The present invention relates to a latching apparatus for an operating mechanism for an electrical switching apparatus, the operating mechanism being operatively connectable to the switching apparatus, the latching apparatus comprising a first member movable between at least one first position and at least one second position, in the first position the first member being adapted to lock a drive member of the operating mechanism in a locked position and a force of the drive member being applied to the first member, and in the second position the first member is adapted to release the drive member from the locked position. The latching apparatus further comprises a counter roller defining a first axis, at least in the first position the first member being adapted to bear against the counter roller, guiding means for guiding the movement of the first member, the guiding means being adapted to guide the movement of the first member in relation to the counter roller, and a trip member movable between at least one third position and at least one fourth position, in the third position the trip member being adapted to lock the first member in the first position, and in the fourth position the trip member is adapted to release the first member from the first position. In the first position the first member is adapted to distribute the force of the drive member, applied to the first member, to a first force component applied to the counter roller and a second force component applied to the trip member. Further, the present invention relates to an operating mechanism for an electrical switching apparatus, the operating mechanism comprising a latching apparatus of the above-mentioned sort.
In a power transmission or distribution network, electrical switching apparatuses are incorporated into the network to provide automatic protection in response to abnormal load conditions or to permit opening or closing (switching) of sections of the network. The switching apparatus may therefore be called upon to perform a number of different operations such as interruption of terminal faults or short line faults, interruption of small inductive currents, interruption of capacitive currents, out-of-phase switching or no-load switching, all of which operations are well known to a person skilled in the art.
In switching apparatuses the actual opening or closing operation is carried out by at least two contacts, which are movable in relation one another, where normally one is stationary and the other is mobile. The mobile contact is operated by an operating system which may comprise a latching apparatus, e.g. controlled by an actuator, and a mechanical system, where said mechanical system operatively connects the latching apparatus to the mobile contact of the switching apparatus.
EP 2 001 031-A1 discloses a latch assembly for an electrical switching apparatus operating mechanism.
US 2009/0050605-A1 describes a circuit breaker having an automatic release linkage.
U.S. Pat. No. 6,008,459 discloses a molded plastic current limiting circuit breaker including an operating mechanism and an actuator.
U.S. Pat. No. 5,713,459 describes a roller latching and release mechanism for electrical switching apparatus.
U.S. Pat. No. 3,810,051 discloses a circuit breaker trip and latch mechanism.
EP 2 246 869-A1 discloses a mechanical latching unit for a main drive unit for an electrical switching apparatus. The latching unit comprises a first roller movable between a first position and a second position, in the first position the first roller being adapted to lock a drive tooth of the main drive unit in a locked position and a force of the drive tooth being applied to the first roller. In the second position the first roller is adapted to release the drive tooth from the locked position. The latching unit also comprises a counter roller, and in at least the first position the first roller is adapted to bear against the counter roller. The latching unit further comprises guiding grooves, a carriage and a locking lever for guiding the movement of the first roller. In the first position the first roller is adapted to distribute the force of the drive tooth, applied to the first roller, to a primary force component applied to the counter roller and a secondary force component applied to the carriage.
Requirements for latching apparatuses, especially when used for electrical switching apparatuses, are high reliability, resistance to shock and overload conditions, resistance to large temperature ranges, high repeatability with lowest possible scatter, and short and adjustable reaction time and total mechanical operation time. Typically these requirements and operating conditions imply a complex structure and high quality and consequently costly system designs.
If these latching apparatuses are designed to meet low cost targets usually there have to be compromises in quality and/or performance.
One object of the present invention is thus to provide an improved latching apparatus. Another object of the present invention is to provide a latching apparatus that has a less complicated structure in relation to prior-art latching apparatuses. A further object of the present invention is to provide a latching apparatus that has high reliability and a short reaction/latching time.
