Laterally-coiled adhesively-retained low-force backer for sealant application

Information

  • Patent Grant
  • 11352526
  • Patent Number
    11,352,526
  • Date Filed
    Tuesday, November 10, 2020
    3 years ago
  • Date Issued
    Tuesday, June 7, 2022
    2 years ago
Abstract
A laterally-coiled adhesively-retained low force backer for installation prior to application of a liquid sealant with sufficient surface adhesion to remain in place for such application and curing.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

None.


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.


BACKGROUND
Field

The present disclosure relates generally systems to support application of liquid between substrates during curing. More particularly, the present disclosure is directed to providing a laterally-coiled adhesively-retained low force backer to be installed prior to application of a liquid sealant with sufficient surface adhesion to remain in place for such application and curing.


Description of the Related Art

Building construction requires provision accommodating material responses to temperature fluctuations while providing a water-tight exterior. Construction panels come in many different sizes and shapes and may be used for various purposes, including roadways, sideways, tunnels and other pre-cast structures. To provide a seal against environmental contaminants, gunnable sealants are introduced into the space between adjacent substrates, insect intrusion, and liquids. However, the depth of these joints or gaps is typically substantially greater than the depth of the liquid sealant necessary to provide a seal.


Typically requiring a high in-field compression, the foam rod is positioned between adjacent substrates with a friction fit, due to back-pressure from the compressive fit (performed on installation), the backer rod provides a rear surface to retain penetration of a liquid sealant into the joint seal. The back rod is typically 3-5 times the expansion joint width.


Such backer bars were then maintained in position through friction and tension against the adjacent substrate. Once installed, the sealant was then applied to the joint, contacting both substrates at a depth reduced by the position of the backer bar.


The length of the rod continues to resist the compression and imposition into the expansion joint, increasing the time and effort required for imposition. The length of the rod further creates sizing issues and the rod must be cut to be no longer than the expansion joint, as additional length, in conjunction with the rigidity of the rod, requires the rod be cut to length, or shorter, prior to imposition. Rigidity and fixed length create impediments to installation.


After application of the sealant, these backer rods continue to resist compression and work against adjacent surfaces, including the sealant. As a result, the sealant may be worked loose from the rear side. The dynamic tension creates an impediment to use.


It would therefore be beneficial to provide a backer rod system which does not suffer from these impediments.


SUMMARY

The present disclosure therefore meets the above needs and overcomes one or more deficiencies in the prior art.


The present disclosure provides a laterally-coiled adhesively-retained low force backer having a body spirally coiled laterally about a vertical axis, a first pressure sensitive adhesive adhered to a body first side, a first pressure sensitive liner adhered to the first pressure sensitive adhesive, and a second pressure sensitive adhesive adhered to a body second side, the body second side opposite the body first side.


The present disclosure further provides a laterally-coiled adhesively-retained low force backer having a body where the body is resiliently compressible and elongate, has an uncompressed body width at a body top surface from a body first side to a body second side, and where the body has a body profile and a body length from a body first end to a body second end, a first pressure sensitive adhesive adhered to the body first side, a first pressure sensitive liner on a first pressure sensitive adhesive liner first side adhered to the first pressure sensitive adhesive, where the first pressure sensitive adhesive liner first side is opposite a first pressure sensitive adhesive liner second side, the first pressure sensitive adhesive liner extends from the body top surface to a body bottom surface from body first end to the body second end, a second pressure sensitive adhesive adhered to the body second side, where the first pressure sensitive adhesive is not identical to the second pressure sensitive adhesive, where the body is coiled about a vertical axis parallel to a body vertical axis from the body top surface to the body bottom surface and the first pressure sensitive adhesive liner second side contacts the body second side.


Additional aspects, advantages, and embodiments of the disclosure will become apparent to those skilled in the art from the following description of the various embodiments and related drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the described features, advantages, and objects of the disclosure, as well as others which will become apparent, are attained and can be understood in detail; more particular description of the disclosure briefly summarized above may be had by referring to the embodiments thereof that are illustrated in the drawings, which drawings form a part of this specification. It is to be noted, however, that the appended drawings illustrate only typical preferred embodiments of the disclosure and are therefore not to be considered limiting of its scope as the disclosure may admit to other equally effective embodiments.


In the drawings:



FIG. 1 provides an isometric view of the body of present disclosure prior to being coiled.



