Lateral interbody fusion procedures are currently indicated for patients with ≤grade 1 spondylolisthesis. However, correction from the lateral approach is currently limited to regaining height and lordosis with only a low degree of spondylolisthesis correction, as the straight or lordotic cage is impacted during insertion to expand the disc space. Significant spondylolisthesis reduction is currently accomplished via a posterior approach with supplemental posterior fixation devices, including facet screws, translaminar screws, pedicle screws and rods, as well as intraspinous process devices or plates.
Although current lateral cages are characterized by symmetric superior and inferior geometries, the normal and degenerated discs do not have such similar superior and inferior endplate geometries. The lack of conformity of the cage endplate to the pertinent vertebral body can promote cage malpositioning during insertion, improper load balancing, increased settling and/or subsidence, as well as device movement following implantation.
Some surgeons using lateral cages attach lateral plating to the cage to achieve enhanced cage securement accompanied by some degree of biomechanical stabilization. However, most currently available lateral cages do not provide for plate attachment.
US 2004-0220668 (Eisermann) discloses a method for correcting spondylolisthesis from the lateral approach is provided in which a pair of insertion members are inserted laterally into upper and lower vertebrae, a connecting member is affixed to the insertion members, and a rotating force is applied to the connecting member to encourage the upper and lower vertebrae into a desired position relative to one another. In FIGS. 9-11 of Eisermann, in an alternative embodiment, a slidable prosthetic joint can be used to help with the lateral approach for treating spondylolisthesis. The sliding joint extends generally along the longitudinal axis and includes a first slidable component and a second slidable component. The slidable components cooperate to form the sliding joint which is sized and configured for disposition within an intervertebral space between adjacent vertebral bodies. The sliding joint provides movement between the adjacent vertebral bodies to maintain or restore some of the motion similar to the normal bio-mechanical motion provided by a natural intervertebral disc. More specifically, the slidable components are permitted to translate relative to one another in the axial plane.
US Patent Publication No. 2010-0016968 (Moore) discloses an apparatus and method that allow for the realignment and stabilization of adjacent vertebrae. An implant of this invention both repositions adjacent vertebrae and remains in situ to maintain the new position.
The implant has two halves which are interlocked such that they can slide horizontally with respect to each other. Movement of the implant halves and their respective positions are controlled by external set screw and internal locking block within the implant. The implant includes radial anchors which fit into alignment slots made in the misaligned vertebra by the disclosed method. The set screws are used to advance the halves of the implant which in turn move the misaligned vertebrae back into correct positions. The correct position of the vertebrae is locked in place through a bolt and a plate.
U.S. Pat. No. 6,342,074 (Simpson) discloses a spinal fusion implant and method for maintaining proper lumbar spine curvature and intervertebral disc spacing where a degenerative disc has been removed. The one-piece implant comprises a hollow body having an access passage for insertion of bone graft material into the intervertebral space after the implant has been affixed to adjacent vertebrae. The implant provides a pair of screw-receiving passages that are oppositely inclined relative to a central plane. In one embodiment, the screw-receiving passages enable the head of an orthopedic screw to be retained entirely within the access passage. A spinal fusion implant embodied in the present invention may be inserted anteriorally or laterally.
U.S. Pat. No. 6,878,167 (Ferree) discloses an osteotomy of a portion of a vertebral endplate and/or vertebral body allowing for easier insertion of a device that fits tightly into a disc space. It also discloses a mechanical device to hold the osteotomized portion of the vertebra against the vertebral body after the intradiscal device is placed. The device may be removed after the pieces of vertebra heal and fuse together. It further discloses a device secured to a side of the vertebral body in
The present invention relates to an intervertebral fusion device comprising inferior and superior fusion cages that provide an ability to correct spondylolisthesis via lateral insertion and in-situ adjustment.
Therefore, in accordance with the present invention, there is provided an intervertebral fusion device for correcting spondylolisthesis in a patient, comprising:
Also in accordance with the present invention, there is provided a method for correcting spondylolisthesis in a patient, comprising the steps of:
Also in accordance with the present invention, there is provided an intervertebral fusion device for correcting spondylolisthesis in a patient, comprising:
Also in accordance with the present invention, there is provided an intervertebral fusion device for correcting spondylolisthesis in a patient, comprising:
Also in accordance with the present invention, there is provided an intervertebral fusion device for correcting spondylolisthesis in a patient, comprising:
so that rotation of the pinion effects relative movement of the upper and lower walls in the anterior-posterior direction.
In use, the devices of the present invention accomplish improved and controlled spondylolisthesis correction with fusion from the lateral approach. The lateral cage devices of the present invention also provide for intra-operative trialing and selection to enhance conformance of the cage geometry to the vertebral body endplates bounding the targeted disc space. The fusion device of the present invention provides for direct attachment of its superior and inferior cages to the lateral aspects of the opposing vertebral bodies.
Several devices and methods for correcting spondylolisthesis with fusion from the lateral approach are disclosed. All incorporate a superior and inferior fusion cages that are fixedly attached to the corresponding vertebral bodies. The fixed attachment can be accomplished by using pre-attached plates, or by incorporating internal screws (e.g., the STALIF approach) and/or lateral keels. Following implantation, the superior and inferior cages are aligned in-situ via various activation means that are further discussed below, and then locked in place.
The interior, contacting surfaces of the cages that effect intra-device attachment contain alignment and securement features that allow for controlled intra-operative manipulation of the spine in the sagittal plane following individual fixed attachment of the cages to the superior and inferior vertebral bodies. These features can include but are not limited to teeth, barbs, and dovetails.
Both the superior and inferior cages can include features on their outer surfaces that can enhance securement to the vertebral body endplate. These features include fins, barbs, teeth, osteoconductive surface morphology (porosity) and coatings (such as HA and TCP). The superior and inferior cages can also include graft-retention windows and pockets to facilitate the long-term fusion of the two vertebral bodies of the functional spinal unit.
