The invention relates to systems for making electrical connections in harsh environments. More particularly, the present invention relates to a latchable rotary electrical connector system which makes and maintains a series of electrical connections.
Connector systems that either maintain electrical continuity while a first connector member may be rotatable with respect to a second connector member or allow for rotation while engaging or disengaging of connector members are useful in down hole assembly applications in resource extraction, marine applications and other applications involving operation of electrical equipment in harsh conditions. In operation it is known that a circular contact may be employed around or within a connector member to contact a mating member having a non-circular contact.
Existing connectors often use a circular contact around the outer surface of the male connector rod or probe and a circular contact around the interior surface of the receiver or female connector to transfer a signal through the connector. An example of such a contact is described in U.S. Pat. No. 5,389,003 (incorporated herein by reference in its entirety) which discloses a wireline wet connection between receivers and probes. A conducting ring consists of a bow spring element wrapped about a conductive cylinder and bowed outwardly to make positive pressure electrical contact with a contact ring embedded in the insulative body, and a conductive inner spring element captive within the inner diameter of the receiver.
U.S. Pat. No. 5,468,153 (incorporated herein by reference in its entirety) discloses a rotatable electrical connector. A mandrel includes an enlarged hollow cylindrical head with circumferential grooves into which beryllium copper wiper springs are mounted so as to contact the interior of the housing. A brass head also has two circumferential grooves into which beryllium copper wiper springs are mounted. Continuous electric contact on the “hot wire” of the wireline is maintained between a rotor and stator through the beryllium copper wiper springs which continuously provide approximately 100 or more electrical contact points between the mating surfaces. Continuous electric contact of the “ground” is similarly maintained between the head of the mandrel and the upper housing by the beryllium copper wiper springs.
U.S. Pat. No. 5,820,416 (incorporated herein by reference in its entirety) discloses a multiple contact wet connector that includes a probe assembly having a nose portion that removably fits within an axial cavity in a receiver assembly. The receiver is constructed to hold and maintain the relative longitudinal position of a circular spring contact. In an alternative embodiment, the circular spring contacts are affixed on three sides in the probe electrical contact which extends to the surface of the probe. Use of a circular spring in such a channel on a surface-exposed contact as either the receiver or probe contact is disclosed.
U.S. Pat. No. 5,927,402 and U.S. Pat. No. 5,967,816 (each of which is incorporated herein by reference in its entirety) disclose a receiver assembly having a series of receiver contacts disposed about a common axis. Each contact is machined from a single piece of electrically conductive material and has a sleeve portion with eight extending fingers. The fingers are shaped to bow radially inward, in other words to have, from sleeve portion to a distal end, a first portion that extends radially inward and a second portion that extends radially outward, forming a radially innermost portion with a contact length of about 0.150 inch. By machining contact from a single piece of stock, the fingers, in their relaxed state as shown, have no residual bending stresses that tend to reduce their fatigue resistance.
U.S. Pat. No. 6,439,932 (incorporated herein by reference in its entirety) discloses a multiple contact connector having a receiver and a probe. The receiver has conductor rings, or contact rings embedded in the inner surface of an insulator at predetermined unique axial spacings. The probe has contact rings embedded within its outer surface corresponding axially to the receptacle contact rings.
U.S. Pat. No. 3,060,417 (incorporated herein by reference in its entirety) discloses a conical connector with circular brushes and rings in a system of fire-detectors within an aircraft. This connector is static, meaning that when in operation, they do not rotate one against the other. The ring configuration is meant to permit the electrical connecting of two components by screwing them together, which necessitated (in this design) connectors which could be rotated in relation to each other during assembly. The connector has a male conical end the outer surface of which has grooves with a metallic feature each connected to an external electronic, and in each groove is slidably positioned a metallic split ring in contact, when positioned, with the metallic feature. The female mating part (a conical receptacle) has deployed about its inner surface inner contact strips which touch the split rings when the male and female parts or screwed together for assembly. The conical nature of the parts is meant to compress the split rings against the contact strips to make and hold a good electrical connection, yet provide ease of disassembly and assembly. The connector is static in the sense that it does not rotate when in use, but rather is held tight, one mating part static against the other. The connector is meant for deployment in fire-detection systems on aircraft requiring a robust but refittable connector system to easily assemble, disassemble and check, and reassemble a network of longitudinally spaced thermistor-based temperature sensors. The connector is not meant for harsh environments, or to maintain connection while its parts rotate in relation to each other during normal operation.
