The invention relates to electrical cable connector assemblies, and in particular to latching cable connector assemblies.
Electrical cable connectors are used in a variety of applications, including for interconnecting computer components. As an example, electrical cable connectors include Serial Advanced Technology Attachment (Serial ATA, or SATA) connectors, which are used to connect computer peripherals such as hard disk drives. Various other data cables and/or power cables can be used within computers.
In U.S. Pat. No. 6,860,750, Wu describes a cable end connector assembly for mating with a complementary connector, including an insulative housing, a number of contacts received in the insulative housing, a spacer mounted to a rear end of the insulative housing, a cable including a number of conductors electrically connecting with corresponding contacts, a cover over-molded with the insulative housing and the cable, and a locking member. The housing forms a pair of wing portions extending rearwardly therefrom. The cover defines a pair of passages to receive the wing portions. The locking member includes a retaining section secured with the insulative housing, a pushing section engaged with the pair of wing portions, and a pair of latch portions located close to the retaining section.
Some prior art designs, such as the one described by Wu, can exhibit limited reliability, and can be damaged by application of excessive external forces.
According to one aspect, a latching, self-releasing electrical cable end connector assembly includes a first connector housing coupled to a first set of electrical connectors, a latching spring mounted on the first housing, and a second connector housing coupled to a second set of electrical connectors. The latching spring comprises a base mounted on the housing, a U-shaped hinge structure extending upward from a frontal side of the base, a top movable plate situated generally above the base and flexibly coupled to the base through the hinge structure, and a release tab coupled to a back side of the top plate and extending generally rearwardly from the top plate. The top plate has a pair of laterally-spaced latching upward protrusions. Each latching protrusion has a front sloped surface facilitating an insertion of the latching spring into a latched position, and a back sloped surface facilitating a self-release of the latching spring from the latched position in response to a rearward pulling force. Pressing down the release tab lowers the latching protrusions to facilitate a release of the latching spring from the latched position. The second connector housing comprises a pair of latching depressions sized to receive the latching protrusions in the latched position. The second set of electrical connectors are electrically connected to the first set of electrical connectors when the latching spring is in the latched position.
According to another aspect, a cable connector latching spring includes a base, a U-shaped hinge structure extending upward from a frontal side of the base, a top movable plate situated generally above the base and flexibly coupled to the base through the hinge structure, and a release tab coupled to a back side of the top plate and extending generally rearwardly from the top plate. The top plate has at least one latching upward protrusions. The at least one latching protrusion has a front sloped surface facilitating an insertion of the latching spring into a latched position, and a back sloped surface facilitating a self-release of the latching spring from the latched position in response to a rearward pulling force. Pressing down the release tab lowers the at least one latching protrusion to facilitate a release of the latching spring from the latched position.
According to another aspect, a cable connector latching spring comprises a base, a U-shaped hinge structure extending upward from a frontal side of the base, a top movable plate situated generally above the base and flexibly coupled to the base through the hinge structure, and a release tab coupled to a back side of the top plate and extending generally rearwardly from the top plate. The U-shaped hinge structure comprising a pair of laterally-spaced U-shaped hinges separated by a central notch. The top plate has a pair of latching upward protrusions, each latching protrusion having a front sloped surface facilitating an insertion of the latching spring into a latched position. The release tab comprises a front, upward sloping section connected to the top plate, and a rear downward sloping section having a free rear end. Pressing down the release tab lowers the set of latching protrusions to facilitate a release of the latching spring from the latched position.
According to another aspect, a cable connection method includes sliding a pair of latching protrusions of a latching spring coupled to a first electrical connector into matching depressions formed in a second electrical connector to couple the first connector to the second connector in a latched position. Each of the latching protrusions has a front sloped surface facilitating an insertion of the latching spring into the latched position, and a back sloped surface facilitating a self-release of the latching spring from the latched position in response to a rearward pulling force. The method further includes disconnecting the first connector and the second connector alternatively by pulling the first connector and the second connector apart by depressing a release tab to lower the pair of latching protrusions out of the matching depressions, and pulling the first connector and the second connector apart without depressing the release tab to self-release the latching spring from the latched position. Depressing the release tab causes a flexure of a U-shaped hinge structure connecting the release tab and latching protrusions to a latching spring base mounted on a housing of the first connector.
The foregoing aspects and advantages of the present invention will become better understood upon reading the following detailed description and upon reference to the drawings where:
In the following description, it is understood that any recitation of an element refers to at least one element. A set of elements includes one or more elements. A plurality of elements includes two or more elements. Each recited element/structure can be formed by or be part of a monolithic structure, or be formed from multiple distinct structures. A recitation of two distinct elements does not exclude the two elements forming different parts of a single monolithic structure. Directions such as upward and downward are relative directions, and not necessarily defined with respect to the direction of gravity. A sloped surface may have linearly sloped and/or curved sloped portions.