The inner contacting surfaces of the cage can be flat to allow for the incremental lineal adjustment of the relative cage positions. Alternatively, these surfaces can be domed so as to enable the accurate adjustment of the vertebral bodies to a centered position in the flexion/extension plane (i.e., to the center of rotation).
The external geometry of the superior and inferior cages can be flat or lordotic, and can be domed or angled in various plans to enhance their conformance to the vertebral body endplates and to address spinal deformity and/or scoliosis.
Following fixed attachment to the vertebral body, the superior and inferior cages may be aligned by several means, including the following:
As shown in
As shown in
Now referring to
In some embodiments, the lower surface of the upper plate and the upper surface of the lower cage include tongue-and-groove feature. Preferably, the tongue-and-groove feature runs from about the anterior wall to about the posterior wall. Preferably, the tongue-and-groove feature comprises an expanding recess 29 and more preferably comprises a dovetail 31.
In some embodiments, the lower surface of the upper cage and the upper surface of the lower cage include a ridge and recess feature 33 that runs in a proximal-distal direction.
In some embodiments, the proximal wall of the upper cage has a height Hu-p, the anterior wall of the upper cage has a height Hu-a, and wherein the height of the proximal wall of the upper cage is greater than the height of the anterior wall of the upper cage.
In some embodiments, the proximal wall of the upper cage has an upper portion 35 having a upper through-hole 37 located above the anterior wall and adapted for receiving a bone screw.
In some embodiments, the proximal wall of the lower cage has a height Hl-p, the anterior wall of the lower cage has a height Hl-a, and wherein the height of the proximal wall of the lower cage is greater than the height of the anterior wall of the lower cage.
In some embodiments, the proximal wall of the lower cage has a lower portion 39 having a lower through-hole 41 located beneath the anterior wall and adapted for receiving a bone screw.
In some locking plate embodiments, the proximal wall of the upper cage has a lower portion 43 having an lower through-hole 45 located beneath the anterior wall of the upper cage and adapted for receiving a screw. Likewise, the proximal wall of the lower cage has an upper portion 47 having an upper through-hole 49 located above the anterior wall of the lower cage and adapted for receiving a bone fastener such as a screw. The device further comprises:
c) a locking plate 51 having a first and second throughholes 53, and
d) first and second bone fasteners (such as screws) 55,
wherein the locking plate is fixed to the proximal wall of the upper and lower cages by passing the first bone fastener through the first throughhole of the locking plate and into the lower throughhole of the upper cage, and by passing the second bone fastener through the second throughhole of the locking plate and into the upper throughhole of the lower cage.
In some embodiments that promote fusion, the upper cage further comprises a lower surface 13 and a throughole 59 running from the upper surface to the lower surface. In some embodiments that promote fusion, the lower cage further comprises an upper surface and a throughole running from the upper surface to the lower surface. Likewise, the anterior wall further comprises a throughole 61 running therethrough. These throughholes are of a size adapted to promote fusion
In some embodiments, the distal end wall of each of the upper and lower cages has a taper 63 for ease of insertion.
In the first embodiment, and now referring to
Now referring to
Therefore, in accordance with the present invention, there is provided (claim 16) a method for correcting spondylolisthesis in a patient, comprising the steps of:
In some embodiments, the moving step is accomplished with a rotary spreader.
In a second embodiment, and now referring to
Now referring to
In some embodiments, and now referring to
Now referring to
In some embodiments, the first groove is present upon the lower surface of the anterior wall of the upper cage, and the second groove is present upon the upper surface of the anterior wall of the lower cage. In other embodiments, the first groove is present upon the lower surface of the posterior wall of the upper cage, and the second groove is present upon the upper surface of the posterior wall of the lower cage.
In some embodiments, the device of the second embodiment further comprises a third groove 109 present upon the lower surface of the upper cage between the anterior and posterior walls, and a fourth groove 111 present upon the upper surface of the lower cage between the anterior and posterior walls, and wherein the lower surface of the upper cage contacts the upper surface of the lower plate so that the third and fourth grooves form a second throughhole 113 running from the proximal wall to about the distal wall, the second throughhole adapted for insertion of a spreader therein.
In a third embodiment, and now referring to
In some embodiments, and now referring to
In some embodiments, and now referring to
Now referring to
Now referring to
In some aspects of this third embodiment, the proximal wall of the upper cage has a height, the anterior wall of the upper cage has a height, and wherein the height of the proximal wall of the upper cage is greater than the height of the anterior wall of the upper cage. In some embodiments thereof, the proximal wall of the upper cage has an upper portion 153 having a upper through-hole 155 located above the anterior wall and adapted for receiving a bone screw.
In other aspects of this third embodiment, the proximal wall of the lower cage has a height, the anterior wall of the lower cage has a height, and wherein the height of the proximal wall of the lower cage is greater than the height of the anterior wall of the lower cage. In some embodiments thereof, the proximal wall of the lower cage has a lower portion 157 having a lower through-hole 159 located beneath the anterior wall and adapted for receiving a bone screw.
In some embodiments, the upper cage has a throughole 161 running from the upper surface to the lower surface. This throughhole is adapted for promoting fusion
In a fourth embodiment, the alignment means includes a rack-and-pinion. A pinion located between the upper and lower walls and extending laterally can be rotated to move racks extending in the anterior-posterior direction and thereby reduce spondylolisthesis.
Now referring to
In some aspects of the fourth embodiment, the length of the device is at least three times the height of the device.
In some embodiments, the upper and lower walls each have at least one hole 195 therethrough to facilitate fusion through the device. In others, the anterior and posterior walls each have at least one hole 197 therethrough to facilitate fusion through the device.
In some embodiments, the rack extends from the inner surface of the upper wall. In others, the rack extends from the inner surface of the lower wall.
In some embodiments, the pinion comprises a proximal end 199 having a feature 201 for receiving a rotary tool.
In some embodiments, at least one of the anterior and posterior walls is integral with at least one of the upper and lower walls.