U.S. Pat. No. 3,665,509 (incorporated herein by reference in its entirety) provides for an electrical connector set comprising a conical male connector and a mating conical receptacle to reliably and safely make electrical connections at great depths underwater. The male plug has contact rings deployed around its outer surface, perpendicular to its axis, and the female receptacle has connecting surfaces which match and correspond to the contact rings when the plug is seated in the receptacle. The male plug also has means to provide vacuum pressure differentials to the interface of the male and female components to assist them in mating, seating, sealing and maintaining their mated position. The plug, once seated, does not rotate in the socket. This device is meant to provide a multi-trace electrical connection to a salvage pontoon which may be placed, seated, and secured in a static position sealed from intrusion of seawater, by a pressure differential introduced by lowering the fluid pressure in the space between the male and female components to a pressure below the ambient fluid pressure in the deep water within which the device is submerged when used.
U.S. Pat. No. 7,131,844 (incorporated herein by reference in its entirety) discloses a dynamic rotary electrical connector for use in applications such as providing electrical connections between a static device to wires within a cable on a rotating reel. It provides a series of flat washer-like metallic contact surfaces of consecutively smaller outer and inner diameter placed on a non-conducting circular body with increasingly smaller steps (from one end to the other), each step meant to hold one washer-like contact surface. The contact surfaces are connected to electrical traces within the stepped body, which is mounted to a fixture at the axis of a reel, with the contact surfaces facing the reel. A second part, holding brushes which are each sprung to be held in contact with a matching washer-like contact ring is mounted to the cable reel on the side of the reel facing the stepped body so that the brushes are biased to contact their matching contact ring and provide electrical connection from the static device through the stepped body's traces to the contact rings then to the brushes and from each brush to a wire within the cable for which the reel is made. The connector system is generally open to the environment.
U.S. Pat. No. 3,193,636 (incorporated herein by reference in its entirety) describes a rotatable multiple-lead electrical connector with an essentially conical male plug with circumferential connector ring contacts embedded into the plug's outer surface, each shaped in cross-section as a “W”; and a matching conical female receptacle with internal circumferentially mating connectors comprised of multiple spring contact arms shaped in cross-section roughly as a “V”, to engage the “V” shape with the “W” shape, so that the connector rings form a mechanism to retain male plug in the receptacle. When engaged, the male connector rings each connect with a mating spring-ring in the female receptacle. Electrical signals are provided to the female receptacle by wires within the non-conductive body of the receptacle affixed to the “V” shaped embedded spring contact arms, and to the male plug by wires through the plug's body and soldered to each “W” shaped ring connector. Further, each ring connector and each set of contact arms may be split into radial segments, each segment with its own electrical lead; in this way, partial rotation of the engaged plug or socket will change the electrical connection (from one set of mated radial ring segments to another set, on each of the male and female elements).
U.S. Pat. No. 7,052,297 and PCT Publication No. WO 2006/025899 (each of which is incorporated herein by reference in its entirety) disclose a rotary connector with removable/refittable contacts. A roughly cylindrical male plug is built-up of alternating insulator and conductor rings stacked on a central core which is a metal rod covered with an insulating layer. Wring is provided to each connector ring by passing through each previously-stacked insulator and conductor ring. A mating receptacle is provided with conductors spaced within its cavity at circumferences spaced to match the spacing of the conductor rings on the plug, when assembled. Electrical ground is provided through the core's metal rod to a connector on the plug's tip end. The connectors either on the male plug's probe or within the receptacle's body are made of a springy, elastic circular contact which, when the plug is engaged and contacts are made, touches each of a conductor ring and female circumferential conductor in at least one spot to make electrical connection. The connection is kept when the plug is engaged whether or not the plug is rotated within the receptacle. The connector requires holes to be made in each conductor and insulator ring prior to assembly, and then the alignment of each hole for insertion of electrical leads, which must be insulated since they pass through conductor rings to which they are not meant to connect. When any conductor or insulator ring rotates during use, there is a tendency for the holes through which the leads pass to misalign. Each time that occurs, a cutting stress is placed on the leads' insulator layer, and eventually, the lead will either become uninsulated at that point of contact with a conductor, or be severed. Multiple holes are required to maintain constant alignment, and misalignment of one ring will cause multiple lead failures.