FIG. 2 provides an isometric view of the body of present disclosure prior to being coiled.



FIG. 3 provides an isometric view of the body of during installation.





DETAILED DESCRIPTION

The present disclosure provides a laterally-coiled adhesively-retained low force backer to be installed prior to application of a liquid sealant with sufficient surface adhesion to remain in place for such application and curing. The backer thus supports application of liquid between substrates during curing.


Referring to FIG. 1, an isometric view of the body of present disclosure prior to being coiled is provided. Referring to FIG. 2, an isometric view of the body of present disclosure prior to being coiled is provided. Referring to FIG. 3, an isometric view of the body of during installation is provided, showing the body of the present disclosure as coiled.


Referring to FIGS. 1, 2 and 3, the backer 100 a body 102 spirally coiled laterally about a vertical axis 306, a first pressure sensitive adhesive 204 adhered to a body first side 108, a first pressure sensitive liner 206 adhered to the first pressure sensitive adhesive 204, and a second pressure sensitive adhesive 118 adhered to a body second side 110, where the body second side opposite the body first side 108. Each of the first pressure sensitive adhesive 204 and the second pressure sensitive adhesive 118 penetrates into the body 102, typically about 3 mils deep in an open foam structure. For a body 102 of an open cell foam, each of the first pressure sensitive adhesive 204 and the second pressure sensitive adhesive 118 is more than 3 mils thick.


The backer 100 has a body 102 which is resiliently compressible and elongate and may have an uncompressed body width 106 at a body top surface 104 from a body first side 108 to a body second side 110, where each side extends from the body top surface 104 to the body bottom surface 212. The body first side 108, body second side 110, body top surface 104 and body bottom surface 212 defined a body profile 112. The body 102 may have a body length 202 from a body first end 114 to a body second end 116.


The backer 100 has a first pressure sensitive adhesive liner 206 on a first pressure sensitive adhesive liner first side 208 adhered to the first pressure sensitive adhesive 204 where the first pressure sensitive adhesive liner first side 208 is opposite a first pressure sensitive adhesive liner second side 210, and where the first pressure sensitive adhesive liner 208 extends from the body top surface 104 to a body bottom surface 212 from body first end 114 to the body second end.


The backer 100 further has a second pressure sensitive adhesive 118 adhered to the body second side 110, where the first pressure sensitive adhesive 204 is not identical to the second pressure sensitive adhesive 118,


The body 102 is coiled about a vertical axis 306, where the vertical axis 306 is parallel to a body vertical axis 120 from the body top surface 104 to the body bottom surface 212, so the first pressure sensitive adhesive liner second side 210 contacting the body second side 110.


The body 102 is preferably open-celled and may be polyurethane. Thus, the body 102 is composed entirely of an open-celled polyurethane foam. When foam is used, it is preferably open celled, but may be closed celled when desired. The body 102 may be homogenous foam or may be altered by introduction of fillers, fire retardants, water retardants and other additives. When used, the additive may be one or more of a fire-retardant material, a water-retardant material, an insect-repelling material, and aluminum trihydrate.


When the body 102 is a foam, it may be selected to have one or more relaxation or expansion rates, for example such that the foam expands at a rate of 12 inches/minute for the first five seconds. Where the foam has an uncompressed body width less than 5 inches, the body 102 is selected to continue to expand to at least 95% of maximum expansion. The selected expansion rate is substantially higher than foam with an impregnation, such as those to increase fire retardancy and those used as fillers. This ensures that in the absence of high compression necessary for a friction/compression fit, the backer 100 expands sufficiently fast for an adhesive bond to make to the substrate and therefore maintain the backer 100 is place, such that the backer 100 does not rely on backpressure exerted by the body 102 to stay in place and instead relies on one or both of the first pressure sensitive adhesive 204 and the second pressure adhesive 118. The expansion rate may be adjusted or altered, such as to accommodate purpose and environment. This may include applying an adhesive 314 to one of both of the body top surface 104 or body bottom surface 212 to restrict lateral expansion. Alternatively or additionally, one or more rows of one or more elastomers 316 may be applied across the lateral coil 312 to the body top surface 104 or body bottom surface 212 to intermittently or repeatedly constrain the expansion rate of the body 102 at locations along the length 202 of the body 102. Further, one or both of the body top surface 104 or body bottom surface 212 may be surfaced, such as by application of a surface treatment, material, damaging, or heating to generate a skin 214 with a lower expansion rate than the body 102, slowing the expansion at the body top surface 104 or body bottom surface 212.