In some embodiments, at least one of the anterior and posterior walls is removable.
The embodiments of the present invention may optionally a securement plate that attaches to both the device of the present invention and the vertebral bodies. This securement plate secures the position of the device and provides supplemental stabilization.
In general, the devices of the present invention are suited for substantially lateral insertion into the disc space. In some embodiments, the cages are inserted through a more anterolateral insertion angle.
Now referring to
In some embodiments, as in
The lateral spondylolisthesis reduction fusion devices of the present invention may be produced from a single material or from multiple materials. These materials include metallics (such as Ti, Ti alloys such as nitinol, stainless steel, and cobalt-chrome), polymeric materials (including PEEK, PEAK, polypropylene, polyethylene terephthalate (PET), UHMWPE), biologic materials (including allograft, hydroxyapatite, TCP and CaPO4), and ceramic materials including silicon nitrides, and zirconia-containing ceramics. The plate, fasteners, or locking mechanisms can be produced from metallics or polymers for enhance durability.
Additionally, modified versions of this concept can be designed to correct spondylolisthesis with superior and inferior cages that are inserted from the anterior, anterior-lateral or posterior approaches.
The cages of the present invention are preferably inserted either from a right lateral or left lateral approach.
Following standard access and disc preparation procedures, the superior and inferior cages are inserted and affixed to the opposed vertebral bodies with screws or bone fasteners. Spondylolisthesis correction is then performed with the disclosed compressor or with a rotary tool. Optionally, locking members are then applied to the superior and inferior cages to fix the orientation of the segments.
Also in accordance with the present invention, there is provided a method of implanting an intervertebral device between opposed vertebral bodies, comprising the steps of:
i) selecting an intervertebral device comprising:
ii) inserting the device between opposed vertebral bodies, whereby the anterior walls are not aligned,
iii) moving (preferably by pivoting) one of the components with respect to the other component so that the anterior walls are substantially aligned, and
iv) fixing the device to the opposed vertebral bodies.
In some embodiments of the present invention, the fusion device is angled to provide either lordosis or kyphosis. In embodiments in which lordosis is desired, the height of the anterior wall exceeds the height of the posterior wall. An example of such a lordotic implant is shown in
It is believed by the present inventors that the devices disclosed herein appear to be the first intervertebral devices having a flange that connects to a side of a vertebral body. Therefore, in accordance with the present invention, there is provided a method of inserting a fusion device between opposed vertebral bodies, comprising the steps of:
Although the cages of the present invention are disclosed as having flanges that extend beyond the disc space for attachment to the sides of the opposed vertebral bodies, it is also contemplated that the cages of the present invention may be attached to the opposed vertebral bodies via zero profile throughholes. These zero profile throughholes are provided both a) at the upper edge of the proximal side wall of the upper half component and b) at the lower edge of the proximal side wall of the lower half component.
Therefore, in accordance with the present invention, there is provided an intervertebral fusion device for correcting spondylolisthesis in a patient, comprising:
Although the above description discloses how to make and use implantable devices to correct spondylolisthesis, it is within the scope of the invention to use these devices as instruments to correct retrolisthesis as well. Therefore, in accordance with the present invention, there is provided a method for correcting spondylolisthesis in a patient, comprising the steps of:
Although the above description discloses how to make and use devices in the context of correcting spondylolisthesis, it is within the scope of the invention to use similar devices to correct retrolisthesis as well.