U.S. Pat. No. 8,636,549 (incorporated herein by reference in its entirety) discloses a contact bayonet electrical connector system including a male component with a small cylindrical tip and a larger conical middle part and a female component adapted to receive the male component and make electrical connections via electrically conducting rings. The conical middle part of the male component has a strict conical shape with electrically conducting rings and insulating rings forming a consistent slope. It is indicated that, by virtue of the conical structure, during the insertion and removal of the male component from the female component none of the traces within the conical section slide against or are connected with any of the other traces, and when the connection is made the connection is made properly between all circuits roughly simultaneously.
U.S. Pat. No. 3,885,849 (incorporated herein by reference in entirety) discloses an electrical connector consisting of molded male and female inserts. One of the inserts is provided with a locking mechanism based on a spring latch configured to project into an opening on the opposing insert. The latching mechanism is disengaged by pressing on the spring latch and pulling on the insert containing the spring latch.
U.S. Pat. No. 3,050,658 (incorporated herein by reference in entirety) discloses a detachable shielded waterproof electrical connector system appropriate for shielding a spark plug lead. The system includes two parts configured to engage each other using a lug and groove engagement.
U.S. Pat. No. 3,552,777 (incorporated herein by reference in entirety) discloses a self-locking threaded electrical connector with one of the two mating sections of the connector having indentations or holes and the other connector having balls that fit into the holes as the two parts are threaded.
U.S. Pat. No. 3,593,415 (incorporated herein by reference in entirety) discloses a method of assembling electrical cables underwater by threading them together in a work area free of water provided by a membrane.
U.S. Pat. No. 4,178,051 (incorporated herein by reference in entirety) discloses a latch/eject pin header arrangement appropriate for connection of pin terminals in a mating connector.
U.S. Pat. No. 5,240,437 (incorporated herein by reference in entirety) discloses a guide wire assembly including a guide wire with first and second conductors extending along its length. The assembly includes a male connector with a sleeve protecting a conductive core. The corresponding female connector has an inner conductive grip portion with a cylindrical recess for accepting the conductive core in frictional contact.
U.S. Pat. No. 5,358,409 (incorporated herein by reference in its entirety) discloses a rotary connector for a flexible elongate member having electrical properties and having a proximal extremity with at least first and second conductive sleeves provided thereon. An outer housing is provided which has a bore therein. First and second spaced-apart conductive disks are mounted in the bore. The conductive disks are sized so that the conductive sleeves can extend therethrough and make electrical contact therewith. Leads are coupled to the conductive disks. A gripping mechanism is carried by the housing for retaining the proximal extremity of the flexible elongate member in the housing. The gripping mechanism is a push-button grip mechanism located at a distance from the conductive disks.
U.S. Pat. No. 6,033,250 (incorporated herein by reference in its entirety) discloses an electrical connector which is capable of establishing both electrical and mechanical connection between a wiring harness and a printed circuit board. The electrical connector has a header being mechanically secured to the printed circuit and a plug connected at the end of a wiring harness. A latch is disposed along an edge of the plug and has a main body from which a latch arm is bent at a right angle and extends along a central axis from the body to a free end. The free end is defined by a securing portion being slightly larger than the remainder of the latch arm. The securing portion has a locking projection extending therefrom at the free end. A spring arm also extends at an acute angle from the body angle and towards the latch arm. The free end of the spring arm is profiled to engage an outer surface of the plug housing so that when a force is applied to the body it will cause deflection of the spring arm to generate a motion of the latch arm along the central axis.
U.S. Pat. No. 6,183,293 (incorporated herein by reference in its entirety) discloses an electrical connector for mounting in an opening in a wall is provided, where the connector includes connector and clamp elements that can be threaded together with a large helical angle thread such as a bayonet thread, for resisting loosening. The connector element has a holder ring and at least one latch member mounted on the holder ring. The clamp element has a latch ring which surrounds the holder ring and that has a plurality of radial projections. The latch member has a fixed proximal end, and has a distal end biased to a position in the path of the projections as an element turns. The latch member can be a resilient beam whose distal end has a radially outer surface that is easily deflected inwardly during turning in a direction to tighten the threads. The distal end has a tip with a surface that greatly resists turning of the elements in a direction to loosen the threaded connection. The latch member is preferably an elastomerically deflectable beam.
