Action dated May 11, 2015, Application No. 07103416.9 entitled “Rotating Control Head Radial Seal Protection and Leak Detection Systems” for European Application corresponding to U.S. Pat. No. 7,836,946 B2 (our matter 53) from which the present application claims priority (4 pages). |
Canadian Office Action dated Jul. 6, 2015 (including an Examination Search Report dated Jun. 11, 2015) for Application No. 2,692,209 entitled “Latch Position Indicator System and Method”, corresponding to U.S. Pat. No. 8,826,988 B2 (our matter 63) from which the present application claims priority (3 pages). |
European Office Action dated Dec. 4, 2015 for European Application No. 10152946.9 entitled “Latch Position Indicator System and Method”, corresponding to U.S. Pat. No. 8,826,988 B2 (our matter 63) from which the present application (our matter 83) claims priority (5 pages). |
Number | Date | Country | |
---|---|---|---|
20140367114 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12322860 | Feb 2009 | US |
Child | 14477515 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10995980 | Nov 2004 | US |
Child | 12322860 | US | |
Parent | 11366078 | Mar 2006 | US |
Child | 10995980 | US | |
Parent | 10995980 | Nov 2004 | US |
Child | 11366078 | US |