At least one of the above-mentioned objects of the present invention is attained by providing a latching apparatus for an operating mechanism for an electrical switching apparatus, the operating mechanism being operatively connectable to the switching apparatus, the latching apparatus comprising
By the innovative first member and the guiding means of the latching apparatus as defined herein, a less complicated structure of the latching apparatus is attained, and a latching apparatus that has high reliability and a short reaction/latching time is provided. The innovative guiding means and first member provide for that the drive member is released from the locked position after a minimal distance of movement of the first member from the first position, contributing to a short reaction/latching time. The latching apparatus of the present invention uses only one force reduction stage with a minimal number of mechanical parts, whereas in prior-art latching apparatuses two or more force reduction stages are used. Only a small force is required to operate the trip member and move it from the third position to the fourth position in order to release the drive member, whereby the dimensions of an actuator for operating the trip member may be reduced. As a result of the present invention, the second force component applied to the trip member may amount to approximately 1% of the force of the drive member which is applied to the first member, whereby also approximately 1% of the force of the drive member is required to move the trip member, e.g. by means of an actuator. Further, a reduced effort to reset the latching apparatus to its locking position, i.e. when the first member is in the first position, is required, as only the first member and the trip member need to be reset. This allows for a lower scatter in reaction and operation time. By means of the present invention, the first member may be given a shape and design that is robust and resistant to temperature changes and is easily manufactured. By means of the present invention, the design and the performance of the latching apparatus are scaleable and easily adapted to various environments and applications. The first force component may be called a primary force component and the second force component may be called a secondary force component. By means of the present invention, an improved latching apparatus is attained. In EP 2 246 869A1, no part of the main roller, where the main roller bears against the drive tooth and the counter roller in the locked position, is guided in a direction toward the counter roller when the main roller is moved to release the drive tooth from the locked position.
The guiding means may be in the form of at least one guide. The guiding means are adapted to guide the movement of the first member in relation to the counter roller, i.e. the guiding means are arranged such that the first member is movable in relation to the counter roller. The trip member may be movable in relation to the first member between the third position and the fourth position. The trip member may be adapted to be operated by an actuator, e.g. an electrically operated actuator or an electromagnetic actuator, which may have an actuator coil.
Each of the above-mentioned first to fourth positions may be one or a plurality of positions, i.e. one, two or more positions.
The drive member is adapted to be movable in relation to the latching apparatus between at least one locked position and at least one released position. The drive member may be adapted to turn about a pivot axis, and thus, in the first position the first member may be adapted to block or prevent the drive member from turning about the pivot axis. The drive member, which may be in the form of a drive tooth, may be mounted to a drive unit, which in turn may comprise a rotary drive shaft arranged to transmit an actuating movement to the switching apparatus. When the drive member is released, the rotary drive shaft may be allowed to rotate about its axis and thereby transmit an actuating movement to the switching apparatus.
According to an advantageous embodiment of the latching apparatus according to the present invention, when guiding the first member from the first position to the second position, the guiding means are adapted to guide the first portion of the first member in the first direction that is substantially toward the first axis of the counter roller. The first member should be configured to be guided accordingly.
According to another advantageous embodiment of the latching apparatus according to the present invention, when guiding the first member from the first position to the second position, the guiding means are adapted to rotate the first member about an axis of rotation. Said axis of rotation may be substantially parallel to the first axis of the counter roller. Advantageously, the first portion of the first member may define said axis of rotation. A latching apparatus that has high reliability and a short reaction/latching time is thus provided.
According to a further advantageous embodiment of the latching apparatus according to the present invention, when guiding the first member from the first position to the second position, the guiding means are adapted to guide the first portion of the first member in the first direction so that the distance between the first portion of the first member and the first axis is reduced. The first member should be configured to be guided accordingly.
According to another advantageous embodiment of the latching apparatus according to the present invention, when guiding the first member from the first position to the second position, the guiding means are adapted to guide the first portion of the first member in the first direction that is substantially parallel to or substantially the same as the direction of the force of the drive member applied to the first member.
According to yet another advantageous embodiment of the latching apparatus according to the present invention, when guiding the first member from the first position to the second position, the guiding means are adapted to guide the first portion of the first member in the first direction that is substantially parallel to or substantially the same as the direction of the first force component. The first member should be configured to be guided accordingly.
According to still another advantageous embodiment of the latching apparatus according to the present invention, the first member has an outer surface, and the outer surface comprises a first surface portion, wherein when the first member is in the first position, the first surface portion is adapted to bear against the drive member, and the first portion of the first member comprises the first surface portion. By means of this embodiment, the above-mentioned positive effects are further enhanced. Advantageously, the first surface portion may be convex. By this embodiment, an efficient and advantageous contact surface for the drive member is provided, which provides for that the drive member is firmly locked in the locked position and also provides for a fast release of the drive member from the locked position. A latching apparatus that has high reliability and a short reaction/latching time is thus provided.
According to an advantageous embodiment of the latching apparatus according to the present invention, when guiding the first member from the first position to the second position, the guiding means are adapted to guide at least a second portion of the first member in a second direction different from the first direction. The first member should be configured to be guided accordingly. By this embodiment, the movement of the first member from the first position is further improved, and the release of the drive member from the locked position is further improved, contributing to a short reaction/latching time.
