The present disclosure relates to lateral deflectors for drilling lateral boreholes off of a primary borehole, and more particularly, to a lateral deflector which allows access and connection to a control line placed downhole of the lateral borehole junction.
The borehole of a well may be oriented in any direction. For example, vertical, horizontal, or deviated boreholes may be used to penetrate a subterranean formation. Moreover, a well may contain multiple branching lateral boreholes off the primary borehole. These types of wells may be referred to as “multilateral wells” and may comprise a primary borehole with at least one lateral borehole which branches off and extends from the primary borehole into the surrounding subterranean formation.
The lateral borehole of the multilateral well may be completed after the main primary borehole. For example, the lateral borehole may be formed by running a drill string into the primary borehole and then extending the drill string through a milled or preformed opening in the casing of the primary borehole where the drill string may then be used to drill into the surrounding formation to form the lateral borehole. The lateral borehole needs to be angled off the primary borehole in order to be drilled through the opening in the casing and in the desired direction and orientation. This angling and orienting of the lateral borehole is performed through the use of a lateral deflector. A “lateral deflector” (e.g., a whipstock) refers to any piece of borehole equipment which comprises a surface used to deflect the drill string such that the deflected drill string may be angled to drill the lateral borehole at the desired orientation. The lateral deflector may be placed at the desired junction point prior to drilling the lateral borehole and anchored in place or run-in on a string, conduit, etc. placed in the primary borehole.
One problem of multilateral wells is that intelligent systems (e.g., intelligent completions systems) requiring surface control or communication may not be used below the junction point of the lateral borehole when the lateral deflector is in place. This occurs because the lateral deflector blocks coupling of control lines downhole of the junction and also because the inner diameter of the primary borehole must remain clear of any equipment while the drill string is used to drill the lateral borehole. Any equipment inside the inner diameter of the primary borehole may be damaged by the drill string during the drilling operation. Another issue is that completion of the lateral borehole requires that the dual tubular string does not damage any equipment as it is run into the primary borehole and down to the junction point. As such, any equipment susceptible to contact damage from the dual tubular string must be shielded from such contact during run-in.
Illustrative examples of the present disclosure are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein, and wherein:
The illustrated figures are only exemplary and are not intended to assert or imply any limitation with regard to the environment, architecture, design, or process in which different examples may be implemented.
The present disclosure relates to lateral deflectors for drilling lateral boreholes off of a primary borehole, and more particularly, to a lateral deflector which allows access and connection to a control line placed downhole of the lateral borehole junction.
Disclosed herein are examples of and methods for using a lateral deflector to drill a lateral borehole off a primary borehole at a lateral borehole junction and to connect a control line extending from the surface to an intelligent system positioned downhole of the lateral borehole junction. The lateral deflector comprises a deflection surface, a feedthrough, a deflector body, and a deflector top. The deflector body and deflector top may be separated from each other as desired. The deflection surface guides the drill string so as to drill the lateral borehole at the desired angle and orientation. The deflector top protects the feedthrough while the lateral borehole is drilled. The deflector top may then be removed by separating it from the deflector body. Separation of the deflector top from the deflector body exposes the feedthrough. The feedthrough, generally, is the control line connector at the potential point of connection between the portion of the control line descending from the surface and the portion of the control line descending below the lateral borehole junction. The feedthrough is itself, or may be adjacent to and connected to, the connecting end of the portion of the control line descending below the lateral borehole junction. The feedthrough does not imply any one type of specific control line connection and may be a connection point for electric control lines, hydraulic control lines, fiber optic control lines, and the like. The feedthrough may be coupled to a control line connected to one or more intelligent systems or tools positioned downhole of the lateral borehole junction point via a portion of control line. A control line connector head coupled to the primary borehole tubular of a tubular string may couple the feedthrough to a control line descending from the surface when the dual tubular string is run in the well. The control line may then be used to operate the intelligent systems positioned downhole of the lateral borehole junction point. Examples of the present disclosure and its advantages may be understood by referring to
The terms uphole and downhole may be used to refer to the location of various components relative to the bottom or end of a well. For example, a first component described as uphole from a second component may be further away from the end of well than the second component. Similarly, a first component described as being downhole from a second component may be located closer to the end of well than the second component.
In some examples, lateral deflector 10 may be hollow and comprise a thru bore 15 as illustrated in
With continued reference to
Lateral deflector 10 further comprises a lateral deflector body 65 and lateral deflector top 70. Lateral deflector top 70 may be separated from lateral deflector body 65 and removed from lateral deflector 10. Lateral deflector top 70 may protect the feedthrough 75 during run-in of the lateral deflector 10 and during the lateral borehole drilling operation.
Lateral deflector top 70 may be coupled to lateral deflector body 65 with any type of resistance device designed or otherwise intended to give when sufficient force is applied such that the lateral deflector top 70 may remain firmly attached to the lateral deflector body 65 during run-in and during the lateral borehole drilling operation. Lateral deflector top 70 may then be detached from the lateral deflector body 65 if a sufficient amount of force is applied to pull or otherwise release and decouple lateral deflector top 70 from lateral deflector body 65. Examples of such resistance devices used to couple lateral deflector top 70 to lateral deflector body 65 may include, but are not limited to, shear screws, snap rings, collets, the like, or combinations thereof.