The cross section of the beams are sufficiently wide in the anterior-posterior direction making them resistant to bending in the transverse plane. The mechanism within the handle is to pivot the beams. This can be done with a ratchet and pawl linkage which moves the top beam one click with each squeeze, or a sliding collar that advances distally along the beams to bring them in line with each other, or a wedge/roller that advances along the edge of the superior beam or a post and angled slot mechanism that aligns the two beams, or with a geared scissor mechanism such that the full motion of the handle corresponds to a small angular change of the beams. The controlled motion of the beams relative to each other is advantageous as the operating surgeon generally has a pre-determined amount of reduction in mind for the surgery. This amount can be determined via radiograph or inter-operatively. For example if a total of 6 mm of reduction is desired, the handle can be ratcheted 1 mm at a time until the value of 6 mm is reached.
Therefore, there is provided a spondylolisthesis reduction tool comprising:
This application is a continuation of patent application U.S. Ser. No. 15/415,299, filed Jan. 25, 2017, entitled “Lateral Spondylolisthesis Reduction Cage”, which is a continuation of patent application U.S. Ser. No. 14/919,863, filed Oct. 22, 2015, entitled “Lateral Spondylolisthesis Reduction Cage”, which is a continuation of patent application U.S. Ser. No. 14/496,765, filed Sep. 25, 2014, entitled “Lateral Spondylolisthesis Reduction Cage”, referred to below as “the '765 application,” each of which is incorporated by reference in its entirety. The '765 application is a division of patent application U.S. Ser. No. 13/163,427, filed Jun. 17, 2011 (now U.S. Pat. No. 8,845,733), entitled “Lateral Spondylolisthesis Reduction Cage” which claims priority to provisional application U.S. Ser. No. 61/466,302 filed Mar. 22, 2011; provisional application U.S. Ser. No. 61/397,716 filed Nov. 30, 2010; provisional application U.S. Ser. No. 61/410,177 filed Nov. 4, 2010; provisional application U.S. Ser. No. 61/385,958, filed Sep. 23, 2010; provisional application U.S. Ser. No. 61/379,194 filed Sep. 1, 2010; and provisional application U.S. Ser. No. 61/358,220 filed Jun. 24, 2010, all of which are incorporated by reference in their entireties. The '765 application is a division of patent application U.S. Ser. No. 13/163,471, filed on Jun. 17, 2011 (now U.S. Pat. No. 9,282,979), entitled “Instruments and Methods for Non-Parallel Disc Space Preparation” which claims priority to provisional application U.S. Ser. No. 61/466,302 filed Mar. 22, 2011; provisional application U.S. Ser. No. 61/397,716 filed Nov. 30, 2010; provisional application U.S. Ser. No. 61/410,177 filed Nov. 4, 2010; provisional application U.S. Ser. No. 61/385,958, filed Sep. 23, 2010; provisional application U.S. Ser. No. 61/379,194 filed Sep. 1, 2010; and provisional application U.S. Ser. No. 61/358,220 filed Jun. 24, 2010, all of which are incorporated by reference in their entireties. The '765 application is a division of patent application U.S. Ser. No. 13/163,496, filed on Jun. 17, 2011, entitled “Flexible Vertebral Body Shavers”, which claims priority to provisional application U.S. Ser. No. 61/466,302 filed Mar. 22, 2011; provisional application U.S. Ser. No. 61/397,716 filed Nov. 30, 2010; provisional application U.S. Ser. No. 61/410,177 filed Nov. 4, 2010; provisional application U.S. Ser. No. 61/385,958, filed Sep. 23, 2010; provisional application U.S. Ser. No. 61/379,194 filed Sep. 1, 2010; and provisional application U.S. Ser. No. 61/358,220 filed Jun. 24, 2010, all of which are incorporated by reference in their entireties. The '765 application is a division of patent application U.S. Ser. No. 13/163,517, filed Jun. 17, 2011 (now U.S. Pat. No. 9,763,678), entitled “Multi-Segment Lateral Cages adapted to Flex Substantially in the Coronal Plane”, which claims priority to provisional application U.S. Ser. No. 61/466,302 filed Mar. 22, 2011; provisional application U.S. Ser. No. 61/397,716 filed Nov. 30, 2010; provisional application U.S. Ser. No. 61/410,177 filed Nov. 4, 2010; provisional application U.S. Ser. No. 61/385,958, filed Sep. 23, 2010; provisional application U.S. Ser. No. 61/379,194 filed Sep. 1, 2010; and provisional application U.S. Ser. No. 61/358,220 filed Jun. 24, 2010, all of which are incorporated by reference in their entireties. The '765 application is a division of patent application U.S. Ser. No. 13/163,397, filed Jun. 17, 2011 (now U.S. Pat. No. 9,592,063), entitled “Universal Trial for Lateral Cages”, which claims priority to provisional application U.S. Ser. No. 61/466,302 filed Mar. 22, 2011; provisional application U.S. Ser. No. 61/397,716 filed Nov. 30, 2010; provisional application U.S. Ser. No. 61/410,177 filed Nov. 4, 2010; provisional application U.S. Ser. No. 61/385,958, filed Sep. 23, 2010; provisional application U.S. Ser. No. 61/379,194 filed Sep. 1, 2010; and provisional application U.S. Ser. No. 61/358,220 filed Jun. 24, 2010, all of which are incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4105034 | Shalaby et al. | Aug 1978 | A |