According to a further advantageous embodiment of the latching apparatus according to the present invention, when guiding the first member from the first position to the second position, the guiding means are adapted to guide the second portion of the first member in the second direction that is substantially parallel to or substantially the same as the direction of the second force component. By this embodiment, the movement of the first member from the first position is yet further improved, and the release of the drive member from the locked position is yet further improved, contributing to an improved reaction/latching time.
According to another advantageous embodiment of the latching apparatus according to the present invention, the first member has an outer surface which comprises a second surface portion, and when the first member is in the first position the second surface portion is adapted to bear against the counter roller, the second portion of the first member comprising the second surface portion. By means of this embodiment, the above-mentioned positive effects are further enhanced. Advantageously, the second surface portion may be convex. By this embodiment, an efficient and advantageous contact surface between the first member and the counter roller is provided, which provides for an efficient distribution of the force of the drive member to said first and second force components. A latching apparatus that has high reliability and a short reaction/latching time is thus provided.
According to still another advantageous embodiment of the latching apparatus according to the present invention, the trip member is adapted to lock the first member in the first position by bearing against the first member. By this embodiment, the trip member may be efficiently moved from the third position to the fourth position in order to release the first member from the first position.
According to yet another advantageous embodiment of the latching apparatus according to the present invention, the first member has an outer surface which comprises a third surface portion, the trip member being adapted to lock the first member in the first position by bearing against the third surface portion of the first member, and the second portion of the first member comprises the third surface portion. By this embodiment, the movement of the first member from the first position is further improved, and the release of the drive member from the locked position is further improved, contributing to a short reaction/latching time.
According to an advantageous embodiment of the latching apparatus according to the present invention, the guiding means and the first member are configured such that the magnitude of the second force component is less than 10% of the magnitude of the force of the drive member applied to the first member.
According to a further advantageous embodiment of the latching apparatus according to the present invention, the guiding means and the first member are configured such that the magnitude of the second force component is less than 5% of the magnitude of the force of the drive member applied to the first member, preferably less than 2% of the magnitude of the force of the drive member applied to the first member, more preferably, the guiding means and the first member are configured such that the magnitude of the second force component is about 1% of the magnitude of the force of the drive member applied to the first member.
The smaller the magnitude of the second force component in relation to the magnitude of the force of the drive member, the smaller force is required, e.g. by an actuator, to move the trip member to the fourth position and release the first member from the first position, and consequently, a smaller or less strong actuator may be used, which results in a low weight lathing apparatus that is less expensive.
According to another advantageous embodiment of the latching apparatus according to the present invention, the counter roller is rotatable about the first axis. By this embodiment, the movement of the first member from the first position is further improved, and the release of the drive member from the locked position is further improved, contributing to a short reaction/latching time. Further, by this embodiment, a further improved distribution of the force of the drive member to said first and second force components is provided. A latching apparatus that has high reliability and a short reaction/latching time is thus provided.
According to yet another advantageous embodiment of the latching apparatus according to the present invention, the counter roller has a circumferential outer surface, and at least in the first position the first member is adapted to bear against the outer surface of the counter roller.
According to still another advantageous embodiment of the latching apparatus according to the present invention, the guiding means comprise at least one guiding set comprising at least one guiding slot and at least one guiding member engaging the at least one guiding slot, and the at least one guiding slot and the at least one guiding member are movable in relation to one another. By this embodiment, efficient guiding means are provided which further enhance the above-mentioned positive effects. Advantageously, the first member and a housing of the latching apparatus, in relation to which the first member is movable, may be provided with the at least one guiding slot and the at least one guiding member. Advantageously, the guiding means may comprise two guiding sets each comprising at least one guiding slot and at least one guiding member. The latching apparatus may comprise a housing having two opposite walls, between which the first member is at least partially housed. The first housing wall and one side of the first member may then be provided with a first guiding set and the second housing wall and the other side of the first member may be provided with a second guiding set. The guiding member or the guiding slot may have a longitudinal extension in the direction toward the counter roller and/or substantially toward the first axis of the counter roller. By this embodiment, an efficient guiding of the first member is attained.
According to an advantageous embodiment of the latching apparatus according to the present invention, the guiding set comprises two guiding members that are spaced apart. By this embodiment, a further efficient guiding of the first member is attained. The guiding set may comprise two guiding slots that are spaced apart.
According to a further advantageous embodiment of the latching apparatus according to the present invention, the latching apparatus comprises a housing, and the first member is provided with the at least one guiding member and the housing defines the at least one guiding slot. Alternatively, the first member is provided with at least one guiding slot and the housing is provided the at least one guiding member. The housing may comprise two opposite walls between which the first member is provided. The counter roller and/or the trip member may be at least partially housed between the housing walls.