U.S. Pat. No. 8,033,833 (incorporated herein by reference in its entirety) discloses a rotatable connector including a first rotating member and a second rotating member rotatably coupled to each other. The first rotating member includes a first surface and an opposite second surface. The first surface forms first pins, and the second surface forms fixing bodies each comprising a first portion and a second portion. The first portion and the second portion cooperatively define a latching groove therebetween. The second rotating member includes a third surface opposing the first rotating member and an opposite fourth surface. The third surface forms circular latching bodies rotatably retained within the latching groove. The fourth surface forms second pins. The fixing bodies and the latching bodies cooperatively define cavities fully filled in electrical conductive material. The wires that are respectively fixed to the first pins and the second pins are capable of being electrically connected by the electrical conductive material.
A pair of products named “10-conductor male” and “10-conductor female” (https://web.archive.org/web/20150924070401/http://www.canyon-mfg.com/connectors, incorporated herein by reference in its entirety) comprise a rotatable connector system marketed by Canyon Manufacturing Services Inc. (Houston, Tex., USA). The male conductor has three portions of different diameters with a slope-step separating the smallest diameter portion from the middle diameter portion and a slope step separating middle dimeter portion from the large diameter portion. Conducting contacts are provided on each of the male portions.
There remain a number of problems to be solved in efforts to improve systems for making electrical connections in harsh environments.
One aspect of the invention is a rotary connector device for making a plurality of electrical connections in a mating arrangement between two components, the device comprising: a male component with a large diameter end part transitioning to a slope-stepped part having a surface defined by outer sidewalls of alternating male conducting rings and male insulating rings, wherein each of the male conducting rings is connectable to an electrical line; and a female component having a central bore configured to retain a series of alternating female conductor rings and insulating rings, wherein each of the female conducting rings makes direct or indirect conductive contact with a corresponding male conducting ring of the male conducting rings when the mating arrangement is made, wherein each of the female conducting rings is connectable to an electrical line, wherein the male conducting rings and the female conducting rings, or separate conducting components associated therewith, have contact surfaces with complementary shapes that engage each other in a latching mechanism when the mating arrangement is made.
In some embodiments, the complementary shapes of the male conducting rings and the female conducting rings are provided by indentations in the male conducting rings and protrusions in the female conducting rings which are substantially complementary in shape to the indentations.
In some embodiments, the separate conducting components of the female conducting rings are conducting springs held within openings with circumferential cavities in the female conducting rings.
In some embodiments, the conducting springs are canted coil springs.
In some embodiments, the circumferential cavities are each defined by a five-sided polygonal inner sidewall defined by two opposed vertical walls connected to a horizontal floor by two angled walls.
In some embodiments, the male conducting rings each have circumferential indentations and the conducting springs provide convex surfaces complementary to the indentations of the male conducting rings, wherein mating of the convex surfaces to the indentations provides a compression force for the latching mechanism.
In some embodiments, the central bore is non-circular and the female conducting rings and female insulating rings are non-circular.
In some embodiments, the central bore is stadium-shaped and the female conducting rings and female insulating rings are stadium-shaped.
In some embodiments, the central bore has a sidewall with at least one transverse groove formed therein, for providing a channel for application of an adhesive for fixing the female conducting rings and female insulating rings in place during manufacture of the female component.
In some embodiments, the female conducting rings and the female insulating rings have outer slots providing passages for a plurality of electrical lines.
In some embodiments, the male component has a conducting extension configured to enter a matched recess in an insulating ring at the central bore's back end, wherein entry of the conducting extension into the matched recess serves to centralize the male component to provide consistent circumferential contact of the male conducting rings with corresponding female conducting springs.
In some embodiments, the conducting extension has a frustoconical head portion and an indentation for conductively latching to a corresponding female conducting ring.
In some embodiments, the plurality of electrical connections is 10 separate electrical connections which are made via a combination of 9 male conducting rings and the conducting extension with 10 corresponding female conducting rings.
In some embodiments, the male component has an outer surface which includes a cylindrical portion with one end adjacent the conducting extension and its other end adjacent to the slope-stepped part.
In some embodiments, the slope-stepped part is formed of two slope-stepped portions, each having a different overall slope.