The body 102 may be selected to have a compressibility in the range of 0% to 95%. Compressibility is a material function and identifies the change in volume in response to application of force over area (pressure). Isothermal compressibility is the negative of the inverse of the volume times (the difference in volume divided by the difference in pressure). As a result, the compressibility, as applied by the body 102 across each of the body first side 108 and the body second side 110, causes a force in the range of 0.2-0.60 pounds per square inch on the first substrate 308 and the second substrate 310. Fillers and/or fire retardant materials may be included in the body 102 provided the body 102 has a compressibility in the range of 0% to 95%.


Likewise, the body 102 may have a flexural strength sufficient to facilitate bending of the backer 100, particularly by coiling the backer 100 and by uncoiling the backer 100 upon demand, avoiding the situation of a backer rod being too long for the joint 302.


Rather than using friction to maintain position, the backer 100 uses a body first side 108 and/or a body second side 110, each with a pressure sensitive adhesive, to adhere to the first substrate 308 and/or the second substrate 310 and to maintain position with minimal tension. Moreover, because the first pressure sensitive adhesive 204 and the second pressure sensitive adhesive 118 are not identical, i.e. different or dissimilar, attachment is made to at least one of the first substrate 308 and the second substrate 310 across different environmental regimes and for different substrate materials. The first pressure sensitive adhesive 204 and the second pressure sensitive adhesive 118 may be selected from known compositions, including hot melts, acrylics, glues, gums, glues (which may be liquid or in sticks), epoxies, spray adhesives, fabric adhesives, and polyurethane adhesives. When the first pressure sensitive adhesive 204 and the second pressure sensitive adhesive 118 are applied to the body 102, to some extent each penetrates somewhat into the body 102.


The body 102 may be selected to have a density of 1.25-1.87 lb/ft3 (20-30 kg/m3) before compression and may be selected so the body has a compression set property at 50% compression from a mean joint size measured according to ASTM D3574-17 Test D of not more than 10. However, higher ranges are possible. The body 102 may be selected to have a density of at least 1.25 (20 kg/m3) and not more than 18.75 lb/ft3 (300 kg/m3). Preferably when relaxed, and prior to any compression, the body 102 has a density of less 25 lb/ft3 (400 kg/m3). When desired, the body 102 may be adapted to provide a density of 1.87-2.81 lb/ft3 (30-45 kg/m3) while contacting the first substrate 308 and the second substrate 308 or may be adapted to provide a density of 1.56-6.12 lb/ft3 (25-98 kg/m3) while contacting the first substrate 308 and the second substrate 310.


When the body 102 is composed of a foam, the foam may be selected to have an air flow property measured according to ASTM D3574-17 Test G of at least 1 Cubic Feet per Minute (CFM) (0.028 m3/min) and not more than 2 CFM (0.057 m3/min). Air flow is a measure of cross-linking or for the flexible foam of the instant invention, the lack of cross-linking. ASTM D3574 was written based upon “The Dow Machine,” as the term is used in the cellular foam materials industry. The Dow Machine is no longer produced. Generally, this refers to the volume of air which passes through a 1.0 inch (2.54 cm) thick section of foam measuring 2 inches (5.08 cm) by 2 inches (5.08 cm) square at 0.018 psi (125 Pa) of pressure. Units are expressed in cubic decimeters per second and converted to standard cubic feet per minute. This measurement follows ASTM D 3574 Test G.


When the body 102 is foam, it may have a 25% IFD value in the range of 44-52 lbs, per ASTM D3574 Test B1, though the range may be a broad as 40-60 lbs. IFD measures the load required to depress a 50 square inch compression platen into a polyurethane foam specimen. These mechanical properties are influenced by the thickness and size of the sample. In essence, IFD measures firmness.


The body 102 may also have a tensile strength of at least 10 psi, per ASTM D3574 Test B1, though higher and lower surrounding values are also acceptable. Tensile strength of at least 10 psi ensures the body 102 can be installed without fracturing, particularly when provided on a coil which requires the body 102 to flex when uncoiling.