According to another advantageous embodiment of the latching apparatus according to the present invention, the trip member is rotatable about a second axis, and the trip member is adapted to rotate about the second axis between the third and fourth positions. By this embodiment, an efficient movement of the trip member and an efficient release of the first member from the first positions are provided. Alternatively, the trip member may be moved along an axis between the third and fourth positions. Various designs of the trip member are possible, and some alternatives are shown in the detailed description of embodiments.
According to yet another advantageous embodiment of the latching apparatus according to the present invention, the first axis and the second axis are substantially parallel to one another. By this embodiment, a compact design of the latching apparatus is provided.
According to still another advantageous embodiment of the latching apparatus according to the present invention, the latching apparatus comprises an actuator adapted to move the trip member from the third position to the fourth position. The actuator may be an electrically operated actuator or an electromagnetic actuator, which may have an actuator coil. However, other actuators are possible. Various sorts of actuators are known to the person skilled in the art. The trip member may be a separate part in relation to the actuator, and the actuator may have an operating arm, e.g. a swivel arm, adapted to control, e.g. push, the trip member. Alternatively, the trip member may be mounted to the actuator and the trip member may form the operating arm of the actuator. Other designs are also possible.
According to an advantageous embodiment of the latching apparatus according to the present invention, the latching apparatus comprises first reset means adapted to move the first member from the second position to the first position. By the present invention, the reset of the latching apparatus after a release of the drive member, to the initial state when the drive member is locked by the first member, is easily performed and made less complicated, where the uncomplicated reset of the first member to the first position is part of the reset of the latching apparatus. The first reset means may comprise first biasing means. The first biasing means may comprise a spring. By means of biasing means, e.g. a spring, the first member is efficiently reset to its first position. However, other reset means are possible.
According to a further advantageous embodiment of the latching apparatus according to the present invention, the latching apparatus comprises second reset means adapted to move the trip member from the fourth position to the third position. By the present invention, the reset of the latching apparatus after a release of the drive member, to the initial state when the drive member is locked by the first member, is easily performed and made less complicated, where the uncomplicated reset of the trip member to the third position is part of the reset of the latching apparatus. The second reset means may comprise second biasing means. The second biasing means may comprise a spring. By means of biasing means, e.g. a spring, the trip member is efficiently reset to its third position. However, other reset means are possible.
According to another advantageous embodiment of the latching apparatus according to the present invention, the first member has an outer surface which comprises a fourth surface portion that is concave. By this embodiment, the first member is provided with an efficient shape that facilitates the guiding of the first member. Advantageously, the fourth surface portion may be adapted to receive at least a portion of the trip member when the trip member is moved from the third position to the fourth position. When the trip member is in the fourth position, the trip member may be adapted to rest against the fourth surface portion. The fourth surface portion may form a recess together with two side walls, and when the trip member is in the fourth position, at least a portion of the trip member may be adapted to engage said recess. By this embodiment, an improved control of the trip member is provided.
At least one the above-mentioned objects of the present invention is also attained by an operating mechanism for an electrical switching apparatus, the operating mechanism being operatively connectable to the switching apparatus, and the operating mechanism comprises a latching apparatus and a drive member movable in relation in the latching apparatus between at least one locked position and at least one released position, wherein the latching apparatus comprises the features of any of the above-mentioned embodiments of the latching apparatus. Positive technical effects of the operating mechanism according to the present invention, and its embodiments, correspond to the above-mentioned technical effects mentioned in connection with the latching apparatus according to the present invention, and its embodiments. When the switching apparatus comprises a mobile or movable contact movable in relation to another contact, as mentioned above, the operating mechanism may be operatively connectable to the movable contact of the switching apparatus.
The above-mentioned object of the present invention may also be attained by an electrical switching apparatus comprising the above-mentioned operating mechanism. The electrical switching apparatus may have at least two contacts movable in relation to one another, and the operating mechanism may be operatively connected to a movable contact of said at least two contacts of the switching apparatus.
The above-mentioned features and embodiments of the latching apparatus and the operating mechanism, respectively, may be combined in various possible ways providing further advantageous embodiments.
Further advantageous embodiments of the latching apparatus and the operating mechanism, respectively, according to the present invention and further advantages with the present invention emerge from the detailed description of embodiments.