Another aspect of the invention is a rotary connector device for making a plurality of electrical connections in a mating arrangement between two components, the device comprising: a male component having an underlying body for holding a series of alternating male conducting rings and male insulating rings, the outer sidewalls of the male conducting rings and insulating rings providing an outer surface defining a large diameter end part transitioning to a slope-stepped part; and a female component having a central bore configured to retain a series of alternating female conductor rings and insulating rings, wherein each of the female conducting rings makes direct or indirect conductive contact with a corresponding male conducting ring of the male conducting rings when the mating arrangement is made, wherein each of the female conducting rings is connectable to an electrical line, wherein the male conducting rings and the female conducting rings, or separate conducting components associated therewith, have contact surfaces with complementary shapes that engage each other in a latching mechanism when the mating arrangement is made.
In some embodiments, the complementary shapes of the male conducting rings and the female conducting rings are provided by indentations in the male conducting rings and protrusions in the female conducting rings which are substantially complementary in shape to the indentations.
In some embodiments, the separate conducting components of the female conducting rings are conducting springs held within openings with circumferential cavities in the female conducting rings.
In some embodiments, the conducting springs are canted coil springs.
In some embodiments, the circumferential cavities are each defined by a five-sided polygonal inner sidewall defined by two opposed vertical walls connected to a horizontal floor by two angled walls.
In some embodiments, the male conducting rings each have circumferential indentations and the conducting springs provide convex surfaces complementary to the indentations of the male conducting rings, wherein mating of the convex surfaces to the indentations provides a compression force for the latching mechanism.
In some embodiments, the central bore is non-circular and the female conducting rings and female insulating rings are non-circular.
In some embodiments, the central bore is stadium-shaped and the female conducting rings and female insulating rings are stadium-shaped.
In some embodiments, the central bore has a sidewall with at least one transverse groove formed therein, for providing a channel for application of an adhesive for fixing the female conducting rings and female insulating rings in place during manufacture of the female component.
In some embodiments, the female conducting rings and the female insulating rings have outer slots providing passages for a plurality of electrical lines.
In some embodiments, the male component has a conducting extension configured to enter a matched recess in an insulating ring at the central bore's back end, wherein entry of the conducting extension into the matched recess serves to centralize the male component to provide consistent circumferential contact of the male conducting rings with corresponding female conducting springs.
In some embodiments, the conducting extension has a frustoconical head portion and an indentation for conductively latching to a corresponding female conducting ring.
In some embodiments, the plurality of electrical connections is 10 separate electrical connections which are made via a combination of 9 male conducting rings and the conducting extension with 10 corresponding female conducting rings.
In some embodiments, the male component has an outer surface which includes a cylindrical portion with one end adjacent the conducting extension and its other end adjacent to the slope-stepped part.
In some embodiments, the slope-stepped part is formed of two slope-stepped portions, each having different slopes formed by the male insulating rings.
In some embodiments, the underlying body of the male component is defined by a plurality of channels for separately holding wires for making the electrical connections.
Various objects, features and advantages of the invention will be apparent from the following description of particular embodiments of the invention, as illustrated in the accompanying drawings. The drawings are not necessarily to scale in all cases. Instead emphasis is being placed upon illustrating the principles of various embodiments of the invention. Similar reference numerals indicate similar components.
As described above, a number of electrical connectors have been designed for use in harsh environments where a plurality of electrical connections is required to provide high currents and low resistance. The harsh conditions encountered may include high temperatures, significant vibrations and contact with or immersion in liquids.
Problems encountered with existing electrical connector devices include damage caused by high temperatures, repeated assembly/disassembly iterations causing premature failures, intermittent connections from poorly aligned mating surfaces resulting from segmented construction, and poor mechanical tolerances. Inadequate waterproofing and foreign gas or liquid exposure damages as well as extended period vibration also cause premature failures. Assembly of these existing connector devices tends to be labor-intensive with numerous parts and process steps. In many cases, an assembled connector device is inserted into an auxiliary housing which is held in compression to keep the two connector halves together under vibration. Connection spring material, gold plating, and material selection have been used to improve connector longevity. Manual assembly has been a problem that increases the costs of existing connector devices.
The connector device of the present invention has been designed to address a number of the problems encountered with existing connector devices, by providing a perpendicular 360 degree mating surface in a slope-stepped contact design. Complementary electrical contact surfaces between the male and female components are shaped to cooperate in providing a latching mechanism to secure the connector in an alignment suitable to hold the connector concentrically in place and minimize resonant harmonics during vibration by maintaining a stabilized connection along the center axis. The addition of seals keeps out foreign particles and liquids. Assembly time has been improved using a small part count, integrated components, simpler machining, and a simpler assembly process.