The body 102 may also have an elongation value, per ASTM D3574 Test B1, of at least 100. The ASTM D3574 Test B1 Elongation value is the percent that a specially shaped sample will stretch from its original length before tearing or breaking. Expressed as a percentage, this test is used to measure the length of stretch in a material before it breaks. With a value of 80-120, a preferred range, the body 102 will elongate substantially before any failure occurs. However, because the body 102 is rubbery, when stretched, the body 102 becomes narrower, avoiding increased pressure on the substrate walls.


Because the body 102 serves only for the time necessary to apply the sealant, tear resistance and strength can be quite low.


As a result of relaxation rate and the use of pressure sensitive adhesives rather than reliance on high compression, the uncompressed body width 106 may be equal to the intended joint width 304 or may be a low multiple of it, such as the uncompressed body width 106 being not greater than four times the joint width 306. When installed, the body may be uncompressed or may be imposed under some compression to aid the adhesive in bonding to the substrate. When desired, the compression ratio may compress the foam up to one-fourth of its original width, i.e. a 4:1 ratio. Compression ratios of 2:1 or even 3:1 are possible. The body may be impressed into the joint at a 1.5:1 ratio. Because the backer is maintained in position with adhesive on one or both surfaces, rather than friction, the compression may be low, such as 1.2:1. The backpressure associated with friction and higher compression is therefore not required.


Because the body 102 is coiled laterally about the vertical axis 306, the portion of the body 102 adjacent the body second side 110 is somewhat compressed. As the first pressure sensitive adhesive liner first side 208 is opposite a first pressure sensitive adhesive liner second side 210, when the body 102 is coiled, the first pressure sensitive adhesive liner second side 210 contacts the body second side 110. Thus, when uncoiled, only one surface requires an adhesive liner, rather than one on each side. To facilitate the coiling, the body length 202 is substantially greater than the uncompressed body width 106. A ratio of 10:1 may be considered a minimum, though downward departures are permissible More likely the ratio may be at least 120:1. As a result, the coil of the body 102 is horizontal, not vertical, during application. Beneficially, this spiral coiled body 102 provides an increase in ease of installation and in safety. Rather than requiring a bag of backer rods of a short length, installers manage the lateral coil 312. Beneficially, by being horizontally-coiled rather than vertically-coiled, the coil 312 does not obscure observation of the expansion joint 302. Moreover, when desired, this lateral coil can be incorporated in a a mechanical application device, such as a dispenser or installation robot.


Where desired, the relaxation rate of the body 102 may be slowed by inclusion of fillers, fire retardants, insect repellents, and/or one or both of the first pressure sensitive adhesive 204 and the second pressure sensitive adhesive 118 at a greater depth into the body 102. These materials may be impregnated, put into, infused, or otherwise introduced into the body 102. The additive may therefore be introduced into the body 102 by one of the processes selected from the group of impregnation, infusion, and injection. The entirety of the body 102 need not be penetrated across the uncompressed body width 106 as only a portion of the body 102 needs to support the added material to slow the relaxation rate for the entirety of the body 102. Because fillers and the like may be avoided or reduced, the expansion rate may be retained at a relatively high value sufficient to provide a fast expansion rate and therefore ready contact of the pressure sensitive adhesive to the associated substrate and therefore the retention in place, facilitating a fast installation.


The first pressure sensitive adhesive 204 may be put into the body 106 at the body first side 108 by compressing the body 106 and applying the first pressure sensitive adhesive 204 from the first side 108. The extent of penetration may be a small percentage of the uncompressed body width 106, such as 10%, or may be a greater percentage, such as 33%. When desired, the first pressure sensitive adhesive 204 may penetrate the entire uncompressed body width 106, functioning as a filler, provided the first pressure sensitive adhesive 204 does not preclude the second pressure sensitive adhesive 118 from adhering to the body second side 110. Additional, or alternatively, the second pressure sensitive adhesive 118 may be likewise be put into the body 106.


Moreover, neither the first pressure sensitive adhesive 204 nor the second pressure sensitive adhesive 118 needs to be continuously applied, though a continuous application of one or both is possible. Either the first pressure sensitive adhesive 204 or the second pressure sensitive adhesive 118 may be applied at regular intervals, so as to be present intermittently on the applicable body first side 108 and body second side 110. While a continuous application of either the first pressure sensitive adhesive 204 or the second pressure sensitive adhesive 118 increases the contact surface and therefore ease installation, a regular, intermittent application may be used to avoid an undesirable lowering of the expansion rate or encumbering adhesive, particularly on the body second side 110 as no release liner accompanies the body 102 on the body second side 110 during installation.