4130639 | Shalaby et al. | Dec 1978 | A |
4140678 | Shalaby et al. | Feb 1979 | A |
4141087 | Shalaby et al. | Feb 1979 | A |
4205399 | Shalaby et al. | Jun 1980 | A |
4208511 | Shalaby et al. | Jun 1980 | A |
4538612 | Patrick, Jr. | Sep 1985 | A |
4834757 | Brantigan | May 1989 | A |
4863476 | Shepperd | Sep 1989 | A |
4995200 | Eberhart | Feb 1991 | A |
5006121 | Hafeli | Apr 1991 | A |
5019082 | Frey et al. | May 1991 | A |
5123926 | Pisharodi | Jun 1992 | A |
5133719 | Winston | Jul 1992 | A |
5163939 | Winston | Nov 1992 | A |
5169402 | Elloy | Dec 1992 | A |
5171278 | Pisharodi | Dec 1992 | A |
5217475 | Kuber | Jun 1993 | A |
5250061 | Michelson | Oct 1993 | A |
5320644 | Baumgartner | Jun 1994 | A |
5342365 | Waldman | Aug 1994 | A |
5387215 | Fisher | Feb 1995 | A |
5390683 | Pisharodi | Feb 1995 | A |
5454815 | Geisser et al. | Oct 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5464929 | Bezwada et al. | Nov 1995 | A |
5522899 | Michelson | Jun 1996 | A |
5540693 | Fisher | Jul 1996 | A |
5554191 | Lahille | Sep 1996 | A |
5595751 | Bezwada et al. | Jan 1997 | A |
5597579 | Bezwada et al. | Jan 1997 | A |
5601561 | Terry et al. | Feb 1997 | A |
5607687 | Bezwada et al. | Mar 1997 | A |
5618552 | Bezwada et al. | Apr 1997 | A |
5620698 | Bezwada et al. | Apr 1997 | A |
5645850 | Bezwada et al. | Jul 1997 | A |
5648088 | Bezwada et al. | Jul 1997 | A |
5658335 | Allen | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5693100 | Pisharodi | Dec 1997 | A |
5698213 | Jamiolkowski et al. | Dec 1997 | A |
5700583 | Jamiolkowski et al. | Dec 1997 | A |
5725531 | Shapiro | Mar 1998 | A |
5857995 | Thomas et al. | Jan 1999 | A |
5859150 | Jamiolkowski et al. | Jan 1999 | A |
5865848 | Baker | Feb 1999 | A |
5916228 | Ripich et al. | Jun 1999 | A |
5916267 | Tienboon | Jun 1999 | A |
5925056 | Thomas et al. | Jul 1999 | A |
5976187 | Richelsoph | Nov 1999 | A |
5980522 | Koros et al. | Nov 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6045579 | Hochshuler et al. | Apr 2000 | A |
6053922 | Krause et al. | Apr 2000 | A |
6056763 | Parsons | May 2000 | A |
6066175 | Henderson et al. | May 2000 | A |
6080158 | Lin | Jun 2000 | A |
6106557 | Robioneck et al. | Aug 2000 | A |
6120508 | Grunig et al. | Sep 2000 | A |
6126689 | Brett | Oct 2000 | A |
6139558 | Wagner | Oct 2000 | A |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6241733 | Nicholson et al. | Jun 2001 | B1 |
6251140 | Marino et al. | Jun 2001 | B1 |
6258093 | Edwards et al. | Jul 2001 | B1 |
6296644 | Saurat et al. | Oct 2001 | B1 |
D450676 | Huttner | Nov 2001 | S |
6332894 | Stalcup et al. | Dec 2001 | B1 |
6342074 | Simpson | Jan 2002 | B1 |
6387130 | Stone et al. | May 2002 | B1 |
6398793 | McGuire | Jun 2002 | B1 |
6409766 | Brett | Jun 2002 | B1 |
6413278 | Marchosky | Jul 2002 | B1 |
6436101 | Hamada | Aug 2002 | B1 |
6447518 | Krause et al. | Sep 2002 | B1 |
6595998 | Johnson et al. | Jul 2003 | B2 |
6610066 | Dinger et al. | Aug 2003 | B2 |
6635060 | Hanson et al. | Oct 2003 | B2 |
RE38335 | Aust et al. | Nov 2003 | E |
6641582 | Hanson et al. | Nov 2003 | B1 |
6660004 | Barker et al. | Dec 2003 | B2 |
6733535 | Michelson | May 2004 | B2 |
6755837 | Ebner | Jun 2004 | B2 |
6764491 | Frey | Jul 2004 | B2 |
6835208 | Marchosky | Dec 2004 | B2 |
6840941 | Rogers et al. | Jan 2005 | B2 |
6878167 | Ferree | Apr 2005 | B2 |
6949108 | Holmes | Sep 2005 | B2 |
6966912 | Michelson | Nov 2005 | B2 |
7018415 | McKay | Mar 2006 | B1 |
7060073 | Frey et al. | Jun 2006 | B2 |
7070598 | Lim et al. | Jul 2006 | B2 |
7087055 | Lim et al. | Aug 2006 | B2 |
7125424 | Banick et al. | Oct 2006 | B2 |
7226482 | Messerli et al. | Jun 2007 | B2 |
7326248 | Michelson | Feb 2008 | B2 |
7351262 | Bindseil et al. | Apr 2008 | B2 |
7470273 | Dougherty-Shah | Dec 2008 | B2 |
7491237 | Randall et al. | Feb 2009 | B2 |
7503920 | Siegal | Mar 2009 | B2 |
7572279 | Jackson | Aug 2009 | B2 |
7575580 | Lim et al. | Aug 2009 | B2 |
7578820 | Moore et al. | Aug 2009 | B2 |
7601173 | Messerli et al. | Oct 2009 | B2 |
7618458 | Biedermann et al. | Nov 2009 | B2 |
7625377 | Veldhuizen et al. | Dec 2009 | B2 |
7625394 | Molz, IV et al. | Dec 2009 | B2 |
7655010 | Serhan et al. | Feb 2010 | B2 |
7666186 | Harp | Feb 2010 | B2 |
7666226 | Schaller | Feb 2010 | B2 |
7670374 | Schaller | Mar 2010 | B2 |
7674265 | Smith et al. | Mar 2010 | B2 |
7682400 | Zwirkoski | Mar 2010 | B2 |
7703727 | Selness | Apr 2010 | B2 |
7704280 | Lechmann et al. | Apr 2010 | B2 |
7731751 | Butler et al. | Jun 2010 | B2 |
7763028 | Lim et al. | Jul 2010 | B2 |
7771473 | Thramann | Aug 2010 | B2 |