Latching spring 30 comprises a bottom mounting base plate 52, a hinge structure 54 comprising a pair of curved, U-shaped hinges 54a–b extending upward from the front side of base plate 52, and a top plate 58 extending above and parallel to mounting plate 52, backward from hinges 54a–b. Release tab 32 extends generally upward and backward from the rear of top plate 58. Release tab 32 includes an upward sloping section 62 extending upward and backward from top plate 58, a top middle section 64 situated behind section 62, and a downward-sloping rear section 68 situated behind middle section 64 and having a free rear end 69. The vertical bulge formed by release tab 32 provides users with easy access to release tab 32, while the backward-sloping geometry of rear section 68 improves the comfort of a user's application of pressure to release tab 32. A flat-edge release tab may be less comfortable to a user's finger.
Hinges 54a–b are laterally-spaced with respect to each other, and are separated by a central notch (gap) 72. The width of gap 72 can be used to control the spring constant of latching spring 30. A pair of vertical-movement restriction members 60a–b extend rearwardly from the back of top plate 58, along the two lateral sides of release tab 32. Vertical restriction members 60a–b fit under a corresponding housing cover structure 61, as shown in
Each latching protrusion 34a–b is sloped bi-directionally, front and back, as shown in
As shown in
In some embodiments, latching protrusions 34a–b have a height on the order of mm, for example about 1 mm, and a width on the order of mm, for example about 1 mm. The overall width of latching spring 30 can be on the order of 1 cm. The height of hinges 54a–b can be on the order of 1 mm, with their radius of curvature equal to about half the height. Release tab 32 can extend upward from top plate 58 by a distance on the order of several mm. The length of bottom base plate 52 can be on the order of several mm.
In some embodiments, the assembly formed by connectors 20, 40 has a latching spring self-release force between about 25 N and 35 N, for example about 30 N. The self-release force is the force needed to self-disconnect connectors 20, 40 when release tab 32 is not depressed. The self-release force is preferably chosen to avoid damage to the connectors or other components as a result of excessive pulling forces. A force of 30 N corresponds to a load of about 6.5 lbs. In some embodiments, the latch retention force for connectors 20, 40 is between 20 N and 30 N, for example about 25 N. The latch retention force is an applied force that, in a repeatable manner, does not cause a self-release of connectors 20, 40. For example, a given latch retention force can be tested over 50 mating cycles to ensure the connectors do not self-release in response to application of the latch-retention force.
The exemplary U-shaped hinge structures described above allow reliable operation of the latching assembly over many connection cycles, by reducing undesirable material fatigue. The curved surface of the U-shape reduces the maximal localized strain to which the hinge is exposed. The flexing tension is borne mostly by the latching spring itself, rather than transferred to a softer outer housing material such as a thermoplastic. The width of the notch between the two hinges can be chosen to achieve a desired spring constant for the latching spring. The bi-directionally-sloped latching protrusions allow the controlled connection and self-release of the two connectors in response to either a user depressing the release tab, or in response to a sufficient pulling force even when the release tab is not pressed.
It will be clear to one skilled in the art that the above embodiments may be altered in many ways without departing from the scope of the invention. For example, the spring base may include apertures or other discontinuities formed therein, and need not be uniformly planar. The top plate and release tab may form different parts of a continuously-curved surface, and need not have a sharply-defined interface or inflection line. The latching protrusion(s) can be formed by solid materials rather than a cantilever or shell structure. In some embodiments, the latching protrusions need not include a back sloped surface; a back surface can then be vertical, or even acutely-angled with respect to the longitudinal direction. Accordingly, the scope of the invention should be determined by the following claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3933406 | Cameron et al. | Jan 1976 | A |
4621885 | Szczesny et al. | Nov 1986 | A |
4778411 | Rudy et al. | Oct 1988 | A |
5230636 | Masuda et al. | Jul 1993 | A |
5334041 | Anbo et al. | Aug 1994 | A |
5340329 | Hirai | Aug 1994 | A |
6146205 | Lai | Nov 2000 | A |
6217365 | Shinozaki | Apr 2001 | B1 |
6325656 | Fukuda et al. | Dec 2001 | B1 |
6341975 | Takatsuki et al. | Jan 2002 | B1 |
6343948 | Nutzel | Feb 2002 | B1 |
6485315 | Hwang | Nov 2002 | B1 |
6565383 | Wu | May 2003 | B1 |
6585537 | Lee | Jul 2003 | B1 |
6592392 | Po-Heng | Jul 2003 | B1 |
6655979 | Lee | Dec 2003 | B1 |
6736663 | Lee et al. | May 2004 | B1 |
6799986 | Igarashi et al. | Oct 2004 | B1 |
6821139 | Wu | Nov 2004 | B1 |
6830472 | Wu | Dec 2004 | B1 |
6835087 | Yamawaki | Dec 2004 | B1 |
6848932 | Bowling et al. | Feb 2005 | B1 |
6860750 | Wu | Mar 2005 | B1 |
6890205 | Wu | May 2005 | B1 |
6951474 | Wu | Oct 2005 | B1 |
20050101176 | Kachlic | May 2005 | A1 |