One or both of the body first side 108 and the body second side 110 may be provided with a flat surface. The profile 112 may be a quadrilateral. Other surfaces, such as curved or multiple surfaces, may be used. Preferably, the body first side 108 and the body second side 110 include surfaces parallel to the first substrate 308 and the second substrate 310, increasing the surface area in contact. Other polygonal shapes may be used to include chamfers adjacent the body top surface 104 or the body bottom surface 212 to have a reduced width at imposition. Unlike the prior art, round backers are to be avoided as they fail to provide adequate contact surfaces.


The foregoing disclosure and description is illustrative and explanatory thereof. Various changes in the details of the illustrated construction may be made within the scope of the appended claims without departing from the spirit of the invention. The present invention should only be limited by the following claims and their legal equivalents.

Claims
  • 1. A laterally-coiled adhesively-retained low-force backer for sealant application, comprising: a body spirally coiled laterally about a vertical axis,a first pressure sensitive adhesive adhered to a body first side,a first pressure sensitive liner adhered to the first pressure sensitive adhesive,a second pressure sensitive adhesive adhered to a body second side, the body second side opposite the body first side, anda row of a material selected from the group consisting of an adhesive and an elastomer, the row applied across the coiled body to one of the group consisting of a coiled body top surface and a coiled body bottom surface;wherein the row is configured to constrain an expansion rate of the body at a plurality of locations along a body length of the body.
  • 2. A laterally-coiled adhesively-retained low-force backer for sealant application, comprising: a body, the body being resiliently compressible and elongate,the body having an uncompressed body width at a body top surface from a body first side to a body second side, andthe body having a body profile and a body length from a body first end to a body second end;a first pressure sensitive adhesive adhered to the body first side;a first pressure sensitive liner on a first pressure sensitive adhesive liner first side adhered to the first pressure sensitive adhesive, the first pressure sensitive adhesive liner first side opposite a first pressure sensitive adhesive liner second side, andthe first pressure sensitive adhesive liner extending from the body top surface to a body bottom surface from body first end to the body second end;a second pressure sensitive adhesive adhered to the body second side, the first pressure sensitive adhesive not identical to the second pressure sensitive adhesive; andthe body coiled about a vertical axis, the vertical axis parallel to a body vertical axis from the body top surface to the body bottom surface, andthe first pressure sensitive adhesive liner second side contacting the body second side, anda row of a material selected from the group consisting of an adhesive and an elastomer, the row applied across the coiled body to one of the group consisting of a coiled body top surface and a coiled body bottom surface;wherein the row is configured to constrain an expansion rate of the body at a plurality of locations along the body length.
  • 3. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 2, wherein the body is composed entirely of an open-celled polyurethane foam.
  • 4. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 3, wherein the foam has a compressibility in the range of 0 to 95%.
  • 5. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 3, wherein the first pressure sensitive adhesive is selected from the first pressure sensitive additive group consisting of hot melts, acrylics, glues, gums, epoxies, spray adhesives, fabric adhesives, and polyurethane adhesives.