The retrieval tool 85 may be used to grasp and retrieve lateral deflector top 70. The retrieval tool 85 may be lowered downhole from the surface via a wireline 90 or any other type of retrieval line for downhole tools. The retrieval tool 85 may comprise a hook or any other such attachment mechanism which may attach the retrieval tool 85 to a corresponding loop, latch, or other such graspable component on the lateral deflector top 70. The attachment mechanism should hold the retrieval tool 85 firmly to the lateral deflector top 70 when attached such that the retrieval tool 85 does not prematurely release lateral deflector top 70. Once attached to the lateral deflector top 70, retrieval tool 85 may then be used to apply force from the surface via wireline 90 to the lateral deflector top 70 to cause the resistance device which couples lateral deflector top 70 to lateral deflector body 65 to give which may result in the release of lateral deflector top 70 from lateral deflector body 65. Lateral deflector top 70 may then be pulled uphole to the surface. Lateral deflector top 70 may be reused as desired. With the lateral deflector top 70 removed from the lateral deflector body 65, the feedthrough 75 may be exposed and used to connect a control line from the surface (not illustrated) to a control line 55a coupled to an intelligent tool 50 downhole of the lateral deflector 10.
As illustrated in
With continued reference to
The control line connector head 125 and the feedthrough 75 may comprise any type of control line connection. For example, the control line connector head 125 and the feedthrough 75 may comprise wet connects, inductive coupling, or the like. Wet connects refers to connections suitable for wet or otherwise hostile environments, and it is to be understood that the use of “wet connects” is not limited to any one type of wet connector or any one type of specific control line. The wet connects may be used with electric control lines, hydraulic control lines, fiber optic control lines, or the like. Inductive coupling connections may be used for electric control lines and may include the feedthrough 75 and the control line connector head 125, each comprising at least one inductor. Electric current may be run through the inductor of the control line connector head 125 to generate an electrical field sufficient for creating an electric current in the inductor of the feedthrough 75 which may then be used to power one or more intelligent tools 50 downhole of the feedthrough 75.
The shape of the exterior sides 140 of the lateral deflector body 65 adjacent to the cavity 145 in which the control line connector head 125 is to be inserted may be changed to allow for a specific alignment orientation of the connecting portions of the control line 55a and the control line 55b at the feedthrough 75. As such, the connecting portions of the control line 55a and the control line 55b are aligned and connected at the feedthrough 75.
Bevel 130 may be shaped and sized to restrict a tubular (e.g., the primary string 100 or the lateral string 105 as illustrated in
A cutout 150 may be made in one of the exterior sides 140 of the lateral deflector body 65 adjacent to cavity 145 such that any debris which may enter cavity 145 may be pushed out of the cutout 150.
A cutout 150 may be made in one of the exterior sides 140 of the lateral deflector body 65 adjacent to cavity 145 such that any debris which may enter cavity 145 may be pushed out of the cutout 150.
Provided are systems for connecting a control line to an intelligent tool positioned below a lateral borehole junction in accordance with the disclosure and the illustrated FIGURES. An example system comprises a lateral deflector, the lateral deflector comprising a lateral deflector body: a lateral deflector top coupled to the lateral deflector body; and wherein the lateral deflector top is removable and configured to be decoupled from the lateral deflector body; a deflection surface; a feedthrough which is covered by the lateral deflector top when the lateral deflector top is coupled to the lateral deflector body; a tubular string; a control line connector head coupled to the tubular string; a first control line coupled to the feedthrough and descending downhole of the lateral borehole junction; a second control line coupled to the control line connector head and descending downhole from the surface; an intelligent tool coupled to the first control line and positioned downhole of the lateral borehole junction. The lateral deflector top may be coupled to the lateral deflector body with a shear screw, snap ring, collet, or a combination thereof. A thru bore may be present in the deflection surface and the tubular string may extend through the thru bore. The intelligent tool may be an inflow control device, sensor, valve, artificial lift, interval control device, pump, or combination thereof. The feedthrough may be adjacent to exterior sides of the lateral deflector body and the exterior sides may form a dovetail-shaped cavity and the control line connector head may comprise a dovetail shape sufficient to enter said dovetail-shaped cavity. The feedthrough may be adjacent to exterior sides of the lateral deflector body and the exterior sides may form a circular-shaped cavity and the control line connector head may comprise a circular shape sufficient to enter said circular-shaped cavity. The feedthrough may be adjacent to alignment studs. The first control line and the second control line may comprise a wet connect or an inductor. The first control line and the second control line may comprise an electric line, a hydraulic line, or a fiber optic line.