The present invention will now be described, for exemplary purposes, in more detail by way of embodiments and with reference to the enclosed drawings, in which:
Further, the operating mechanism is provided with a first embodiment of the latching apparatus 110 according to the present invention, which is also schematically shown in
In the first position the first member 118 is adapted to lock the drive member 106 of the operating mechanism in a locked position. In
In the second position the first member 118 is adapted to release the drive member 106 from the locked position. In
The latching apparatus 110 comprises a counter roller 120 defining a first axis 120, and at least in the first position the first member 118 is adapted to bear against the counter roller 120, i.e. the first member 118 is adapted to press against the counter roller 120, as illustrated in
With reference to
In the first position, as shown in
The latching apparatus 110 comprises guiding means for guiding the movement of the first member 118, and the guiding means are adapted to guide the movement of the first member 118 in relation to the counter roller 120. The force that moves the first member 118 and allows for the guiding means to guide the movement of the first member originates from the force of the drive member 106. When guiding the first member 118 from the first position to the second position, the guiding means are adapted to guide at least the first portion 142 of the first member 118 in a first direction toward the counter roller 122, and the first direction may be substantially toward the first axis 122 of the counter roller 120. When guiding the first member 118 from the first position to the second position, the guiding means may be adapted to guide the first portion 142 of the first member 118 in the first direction so that the distance between the first surface portion 148 of the first member 118 and the first axis 122 is reduced. In accordance with the herein illustrated embodiments of the latching apparatus 110, when guiding the first member 118 from the first position to the second position, the guiding means are adapted to guide the second portion 144 of the first member 118 in a second direction different from the first direction, and the second direction may be substantially parallel to or substantially the same as the direction of the second force component. The first member 118 is configured to be guided as disclosed above.
The guiding means and the first member 118 may be configured such that the magnitude of the second force component is less than 2% of the magnitude of the force of the drive member 106 applied to the first member 118. The guiding means and the first member 118 may be configured such that the magnitude of the second force component is about 1% of the magnitude of the force of the drive member 106 applied to the first member 118.
With reference to
With reference to
Initially, as shown in
With reference to
With reference to
To support the return of the trip member 126 to the third position and to satisfactory lock the first member 118 in the first position, a play may be provided between the first member 118 and the first leg 130 of the trip member 126 upon the return of the trip member 126 to the third position. To provide said play, the first member 118 may have a geometric shape that allows the first member 118 to move without changing the direction of the force between the outer surface 124 of the counter roller 120 and the first member 118 at the second surface portion 150. The second surface portion 150 may be curved about the axis 201 of the first guiding member 178 and may form an arc in relation to the axis 201 of the first guiding member 178 in a plane that is perpendicular to the first axis 122 of the counter roller 120. Consequently, the contact between the first member 118 and the outer surface 124 of the counter roller 120 may be unchanged at the second surface portion 150 when the first member 118 rotates about the axis 201 of the first guiding member 178. The first guiding slot 170 may be configured such that the first member 118 is adapted to be rotated about the axis 201 of the first guiding member 178 when the second portion 144 of the first member 118 is guided in the direction of the second guiding slot 172. By the non-circular shape of the first member 118, as shown in
With reference to
The main energy to drive the latching apparatus 110, 310 and its different stages is not provided by the actuator 134 but by the energy stored in the operating mechanism. With the exception of the first member 118, standard parts (off the shelf parts) may be used for the components of the latching apparatus. The first member 118 may be made by casting, machining or cutting. The housing walls 114, 116 may be made of a metal, a resistant polymer, or any other suitable material. The trip member 126 may be made by casting, machining or cutting, and may be made of a material having satisfactory properties, e.g. a metal, a resistant polymer etc.
The invention shall not be considered limited to the embodiments illustrated, but can be modified and altered in many ways by one skilled in the art, without departing from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10197279 | Dec 2010 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
1670088 | Walle | May 1928 | A |
3810051 | Walker et al. | May 1974 | A |
4845324 | Martin et al. | Jul 1989 | A |
5424701 | Castonguay et al. | Jun 1995 | A |
5713459 | Beck et al. | Feb 1998 | A |
6008459 | Faber et al. | Dec 1999 | A |
6853277 | Castonguay et al. | Feb 2005 | B2 |
20080237016 | Gibson et al. | Oct 2008 | A1 |
20090050605 | Ahn | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
0292841 | Nov 1988 | EP |
2001031 | Dec 2008 | EP |
2246869 | Nov 2010 | EP |
Entry |
---|
European Search Report Application No. EP 10 19 7279 Completed: May 23, 2011; Mailing Date: Jun. 1, 2011 5 pages. |
International Search Report and Written Opinion of the International Searching Authority Application No. PCT/EP2011/073316 Completed: Mar. 27, 2012; Mailing Date: Apr. 3, 2012 9 pages. |
Number | Date | Country | |
---|---|---|---|
20130285771 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2011/073316 | Dec 2011 | US |
Child | 13929063 | US |