  • 6. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 3, wherein the second pressure sensitive adhesive is selected from the second pressure sensitive additive group consisting of hot melts, acrylics, glues, gums, glue sticks, epoxies, spray adhesives, fabric adhesives, and polyurethane adhesives.
  • 7. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 3, wherein the foam has a density of 1.25-1.87 lb/ft3 (20-30 kg/m3) uncompressed.
  • 8. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 3, wherein the foam has a compression set property at 50% compression from a mean joint size measured according to ASTM D3574-17 Test D of not more than 10.
  • 9. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 3, wherein the foam is compressed to a density of 1.56-6.12 lb/ft3 (25-98 kg/m3).
  • 10. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 9, wherein the foam has an air flow property measured according to ASTM D3574-17 Test G of at least 1 Cubic Feet per Minute (CFM) (0.028 m3/min) and not more than 2 CFM (0.057 m3/min).
  • 11. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 10, wherein the foam has a 25% IFD value in the range of 40-60 lbs, per ASTM D3574 Test B1.
  • 12. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 11, wherein the foam has a tensile strength of at least 10 psi, per ASTM D3574 Test B1.
  • 13. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 12, wherein the foam has an elongation value, per ASTM D3574 Test B1, of at least 100.
  • 14. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 2, wherein the body is composed of an open-celled foam and an additive selected from the additive group consisting of a fire-retardant material, a water-retardant material, an insect-repelling material, and aluminum trihydrate.
  • 15. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 14, wherein the additive is introduced into the open-celled celled foam by one of the processes selected from the group of impregnation, infusion, and injection.
  • 16. The laterally-coiled adhesively-retained low-force backer for sealant application of claim 2, wherein one of the group consisting of the body top surface and the body bottom surface has a surface treatment.
US Referenced Citations (154)
Number Name Date Kind
1960137 Brown May 1934 A
4169184 Pufahl Sep 1979 A
4181711 Ohashi Jan 1980 A
4356676 Hauptman Nov 1982 A
4401716 Tschudin-Mahrer Aug 1983 A
6451398 Sylvester Sep 2002 B1
8147955 Deib Apr 2012 B2
8317444 Hensley Nov 2012 B1
8341908 Hensley et al. Jan 2013 B1
8365495 Witherspoon Feb 2013 B1
8739495 Witherspoon Jun 2014 B1
8813449 Hensley et al. Aug 2014 B1
8813450 Hensley et al. Aug 2014 B1
8870506 Hensley et al. Oct 2014 B2
9068297 Hensley et al. Jun 2015 B2
9200437 Hensley et al. Dec 2015 B1
9206596 Robinson Dec 2015 B1
9322163 Hensley Apr 2016 B1
9404581 Robinson Aug 2016 B1
9528262 Witherspoon Dec 2016 B2
9631362 Hensley et al. Apr 2017 B2
9637915 Hensley et al. May 2017 B1
9644368 Witherspoon May 2017 B1
9670666 Witherspoon et al. Jun 2017 B1
9689157 Hensley et al. Jun 2017 B1
9689158 Hensley et al. Jun 2017 B1
9739049 Robinson Aug 2017 B1
9739050 Hensley et al. Aug 2017 B1
9745738 Robinson Aug 2017 B2
9765486 Robinson Sep 2017 B1
9803357 Robinson Oct 2017 B1
9840814 Robinson Dec 2017 B2
9850662 Hensley Dec 2017 B2
9856641 Robinson Jan 2018 B2
9951515 Robinson Apr 2018 B2
9963872 Hensley et al. May 2018 B2
9982428 Robinson May 2018 B2
9982429 Robinson May 2018 B2
9995036 Robinson Jun 2018 B1
10000921 Robinson Jun 2018 B1
10060122 Robinson Aug 2018 B2
10066386 Robinson Sep 2018 B2
10066387 Hensley et al. Sep 2018 B2
10081939 Robinson Sep 2018 B1
10087619 Robinson Oct 2018 B1
10087620 Robinson Oct 2018 B1
10087621 Robinson Oct 2018 B1
10072413 Hensley et al. Nov 2018 B2
10125490 Robinson Nov 2018 B2
10179993 Hensley et al. Jan 2019 B2
10184243 Hamilton et al. Jan 2019 B2
10203035 Robinson Feb 2019 B1
