The field of this invention relates to drilling through troublesome zones while advancing a liner and more particularly to techniques for securing a reamer while pulling the bottom hole assembly out for, for example a bit change.
In the past bottom hole assemblies (BHAs) have been used that included a pilot bit and a reamer. The drill string to which they were attached extended through a liner so that when a troublesome zone was encountered the liner could be used to isolate it. In the course of drilling, the pilot bit or the reamer could wear out or otherwise require removal from the wellbore; for example, to change the type of bit employed. Pulling the BHA through the liner to change the pilot bit for example would not normally be a problem when using a reamer with extendable arms. This was true as long as the arms retracted when needed so the BHA could be pulled out with the liner supported with slips on the rig floor. However, one problem with the extending arm reamers was that the arms could malfunction and refuse to retract. This would in turn prevent the BHA from coming out through the liner and would require pulling the whole liner out of the hole. This would take a great deal of time and result in extra costs.
Another approach that was tried before was to drive the reamer bit from the BHA with splined surfaces but to support the reamer bit off the bottom of the liner with a bearing. Thus the weight of the reamer bit was carried by the liner while a spline on the BHA transmitted torque to the reamer bit. The idea was that when the pilot bit had to be changed the BHA could simply be pulled through the liner and the splines would release leaving the reamer bit attached at the bottom of the liner. When the pilot bit was renewed, the BHA would be advanced back through the liner and the splines of the BHA would again engage the reamer bit and more hole could be made with weight set on the pilot bit and the liner, possibly with the use of a thruster to maintain even weight on bit. The problem with this design was that the bearing on the lower end of the liner was large and prone to failure before the entire hole was made. If that happened, the liner would have to come out to replace the bearing. This, again, consumed a lot of time and increased costs. An additional limitation was that such a design required that the reamer bit remain near the liner bottom and did not allow for reaming proximate the pilot bit in the event the pilot bit was required to be operated at a distance downhole from the liner bottom.
What is needed and provided by the present invention is a way to temporarily latch the reamer bit to the liner as the BHA is removed so that when the BHA is reinserted it can reliably engage the reamer bit while releasing it from its temporary support position on the liner, and to allow the reamer bit to be latched to the BHA during drilling and/or BHA removal to provide for latching of the reamer bit with the latch profile on the liner bottom. These and other advantages of the present invention will be more readily apparent from a review of the description of the preferred embodiment and the drawing and the claims which appear below.
A drilling assembly supports a liner for making a wellbore. The BHA comprises a pilot bit and a reamer above it that is larger in diameter than the suspended liner. If the BHA needs to be pulled out, the reamer is brought into contact with the liner and a latch mechanism between the two engages as another latch that had held the reamer bit to the BHA is released. The reamer bit stays with the liner as the BHA is pulled and later reinserted. On the way in the BHA latches to the reamer bit which then unlatches from the liner bottom. Preferably, splines and a shoulder on the BHA are used to drive the reamer bit as opposed to any power being transmitted through the latch between the BHA and the reamer bit. However, the latch mechanism between the BHA and the reamer bit could also provide torque and weight on bit for drilling operations. The process may be repeated.
Referring to
The reamer bit 22 has a latch portion 28, which can be either a conventional collet or locking dog configuration or other well-known latching mechanisms that can selectively engage the similar companion latch portion 30 that is located at or near the lower end 32 of liner 34. When the profiles of latch portions 28 and 30 are mated together, the conventional latch (not shown) that holds the reamer bit 22 to the BHA 10 is released to allow the BHA 10 to come out through the liner 34. In a particular embodiment, this may be done by pulling up on the running string 36 until the liner 34 can be held on the rig floor with slips. At that point the top 14 of the BHA 10 is engaged in a known manner raising it with respect to the liner 34. At some point as the BHA 10 is raised, the latch portions 28 and 30 engage and the latch between the BHA 10 and the reamer bit 22 releases at or near the same time so that effective support of the reamer bit can be transferred between the BHA 10 and the liner 34. At that point, as shown in
In an alternative embodiment, the BHA during the drilling operation is simply to unlatch the reamer bit from the BHA and let it sit at the bottom of the hole. The BHA 10 is then pulled out and the pilot bit 12 changed or whatever maintenance that was needed could be performed. In order to resume drilling, the BHA 10 is lowered back in the hole and it gets into alignment with the reamer 22 that was left at the bottom of the hole so that the two could be latched together to make more hole.
In yet another alternative embodiment latching can be provided either between the BHA 10 and the reamer bit 22 or between the reamer bit 22 and the liner 34.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below.
This application claims the benefit of U.S. Provisional Application No. 60/707,654, filed on Aug. 12, 2005.
Number | Name | Date | Kind |
---|---|---|---|
1391626 | Gilthorpe | Sep 1921 | A |
3190378 | Davey, Sr. | Jun 1965 | A |
3945444 | Knudson | Mar 1976 | A |
5284216 | Brungs et al. | Feb 1994 | A |
5472057 | Winfree | Dec 1995 | A |
5957224 | Ilomaki | Sep 1999 | A |
Number | Date | Country |
---|---|---|
2155540 | May 1973 | DE |
1006260 | Jun 2000 | EP |
WO02059448 | Aug 2002 | WO |
WO03001022 | Jan 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070034412 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
60707654 | Aug 2005 | US |