7785368 | Schaller | Aug 2010 | B2 |
7799081 | McKinley | Sep 2010 | B2 |
7803161 | Foley et al. | Sep 2010 | B2 |
7828849 | Lim | Nov 2010 | B2 |
7837734 | Zucherman et al. | Nov 2010 | B2 |
7850733 | Baynham et al. | Dec 2010 | B2 |
7918874 | Siegal | Apr 2011 | B2 |
7922719 | Ralph et al. | Apr 2011 | B2 |
7938857 | Garcia-Bengochea et al. | May 2011 | B2 |
7942903 | Moskowitz et al. | May 2011 | B2 |
7963967 | Woods | Jun 2011 | B1 |
8007535 | Hudgins et al. | Aug 2011 | B2 |
8012212 | Link et al. | Sep 2011 | B2 |
8025697 | McClellan, III et al. | Sep 2011 | B2 |
8034110 | Garner et al. | Oct 2011 | B2 |
8038703 | Dobak, III et al. | Oct 2011 | B2 |
8043293 | Warnick | Oct 2011 | B2 |
8057544 | Schaller | Nov 2011 | B2 |
8105382 | Olmos et al. | Jan 2012 | B2 |
8128700 | Delurio et al. | Mar 2012 | B2 |
8206423 | Siegal | Jun 2012 | B2 |
8216317 | Thibodeau | Jul 2012 | B2 |
8241364 | Hansell et al. | Aug 2012 | B2 |
8262666 | Baynham et al. | Sep 2012 | B2 |
8267939 | Cipoletti et al. | Sep 2012 | B2 |
8343193 | Johnson et al. | Jan 2013 | B2 |
8343222 | Cope | Jan 2013 | B2 |
8366777 | Matthis et al. | Feb 2013 | B2 |
8382842 | Greenhalgh et al. | Feb 2013 | B2 |
8403990 | Dryer et al. | Mar 2013 | B2 |
8454617 | Schaller et al. | Jun 2013 | B2 |
8579981 | Lim et al. | Nov 2013 | B2 |
8628577 | Jimenez | Jan 2014 | B1 |
8663331 | McClellan, III et al. | Mar 2014 | B2 |
8845733 | O'Neil et al. | Sep 2014 | B2 |
8845734 | Weiman | Sep 2014 | B2 |
8920506 | McGuckin, Jr. | Dec 2014 | B2 |
8926704 | Glerum et al. | Jan 2015 | B2 |
8940050 | Laurence et al. | Jan 2015 | B2 |
8961609 | Schaller | Feb 2015 | B2 |
8968408 | Schaller et al. | Mar 2015 | B2 |
9101488 | Malandain | Aug 2015 | B2 |
9101492 | Mangione et al. | Aug 2015 | B2 |
9801639 | O'Neil et al. | Oct 2017 | B2 |
9801640 | O'Neil et al. | Oct 2017 | B2 |
20020138078 | Chappuis | Sep 2002 | A1 |
20020143399 | Sutcliffe | Oct 2002 | A1 |
20020165550 | Frey | Nov 2002 | A1 |
20020183758 | Middleton et al. | Dec 2002 | A1 |
20030028251 | Mathews | Feb 2003 | A1 |
20030135275 | Garcia et al. | Jul 2003 | A1 |
20030139812 | Garcia et al. | Jul 2003 | A1 |
20030191531 | Berry et al. | Oct 2003 | A1 |
20040002761 | Rogers et al. | Jan 2004 | A1 |
20040030387 | Landry et al. | Feb 2004 | A1 |
20040059337 | Hanson et al. | Mar 2004 | A1 |
20040068269 | Bonati et al. | Apr 2004 | A1 |
20040083000 | Keller et al. | Apr 2004 | A1 |
20040087947 | Lim et al. | May 2004 | A1 |
20040102784 | Pasquet et al. | May 2004 | A1 |
20040102846 | Keller et al. | May 2004 | A1 |
20040127990 | Bartish, Jr. et al. | Jul 2004 | A1 |
20040147129 | Rolfson | Jul 2004 | A1 |
20040220668 | Eisermann et al. | Nov 2004 | A1 |
20050038431 | Bartish et al. | Feb 2005 | A1 |
20050096745 | Andre et al. | May 2005 | A1 |
20050119752 | Williams et al. | Jun 2005 | A1 |
20050149034 | Assell et al. | Jul 2005 | A1 |
20050165420 | Cha | Jul 2005 | A1 |
20050165484 | Ferree | Jul 2005 | A1 |
20050171541 | Boehm et al. | Aug 2005 | A1 |
20050177173 | Aebi et al. | Aug 2005 | A1 |
20050240193 | Layne et al. | Oct 2005 | A1 |
20050261683 | Veldhuizen et al. | Nov 2005 | A1 |
20060036244 | Spitler et al. | Feb 2006 | A1 |
20060058807 | Landry et al. | Mar 2006 | A1 |
20060064101 | Arramon | Mar 2006 | A1 |
20060064102 | Ebner | Mar 2006 | A1 |
20060069436 | Sutton et al. | Mar 2006 | A1 |
20060074429 | Ralph et al. | Apr 2006 | A1 |
20060100622 | Jackson | May 2006 | A1 |
20060111715 | Jackson | May 2006 | A1 |
20060111728 | Abdou | May 2006 | A1 |
20060122701 | Kiester | Jun 2006 | A1 |
20060129244 | Ensign | Jun 2006 | A1 |
20060142858 | Colleran et al. | Jun 2006 | A1 |
20060167547 | Suddaby | Jul 2006 | A1 |
20060189999 | Zwirkoski | Aug 2006 | A1 |
20060212118 | Abernathie | Sep 2006 | A1 |
20060229627 | Hunt et al. | Oct 2006 | A1 |
20060229724 | Lechmann et al. | Oct 2006 | A1 |
20060235426 | Lim et al. | Oct 2006 | A1 |
20060253120 | Anderson et al. | Nov 2006 | A1 |
20060254784 | Hartmann et al. | Nov 2006 | A1 |
20060265077 | Zwirkoski | Nov 2006 | A1 |
20060276902 | Zipnick et al. | Dec 2006 | A1 |
20060293753 | Thramann | Dec 2006 | A1 |
20070055264 | Parmigiani | Mar 2007 | A1 |
20070055272 | Schaller | Mar 2007 | A1 |
20070067035 | Falahee | Mar 2007 | A1 |
20070093897 | Gerbec et al. | Apr 2007 | A1 |
20070093901 | Grotz et al. | Apr 2007 | A1 |
20070142843 | Dye | Jun 2007 | A1 |
20070162132 | Messerli | Jul 2007 | A1 |
20070213737 | Schermerhorn et al. | Sep 2007 | A1 |
20070213826 | Smith et al. | Sep 2007 | A1 |
20070225726 | Dye et al. | Sep 2007 | A1 |
20070225815 | Keith et al. | Sep 2007 | A1 |
20070233130 | Suddaby | Oct 2007 | A1 |
20070250167 | Bray et al. | Oct 2007 | A1 |
20070260314 | Biyani | Nov 2007 | A1 |