10213962 Robinson Feb 2019 B2
10227734 Robinson Mar 2019 B1
10233633 Robinson Mar 2019 B2
10240302 Robinson Mar 2019 B2
10280610 Robinson May 2019 B1
10280611 Robinson May 2019 B1
10316661 Hensley et al. Jun 2019 B2
10323360 Robinson Jun 2019 B2
10323407 Robinson Jun 2019 B1
10323408 Robinson Jun 2019 B1
10323409 Robinson Jun 2019 B1
10352003 Robinson Jul 2019 B2
10352039 Robinson Jul 2019 B2
10358777 Robinson Jul 2019 B2
10358813 Robinson Jul 2019 B2
10385518 Robinson Aug 2019 B2
10385565 Robinson Aug 2019 B2
10407901 Robinson Sep 2019 B2
10422127 Hensley et al. Sep 2019 B2
10480136 Robinson Nov 2019 B2
10480654 Robinson Nov 2019 B2
10519651 Hensley et al. Dec 2019 B2
10533315 Robinson Jan 2020 B2
10533316 Robinson Jan 2020 B1
10538883 Robinson Jan 2020 B2
10544548 Robinson Jan 2020 B2
10544582 Hensley et al. Jan 2020 B2
10557263 Robinson Feb 2020 B1
10570611 Hensley et al. Feb 2020 B2
10584481 Robinson Mar 2020 B2
10676875 Robinson Jun 2020 B1
10787805 Hensley et al. Sep 2020 B2
10787806 Hensley et al. Sep 2020 B2
10787807 Robinson Sep 2020 B1
10787808 Robinson Sep 2020 B2
10794011 Robinson Oct 2020 B2
10794055 Robinson Oct 2020 B1
10794056 Hensley et al. Oct 2020 B2
10808398 Robinson Oct 2020 B1
20140219719 Hensley et al. Aug 2014 A1
20140360118 Hensley et al. Dec 2014 A1
20150068139 Witherspoon Mar 2015 A1
20170130450 Witherspoon May 2017 A1
20170159817 Robinson Jun 2017 A1
20170191256 Robinson Jul 2017 A1
20170226733 Hensley et al. Aug 2017 A1
20170241132 Witherspoon Aug 2017 A1
20170254027 Robinson Sep 2017 A1
20170268222 Witherspoon et al. Sep 2017 A1
20170292262 Hensley et al. Oct 2017 A1
20170298618 Hensley et al. Oct 2017 A1
20170314213 Robinson Nov 2017 A1
20170314258 Robinson Nov 2017 A1
20170342665 Robinson Nov 2017 A1
20170342708 Hensley et al. Nov 2017 A1
20170370094 Robinson Dec 2017 A1
20180002868 Robinson Jan 2018 A1
20180016784 Hensley et al. Jan 2018 A1
20180038095 Robinson Feb 2018 A1
20180106001 Robinison Apr 2018 A1
20180106032 Robinison Apr 2018 A1
20180119366 Robinison May 2018 A1
20180142465 Robinison May 2018 A1
20180148922 Robinison May 2018 A1
20180163394 Robinison Jun 2018 A1
20180171564 Robinison Jun 2018 A1
20180171625 Robinison Jun 2018 A1
20180202148 Hensley et al. Jul 2018 A1
20180238048 Robinison Aug 2018 A1
20180266103 Robinson Sep 2018 A1
20180274228 Robinson Sep 2018 A1
20180300490 Robinson Oct 2018 A1
20180363292 Robinson Dec 2018 A1
20180371746 Hensley et al. Dec 2018 A1
20180371747 Hensley et al. Dec 2018 A1
20190057215 Robinson Feb 2019 A1
20190063608 Robinson et al. Feb 2019 A1
20190071824 Robinson Mar 2019 A1
20190107201 Robinson Apr 2019 A1
20190108351 Robinson Apr 2019 A1
20190194880 Robinson Jun 2019 A1
20190194935 Robinson Jun 2019 A1
20190211546 Hensley et al. Jul 2019 A1
20190242070 Robinson Aug 2019 A1
20190242117 Robinson Aug 2019 A1
20190242118 Robinson Aug 2019 A1
20190249420 Robinson Aug 2019 A1
20190249421 Robinson Aug 2019 A1
20190249422 Robinson Aug 2019 A1
20190249423 Robinson Aug 2019 A1
20190266335 Robinson Aug 2019 A1
20190271150 Robinson Sep 2019 A1
20190271151 Robinson Sep 2019 A1
20190323347 Hensley et al. Oct 2019 A1
20200018061 Robinson Jan 2020 A1
20200141067 Robinson May 2020 A1
20200141113 Robinson May 2020 A1
20200141114 Hensley et al. May 2020 A1
20200248411 Robinson et al. Aug 2020 A1
20200279046 Robinson et al. Sep 2020 A1
20200325674 Robinson Oct 2020 A1
20200325675 Robinson Oct 2020 A1
Foreign Referenced Citations (1)
Number Date Country
2007024246 Mar 2007 WO
Non-Patent Literature Citations (3)
Entry
Emseal Joint Systems, Ltd., Product Data Backerseal, Oct. 2020, 3 pages, Westborough, Massachusetts, USA.
Emseal Joint Systems, Ltd., Emseal MST, Oct. 2019, 2 pages, Westborough, Massachusetts, USA.
Emseal Joint Systems, Ltd., Emseal AST Hi-Acrylic, Mar. 2020, 2 pages, Westborough, Massachusetts, USA.
Related Publications (1)
Number Date Country
20220145136 A1 May 2022 US