The present invention relates to the field of integrated circuits; more specifically, it relates to gate array structures and method of making gate arrays latchup robust.
In modern integrated circuits, gate arrays comprising p-channel field effect transistors (PFETs) and n-channel field effect transistors (NFETs) can be susceptible to latchup. Latch-up causes Metal-Oxide-Silicon FETs (MOSFETs) to consume large amounts of current overheating and destroying the integrated circuit in which latchup occurs. Existing methods for reducing this propensity to complementary MOS (CMOS) latchup have become increasingly less effective as doping levels of the substrates of integrated circuits have decreased. Therefore there is a need in the industry for more robust latchup preventive structures and methods for preventing latchup for gate arrays in integrated circuit chips.
A first aspect of the present invention is a structure, comprising: a P-well and an N-well formed in a semiconductor substrate, the P-well extending from a top surface of the substrate into the substrate a first distance, the N-well extending from the top surface of the substrate into the substrate a second distance; dielectric isolation extending from the top surface of the substrate into the substrate a third distance, the first, second and third distances less than a whole distance between the top and bottom surfaces of the substrate, the first and second distances greater than the third distances, the P-well abutting a bottom surface of the dielectric isolation and the N-well abutting the bottom surface of the dielectric isolation where the dielectric isolation extends into the N-well and the P-well; an array of spaced apart first gate electrodes positioned over the P-well, a first set of source/drains formed in the P-well between the first gate electrodes; an array of spaced apart second gate electrodes positioned over the N-well, a set of second source/drains formed in the N-well between the second gate electrodes; and an electrically conductive through via extending from the bottom surface of the substrate into the substrate a fourth distance, the fourth distance less than the whole distance, the through via contacting the P-well and abutting the bottom surface of shallow trench isolation that extends into the P-well.
A second aspect of the present invention is a method, comprising: forming a P-well and an N-well in a semiconductor substrate, the P-well extending from a top surface of the substrate into the substrate a first distance, the N-well extending from the top surface of the substrate into the substrate a second distance; forming dielectric isolation in the substrate, the dielectric isolation extending from the top surface of the substrate into the substrate a third distance, the first, second and third distances less than a whole distance between the top and bottom surfaces of the substrate, the first and second distances greater than the third distances, the P-well abutting a bottom surface of the dielectric isolation and the N-well abutting the bottom surface of the dielectric isolation where the dielectric isolation extends into the N-well and the P-well; forming an array of spaced apart first gate electrodes positioned over the P-well, a first set of source/drains formed in the P-well between the first gate electrodes; forming an array of spaced apart second gate electrodes positioned over the N-well, a set of second source/drains formed in the N-well between the second gate electrodes; and forming an electrically conductive through via extending from the bottom surface of the substrate into the substrate a fourth distance, the fourth distance less than the whole distance, the through via contacting the P-well and abutting the bottom surface of shallow trench isolation that extends into the P-well.
The features of the invention are set forth in the appended claims. The invention itself, however, will be best understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
Latchup is defined as the triggering of a parasitic structure which then acts as a short circuit creating a low impedence path between the power supply rails and an electrical component.
Alternatively, a first array of gates may be positioned over N-well 125 and a second array of gates, not physically attached to the first array of gates, may be positioned over P-well 140, instead of common gates 155.
In one example, through via 160 comprises doped polysilicon, one or more refractory metals examples of which include tungsten, titanium and tantalum, or combinations thereof. In one example, conductive layer 180 comprises doped polysilicon, aluminum, platinum, nickel, cobalt, a metal silicide, one or more refractory metals examples of which include tungsten, titanium and tantalum, or combinations thereof.
It should be understood, that substrate 100 may be P or N-type and through via 160 may formed through N-well 125 instead of P-Well 140 (see
Thus, the embodiments of the present invention provide more robust latchup preventive structures and methods for preventing latchup for gate arrays in integrated circuit chips.
The description of the embodiments of the present invention is given above for the understanding of the present invention. It will be understood that the invention is not limited to the particular embodiments described herein, but is capable of various modifications, rearrangements and substitutions as will now become apparent to those skilled in the art without departing from the scope of the invention. Therefore, it is intended that the following claims cover all such modifications and changes as fall within the true spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
6355950 | Livengood et al. | Mar 2002 | B1 |
6984855 | Okada | Jan 2006 | B2 |
7075133 | Padmanabhan et al. | Jul 2006 | B1 |