20070270957 | Heinz | Nov 2007 | A1 |
20070270968 | Baynham et al. | Nov 2007 | A1 |
20080027544 | Melkent | Jan 2008 | A1 |
20080027550 | Link et al. | Jan 2008 | A1 |
20080045966 | Buttermann et al. | Feb 2008 | A1 |
20080051890 | Waugh et al. | Feb 2008 | A1 |
20080058933 | Garner et al. | Mar 2008 | A1 |
20080065082 | Chang et al. | Mar 2008 | A1 |
20080077150 | Nguyen | Mar 2008 | A1 |
20080077241 | Nguyen | Mar 2008 | A1 |
20080082173 | Delurio et al. | Apr 2008 | A1 |
20080091211 | Gately | Apr 2008 | A1 |
20080097454 | DeRidder et al. | Apr 2008 | A1 |
20080108990 | Mitchell et al. | May 2008 | A1 |
20080119935 | Alvarez | May 2008 | A1 |
20080125865 | Abdelgany | May 2008 | A1 |
20080133012 | McGuckin | Jun 2008 | A1 |
20080140085 | Gately et al. | Jun 2008 | A1 |
20080154379 | Steiner et al. | Jun 2008 | A1 |
20080172128 | Perez-Cruet et al. | Jul 2008 | A1 |
20080208255 | Siegal | Aug 2008 | A1 |
20080221586 | Garcia-Bengochea et al. | Sep 2008 | A1 |
20080221687 | Viker | Sep 2008 | A1 |
20080234732 | Landry et al. | Sep 2008 | A1 |
20080234733 | Scrantz et al. | Sep 2008 | A1 |
20080243126 | Gutierrez et al. | Oct 2008 | A1 |
20080243255 | Butler et al. | Oct 2008 | A1 |
20080249628 | Altarac et al. | Oct 2008 | A1 |
20080255563 | Farr et al. | Oct 2008 | A1 |
20080255574 | Dye | Oct 2008 | A1 |
20080269904 | Voorhies | Oct 2008 | A1 |
20080312743 | Vila et al. | Dec 2008 | A1 |
20090030423 | Puno | Jan 2009 | A1 |
20090054898 | Gleason | Feb 2009 | A1 |
20090054911 | Mueller et al. | Feb 2009 | A1 |
20090062807 | Song | Mar 2009 | A1 |
20090076607 | Aalsma et al. | Mar 2009 | A1 |
20090088789 | O'Neil et al. | Apr 2009 | A1 |
20090112217 | Hester | Apr 2009 | A1 |
20090143859 | McClellan, III et al. | Jun 2009 | A1 |
20090164016 | Georgy et al. | Jun 2009 | A1 |
20090182431 | Butler et al. | Jul 2009 | A1 |
20090192616 | Zielinski | Jul 2009 | A1 |
20090216234 | Farr et al. | Aug 2009 | A1 |
20090234364 | Crook | Sep 2009 | A1 |
20090240335 | Arcenio et al. | Sep 2009 | A1 |
20090276049 | Weiland | Nov 2009 | A1 |
20090299479 | Jones et al. | Dec 2009 | A1 |
20100016968 | Moore | Jan 2010 | A1 |
20100030217 | Mitusina | Feb 2010 | A1 |
20100076502 | Guyer et al. | Mar 2010 | A1 |
20100094422 | Hansell et al. | Apr 2010 | A1 |
20100100098 | Norton et al. | Apr 2010 | A1 |
20100125334 | Krueger | May 2010 | A1 |
20100161060 | Schaller et al. | Jun 2010 | A1 |
20100174321 | Schaller | Jul 2010 | A1 |
20100185290 | Compton et al. | Jul 2010 | A1 |
20100191241 | McCormack et al. | Jul 2010 | A1 |
20100198263 | Siegal et al. | Aug 2010 | A1 |
20100211076 | Germain et al. | Aug 2010 | A1 |
20100211107 | Muhanna | Aug 2010 | A1 |
20100217269 | Landes | Aug 2010 | A1 |
20100234849 | Bouadi | Sep 2010 | A1 |
20100249935 | Slivka et al. | Sep 2010 | A1 |
20100256768 | Lim et al. | Oct 2010 | A1 |
20100274358 | Mueller et al. | Oct 2010 | A1 |
20100280619 | Yuan et al. | Nov 2010 | A1 |
20100305700 | Ben-Arye et al. | Dec 2010 | A1 |
20100305704 | Messerli et al. | Dec 2010 | A1 |
20100331845 | Foley et al. | Dec 2010 | A1 |
20110004216 | Amendola et al. | Jan 2011 | A1 |
20110009970 | Puno | Jan 2011 | A1 |
20110029083 | Hynes et al. | Feb 2011 | A1 |
20110029085 | Hynes et al. | Feb 2011 | A1 |
20110035011 | Cain | Feb 2011 | A1 |
20110106260 | Laurence et al. | May 2011 | A1 |
20110112586 | Guyer et al. | May 2011 | A1 |
20110125266 | Rodgers et al. | May 2011 | A1 |
20110190891 | Suh et al. | Aug 2011 | A1 |
20110276142 | Niemiec et al. | Nov 2011 | A1 |
20110282459 | McClellan, III et al. | Nov 2011 | A1 |
20110301712 | Palmatier et al. | Dec 2011 | A1 |
20110319898 | O'Neil et al. | Dec 2011 | A1 |
20110319899 | O'Neil et al. | Dec 2011 | A1 |
20110319998 | O'Neil et al. | Dec 2011 | A1 |
20110319999 | O'Neil et al. | Dec 2011 | A1 |
20110320000 | O'Neil et al. | Dec 2011 | A1 |
20120035730 | Spann | Feb 2012 | A1 |
20120165943 | Mangione et al. | Jun 2012 | A1 |
20120209383 | Tsuang et al. | Aug 2012 | A1 |
20120277877 | Smith et al. | Nov 2012 | A1 |
20120310352 | DiMauro et al. | Dec 2012 | A1 |
20130006362 | Biedermann et al. | Jan 2013 | A1 |
20130023937 | Biedermann et al. | Jan 2013 | A1 |
20130035762 | Siegal et al. | Feb 2013 | A1 |
20130079790 | Stein et al. | Mar 2013 | A1 |
20130109925 | Horton et al. | May 2013 | A1 |
20130110239 | Siegal et al. | May 2013 | A1 |
20130116791 | Theofilos | May 2013 | A1 |
20130138214 | Greenhalgh et al. | May 2013 | A1 |
20130150906 | Kerboul et al. | Jun 2013 | A1 |
20130173004 | Greenhalgh et al. | Jul 2013 | A1 |
20130190875 | Shulock et al. | Jul 2013 | A1 |
20130238006 | O'Neil et al. | Sep 2013 | A1 |
20130268077 | You et al. | Oct 2013 | A1 |
20130310937 | Pimenta | Nov 2013 | A1 |