As used herein, the term “slope-stepped” is used to describe a shape formed of a sloped surface joining a relatively flat surface or an indented or concave surface.
As used herein, the term “ball detent” refers to a mechanical arrangement used to hold a moving part in a fixed position relative to another part. The ball detent arrangement is provided by an indentation, concave surface or hole into which part of a rounded component drops to hold the parts in the fixed position relative to each other.
As used herein, the term “ring” refers to a rounded part with a central opening. The ring need not be strictly circular. In preferred embodiments described herein, the ring is elliptical, ovoid or stadium-shaped with a central circular opening.
As used herein, the term “complementary” refers to a relationship between parts which combine to form a complement, which in the present invention is a combination of surfaces of separate parts which form a latched arrangement.
Various aspects of the invention will now be described with reference to the figures. For the purposes of illustration, components depicted in the figures are not necessarily drawn to scale. Instead, emphasis is placed on highlighting the various contributions of the components to the functionality of various aspects of the invention. A number of possible alternative features are introduced during the course of this description. It is to be understood that, according to the knowledge and judgment of persons skilled in the art, such alternative features may be substituted in various combinations to arrive at different embodiments of the present invention.
In general terms, the device of the present invention includes a female component and a male component configured to make a plurality of electrical connections when these two components are mated. In order to make these electrical connections, a series of electrical leads are connected to feed-through connectors at the back ends of the two components according to known arrangements. The electrical leads pass through the bodies of the two components and make contact with electrically conducting rings. When the components are in the mated arrangement, the electrically rings of the male component make either direct or indirect conducting contact with the electrically conducting rings of the female component, thereby forming a connection which allows electrical current to flow across the device.
The connector device of the present invention, which includes a generally cylindrical slope-stepped male component, was designed to be mated during rotation and is not damaged by rotation. The connector integrates a latching mechanism which may be described as similar to a mechanical “ball detent” mechanism in which a rounded protrusion on one component drops into a hole or depression in a second component to connect the two components. The connector device of the present invention provides a positive substantially perpendicular electrical connection with mechanical resistance to prevent disconnection.
Uses in industrial applications include aeronautics, plenum cables, energy plants, telemetry cables, hydrocarbon production, and anywhere a reliable low maintenance connection is required with high current, low resistance, high reliability in harsh environments, as well as any application requiring blind mating without a mechanical bayonet of twist escutcheon. Underwater connections are possible with provision of existing external pressure rated protective housings.
A first embodiment of the connector device of the invention will now be described with reference to
Referring now to
In
Additional features of the assembly of the female component 100 and the male component 200 are shown in cross section in
Cross sectional views of the body 102 of the female component 100 are shown in
Shown in
Alternative embodiments employ a female bore with a different shape which preferably is not strictly circular. Having a non-circular bore prevents rotation of the conducting and insulating rings held therewithin. Alternative bore shapes thus may include oval-shaped bores, elliptical-shaped bores, square bores and polygonal shaped bores.
Turning now to
Returning now to
In certain embodiments, the coil spring is a canted coil spring. One example of a canted coil spring design is the Bal Spring™ canted coil spring manufactured by Bal Seal Engineering Inc. of Foothills Ranch, Calif., USA; http://www.balseal.com/springs, incorporated herein by reference in its entirety). The spring's independent coils serve as multiple contact points for optimal conductivity and provide consistent reliable connections under shock and vibrations and also provide a means for mechanically fastening one part to another with precisely controllable insertion and removal forces.
Features of the male component are shown in
A second embodiment of the connector device of the invention will now be described with reference to
Referring now to
The primary difference in embodiment 2 relative to embodiment 1 relates to the shape of the outer surface of the male component 400 of embodiment 2, which requires complementary fitting against the insulating rings and conducting rings of the female component 300. This primary difference is conveniently provided by fitting the male component 400 with a series of conducting rings and insulating rings with different relative dimensions than those of embodiment 1. It follows that the series of conducting rings and insulating rings of the female component 300 which are configured to make contact with the conducting rings and insulating rings of the male component 400 must have different relative dimensions than those of embodiment 1, as described hereinbelow. Otherwise, all of the main structural support components of the female component 300 and the male component 400 are substantially identical and therefore need not be described in detail in this section.