Provided are lateral deflectors in accordance with the disclosure and the illustrated FIGURES. An example lateral deflector comprises a lateral deflector body; a lateral deflector top coupled to the lateral deflector body; and wherein the lateral deflector top is removable and configured to be decoupled from the lateral deflector body; a deflection surface; a feedthrough which is covered by the lateral deflector top when the lateral deflector top is coupled to the lateral deflector body. The lateral deflector top may be coupled to the lateral deflector body with a shear screw, snap ring, collet, or a combination thereof. The lateral deflector may further comprise a thru bore in the deflection surface. The lateral deflector may be positioned at a lateral borehole junction. A control line may be coupled to the feedthrough and the control line may descend downhole of the lateral borehole junction. The control line may be coupled to an inflow control device, sensor, valve, artificial lift, interval control device, pump, or combinations thereof positioned downhole of the lateral borehole junction. The feedthrough may be adjacent to exterior sides of the lateral deflector body and said exterior sides may form a dovetail-shaped cavity. The feedthrough may be adjacent to exterior sides of the lateral deflector body and said exterior sides may form a circular-shaped cavity. The feedthrough may be adjacent to alignment studs. The first control line and the second control line may comprise a wet connect or an inductor.
Provided are methods for connecting a control line to an intelligent tool positioned below a lateral borehole junction in accordance with the disclosure and the illustrated FIGURES. An example method comprises providing a lateral deflector comprising a lateral deflector body; a lateral deflector top coupled to the lateral deflector body; and wherein the lateral deflector top is removable and configured to be decoupled from the lateral deflector body; a deflection surface; a feedthrough which is covered by the lateral deflector top when the lateral deflector top is coupled to the lateral deflector body; and wherein the feedthrough is coupled to a first control line which extends downhole of the lateral borehole junction and is coupled to an intelligent tool positioned downhole of the lateral borehole junction; decoupling the lateral deflector top from the lateral deflector body; removing the lateral deflector top from the lateral deflector body; coupling a control line connector head to the feedthrough, wherein the control line connector head is coupled to a second control line which descends from the surface; coupling the first and second control lines at the feedthrough to provide a connected control line; and using the control line to interact with the intelligent tool. The lateral deflector top may be coupled to the lateral deflector body with a shear screw, snap ring, collet, or a combination thereof. A thru bore may be present in the deflection surface and the tubular string may extend through the thru bore. The intelligent tool may be an inflow control device, sensor, valve, artificial lift, interval control device, pump, or combination thereof. The feedthrough may be adjacent to exterior sides of the lateral deflector body and the exterior sides may form a dovetail-shaped cavity and the control line connector head may comprise a dovetail shape sufficient to enter said dovetail-shaped cavity. The feedthrough may be adjacent to exterior sides of the lateral deflector body and the exterior sides may form a circular-shaped cavity and the control line connector head may comprise a circular shape sufficient to enter said circular-shaped cavity. The feedthrough may be adjacent to alignment studs. The first control line and the second control line may comprise a wet connect or an inductor. The first control line and the second control line may comprise an electric line, a hydraulic line, or a fiber optic line.
Therefore, the disclosed systems and methods are well adapted to attain the ends and advantages mentioned, as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the teachings of the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered, combined, or modified, and all such variations are considered within the scope of the present disclosure. The systems and methods illustratively disclosed herein may suitably be practiced in the absence of any element that is not specifically disclosed herein and/or any optional element disclosed herein.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/054078 | 9/28/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/063175 | 4/5/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2674034 | Stone | Apr 1954 | A |
7207390 | Pratt | Apr 2007 | B1 |
7866414 | Patel | Jan 2011 | B2 |
9249559 | Dyer et al. | Feb 2016 | B2 |
9291003 | Sponchia et al. | Mar 2016 | B2 |
20020074120 | Scott | Jun 2002 | A1 |
20040149444 | Cavender | Aug 2004 | A1 |
20050121190 | Oberkircher | Jun 2005 | A1 |
20060243454 | Bolze et al. | Nov 2006 | A1 |
20070034384 | Pratt | Feb 2007 | A1 |
20080047703 | Stoesz | Feb 2008 | A1 |
20110192596 | Patel | Aug 2011 | A1 |
20130327572 | Sponchia et al. | Dec 2013 | A1 |
20150233190 | Wolf et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
9845568 | Oct 1998 | WO |
2012166396 | Dec 2012 | WO |
2015167935 | Nov 2015 | WO |
Entry |
---|
International Search Report and Written Opinion date dated Jun. 26, 2017; International PCT Application No. PCT/US2016/054078. |
Jacob, et al.; “Advanced Well Completion Designs to Meet Unique Reservoir and Production Requirements,” 2014, pp. 1-13, Society of Petroleum Engineers, www.onepetro.org, SPE-172215-MS. |
Schlumberger, “Prototype Test of an All-Electric intelligent Completion System for Extreme Reservoir Contact (ERC) Wells,” 2013, pp. 1-13, Society of Petroleum Engineers, SPE 166507. |
Number | Date | Country | |
---|---|---|---|
20180328148 A1 | Nov 2018 | US |