20140025170 | Lim et al. | Jan 2014 | A1 |
20140039626 | Mitchell | Feb 2014 | A1 |
20140052259 | Garner et al. | Feb 2014 | A1 |
20140058512 | Petersheim | Feb 2014 | A1 |
20140058513 | Gahman et al. | Feb 2014 | A1 |
20140172103 | O'Neil et al. | Jun 2014 | A1 |
20140172105 | Frasier et al. | Jun 2014 | A1 |
20150032212 | O'Neil et al. | Jan 2015 | A1 |
20150094812 | Cain | Apr 2015 | A1 |
20150196400 | Dace | Jul 2015 | A1 |
20160038306 | O'Neil et al. | Feb 2016 | A1 |
20170128231 | O'Neil et al. | May 2017 | A1 |
20180028200 | O'Neil et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
197 10 392 | Jul 1999 | DE |
10357960 | Jul 2005 | DE |
609084 | Aug 1994 | EP |
1283026 | Feb 2003 | EP |
1308132 | May 2003 | EP |
1405602 | Apr 2004 | EP |
1605836 | Dec 2005 | EP |
1829486 | Sep 2007 | EP |
2 874 814 | Mar 2006 | FR |
2948277 | Jan 2011 | FR |
2006-501901 | Jan 2006 | JP |
9204423 | Sep 1992 | WO |
980345668 | Aug 1998 | WO |
99060956 | Dec 1999 | WO |
99063914 | Dec 1999 | WO |
0024343 | May 2000 | WO |
0074605 | Dec 2000 | WO |
2002003870 | Jan 2002 | WO |
2003003951 | Jan 2003 | WO |
2004030582 | Apr 2004 | WO |
2004069033 | Aug 2004 | WO |
2004080316 | Sep 2004 | WO |
2005094297 | Oct 2005 | WO |
2006044920 | Apr 2006 | WO |
2006072941 | Jul 2006 | WO |
2006118944 | Nov 2006 | WO |
2007048012 | Apr 2007 | WO |
2008005627 | Jan 2008 | WO |
2010011348 | Jan 2010 | WO |
2010075555 | Jul 2010 | WO |
2010121002 | Oct 2010 | WO |
2011013047 | Feb 2011 | WO |
2011060087 | May 2011 | WO |
2012027490 | Mar 2012 | WO |
2012103254 | Aug 2012 | WO |
2012129197 | Sep 2012 | WO |
2013149611 | Oct 2013 | WO |
Entry |
---|
U.S. Appl. No. 13/163,397, filed Jun. 17, 2011, Universal Trial for Lateral Cages. |
U.S. Appl. No. 13/163,427, filed Jun. 17, 2011, Lateral Spondylolisthesis Reduction Cage. |
U.S. Appl. No. 13/163,471, filed Jun. 17, 2011, Instruments and Methods for Non-Parallel Disc Space Preparation. |
U.S. Appl. No. 13/163,496, filed Jun. 17, 2011, Flexible Vertebral Body Shavers. |
U.S. Appl. No. 13/163,517, filed Jun. 17, 2011, Multi-Segment Lateral Cage Adapted to Flex Substantially in the Coronal Plane. |
U.S. Appl. No. 14/496,765, filed Sep. 25, 2014, Lateral Spondylolisthesis Reduction Cage. |
U.S. Appl. No. 14/919,863, filed Oct. 22, 2015, Lateral Spondylolisthesis Reduction Cage. |
U.S. Appl. No. 15/415,299, filed Jan. 25, 2017, Lateral Spondylolisthesis Reduction Cage. |
U.S. Appl. No. 15/726,515, filed Oct. 6, 2017, Lateral Spondylolisthesis Reduction Cage and Instruments and Methods for Non-Parallel Disc Space Preparation. |
Allcock, “Polyphosphazenes”; The Encyclopedia of Polymer Science; 1988; pp. 31-41; vol. 13; Wiley Intersciences, John Wiley & Sons. |
Cohn,“Biodegradable PEO/PLA Block Copolymers”; Journal of Biomedical Materials Research; 1988; pp. 993-1009; vol. 22; John Wiley & Sons, Inc. |
Cohn, “Polymer Preprints”;Journal of Biomaterials Research; 1989; p. 498; Biomaterials Research Laboratory, Casali Institute of Applied Chemistry, Israel. |
Heller, “Poly (Ortho Esters)”; Handbook of Biodegradable Polymers; edited by Domb; et al; Hardwood Academic Press; 1997; pp. 99-118. |
Japanese Office Action for Application No. 2013-542047, dated Sep. 8, 2015 (12 pages). |
Japanese Office Action for Application No. 2016-135826, dated Jun. 6, 2017 (7 pages). |
Kemnitzer, “Degradable Polymers Derived From the Amino Acid L-Tyrosine”; 1997; pp. 251-272; edited by Domb, et al., Hardwood Academic Press. |
Khoo, Axilif address spondy from the caudal approach. Minimally Invasive Correction of Grade I and II Isthmic Spondylolisthesis using AxiaLiF for L5/S1 Fusion, pp. 45-0123 Rev B Sep. 15, 2008. |
U.S. Appl. No. 61/178,315, filed May 14, 2009. |
Vandorpe, “Biodegradable Polyphosphazenes for Biomedical Applications”; Handbook of Biodegradable Polymers; 1997; pp. 161-182; Hardwood Academic Press. |
Number | Date | Country | |
---|---|---|---|
20180036141 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
61466302 | Mar 2011 | US | |
61397716 | Nov 2010 | US | |
61410177 | Nov 2010 | US | |
61385958 | Sep 2010 | US | |
61379194 | Sep 2010 | US | |
61358220 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13163427 | Jun 2011 | US |
Child | 14496765 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15415299 | Jan 2017 | US |
Child | 15788178 | US | |
Parent | 14919863 | Oct 2015 | US |
Child | 15415299 | US | |
Parent | 14496765 | Sep 2014 | US |
Child | 14919863 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13163471 | Jun 2011 | US |
Child | 13163427 | US | |
Parent | 13163496 | Jun 2011 | US |
Child | 13163471 | US | |
Parent | 13163517 | Jun 2011 | US |
Child | 13163496 | US | |
Parent | 13163397 | Jun 2011 | US |
Child | 13163517 | US |