In
Shown in
As described above for embodiment 1, alternative embodiments employ a female bore with a different shape which preferably is not strictly circular. Having a non-circular bore discourages rotation of the conducting and insulating rings held therewithin. Alternative bore shapes thus may include oval-shaped bores, elliptical-shaped bores and polygonal shaped bores.
The other features of the conducting rings 331, 332, 333, 334, 335, 336, 337, 338, 339a and 339b are similar to the features illustrated in
Features of the male component are shown in
An alternative conducting extension 460 is illustrated in
It is to be understood that the male insulator rings of embodiment 2 differ from those of embodiment 1 with respect to their diameters and degree of slope (to form the slopes of the slope-stepped portions). The male conductor rings differ from those of embodiment 1 with respect to their diameters. As such, specific figures of the male insulating and conducting rings similar to those of
A side elevation view of the connected female 300 and male 400 components is shown in
The cross section of
In
Examples of the main manufacturing steps employed in the production of a general embodiment of the device of the present invention are described below. Additional steps may be included if deemed advantageous according to the judgement of the person skilled in the art.
Female Component—
The body of the female component is produced by injection molding according to conventional methods. In alternative embodiments, the body of the female component is produced by 3D-printing methods. Each of the ten insulated wires of the female component is cut to a length which allows it to extend from one of the female conducting rings through the bore to the back end of the female connector. In embodiments where a high pressure feed through connector is not required, each wire is cut to extend 12 inches past the end of the female component.
Both ends of each wire are tinned and soldered using high temperature solder. For connection of each wire to its corresponding female conducting ring, the wire is placed in the outer groove of a preheated corresponding conductor ring and solder is applied until it flows and forms a clean arc bond.
The conducting springs are then inserted into the inner openings of each of the female conducting rings and the stack of alternating conducting and insulating rings is assembled on a rod, ensuring that the orientation of the insulator rings is provided with the wider end towards back of the connector.
The stack of alternating conducting and insulating rings is transferred from the rod to the bore of the female component. The wires are routed through one of the longitudinal grooves formed in the bore until their cut ends extend through the feed through connector. A centralized stack of insulating and conducting rings is thus provided in the center of the female component. The end cap is threaded to the front of the female connector.
The female component is oriented with the opening of the bore facing upward and adhesive, such as an epoxy-based adhesive is poured into the longitudinal grooves formed in the bore. The adhesive settles around the entire stack but does not enter the inner conducting contact area. The female component is then subjected to vacuum to extract any entrained air in the connector body. More adhesive is added and the process is repeated until the connector is filled with adhesive. The female component is then heated to cure the adhesive and fix the wires and the stack of conducting and insulating rings in place and the end o-ring adjacent the bore is positioned in the end cap. In embodiments where the female component includes a high pressure feed through connector at its back end, this connector is connected at this point in the manufacturing process and fixed in place with screws and adhesive according to known methods.
Male Connector—
The body providing the underlying structure of the male component is manufactured by injection molding according to conventional methods. In alternative embodiments, the body of the male component is produced by 3D-printing methods. Each of the ten insulated wires of the male component is cut to a length which allows it to extend from one of the male conducting rings through the bore to the back end of the male component. In embodiments where a high pressure feed through connector is not required, each wire is cut to extend 12 inches past the end of the male component.
Both ends of each wire are tinned and soldered using high temperature solder. For connection of each wire to its corresponding female conducting ring, the wire is placed in the outer groove of a preheated corresponding conductor ring and solder is applied until it flows and forms a clean arc bond.
The series of alternating conducting and insulating rings is placed on the male body in the pre-determined arrangement.
Each wire is placed in one of the ten channels formed in the male body to allow it to extend to the back of the female component. In one embodiment, each of the five wires adjacent to the back of the male component is placed in one of the five channels formed in the intermediate diameter portion of the male body and their free ends are pushed to the back of the male component. Likewise, each of the wires connected to the first four conducting rings adjacent to the conducting extension is placed in one of the four channels formed in the tip portion of the male body and pushed to the back of the male component. Finally, the wire connected to the frusto-conical conducting extension is placed in the central channel and its free end is pushed to the back of the male component. The conducting extension is then connected to the male body using an end screw which threads into a threaded central opening at the end of the extension.
The male component is oriented with the frustoconical conducting extension facing downward and an adhesive, such as an epoxy-based adhesive is poured into the inner void of the male component via opening in the back of the male component. The adhesive moves into the channels of the male body, surrounds the wires and makes contact with the inner surfaces of the male conducting rings and insulator rings. The male component is then subjected to vacuum to extract any entrained air. More adhesive is added and the process is repeated until the interior of the male component is filled with adhesive. The male component is then heated to cure the adhesive and fix the wires and the alternating conducting and insulating rings in place. In embodiments where the male component includes a high pressure feed through connector at its back end, this connector is connected at this point in the manufacturing process and fixed in place with screws and adhesive according to known methods. O-rings are then added to their respective grooves in the feed through connector.
In some embodiments the female conducting rings, the female conducting springs and the male conducting rings are formed of a beryllium copper alloy.
In some embodiments, the male and female insulating rings are formed of plastic such as polyether ether ketone (PEEK), for example
Materials used in construction of the device may be substituted for a higher or lower temperature ratings. For example, gold plating on the contacts reduces oxidation issues. I
The contact surface area and mechanical contact are evenly distributed over each mated contact between the coil springs of the female component and the conducting rings of the male component. The mated contacts in a quiescent state have equal compressive mechanical force and an even contact area. Stresses are distributed over the entire contact surface area. The latching force is accumulative across the 10 contact points which increases the force required to dislodge the connector from its neutral mated position. The feedback of a “click” which occurs when mating is complete (as a result of simultaneous nesting of all of the conducting springs associated with the female component in the corresponding indentations of the conducting rings of the male component) assures a positive alignment. An o-ring internal to the female provides a waterproof seal to protect the electrical connections from water contact and provides a centralized connection. The frustoconical conducting extension at the tip of the connector ensures positive mating and provides alignment along the center axis of the mated connector. The mechanical capture reduces resonant oscillation and resists bending to maintain a distributed contact mating with three-point contact stabilization. In the present embodiment with 10 contact points, it is estimated that a force greater than 20 lb. is required to disconnect the mated connector pair.
Past testing of similar connectors in real world tests, heat tests, vibration tests, resistance tests, and mating/unmating tests have uncovered weak points such as mechanical failures and intermittent shorts/open conductivity. It is anticipated that testing of the device of the present invention will confirm resistance to mechanical failures with maintenance of good electrical contact during vibration and presence in harsh environments.
It is anticipated that incorporation of a positive mating force and self-alignment will reduce problems due to bending and misalignment of the mated connectors. The device of the present invention does not require an exoskeleton to house the connector inside during functional testing. This will be quantified on a vibration table up to 30 G at 5-50 Hz RMS.
The tests to be performed include temperature cycling up to 200° C. for an 8 hour period, underwater submersion at up to 2 atmospheres pressure, bend testing to determine yield point, mating/unmating cycle testing, shock testing up to 1000 G at 1 ms, high current to 10 amps at 24V, isolation testing up to 500V, low resistance testing and pull testing to determine the disconnect force requirement and repeatability.
The skilled person will recognize that certain variations of the latching mechanism are possible. For example, in an alternative embodiment, instead of a coil spring provided in a cavity of a female conducting ring, a female conducting ring, is provided with a convex shape or protrusion substantially complementary to a concave indentation of the top surface of the male conducting ring. In some embodiments, the material forming the convex shape is compressible to provide a latching force to hold the female conducting ring in contact with the male conducting ring.
The skilled person will recognize that the invention is not to be limited to a device for making only 10 electrical connections. The number of connections (and connector size) can be varied to any practicable amount.
Other than described herein, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages, such as those for amounts of materials, elemental contents, times and temperatures, ratios of amounts, and others, in the following portion of the specification and attached claims may be read as if prefaced by the word “about” even though the term “about” may not expressly appear with the value, amount, or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains error necessarily resulting from the standard deviation found in its underlying respective testing measurements. Furthermore, when numerical ranges are set forth herein, these ranges are inclusive of the recited range end points (i.e., end points may be used).
Any patent, publication, internet site, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
While this invention has been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application claims priority from U.S. Provisional Application Ser. No. 62/246,715, filed on Oct. 27, 2015, the entire disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62246715 | Oct 2015 | US |