This application claims priority to German Application No. 102013203926.3, filed on Mar. 7, 2013, the entire content of which is incorporated by reference herein. This application also is related to German Application No. 102013203922.0, filed Mar. 7, 2013; German Application No. 102013203927.1, filed Mar. 7, 2013; German Application No. 102013203923.9, filed Mar. 7, 2013; and German Application No. 102013203924.7, filed Mar. 7, 2013, the entire content of each of which is incorporated by reference herein.
The present disclosure relates generally to a laterally tiltable multitrack vehicle, such as a motor vehicle, and more particularly to a laterally tiltable multitrack vehicle having the ability to self-upright after tilting.
In recent years, interest in vehicles with innovative designs has grown in view of continued expansion of urban areas, the large number of vehicles operating in these areas, and the associated problems, such as traffic jams or environmental pollution. One way to solve parking problems and/or to improve the traffic flow is to design vehicles in a manner that permits a plurality of vehicles to share a parking space or a driving lane. In order for such a solution to be feasible, vehicles must be small and, in particular, narrow. A vehicle of this type is usually sized to convey no more than one to two persons. The small size and the low weight of such vehicles make it possible to reduce the engine power output and also the emissions caused by the vehicle without any loss of driving performance.
Many attempts have been made in recent years to develop multitrack, laterally tiltable vehicles, in which the entire vehicle or a part thereof tilts in toward a rotation center (e.g., the curve bend inner side) in a similar manner to a bicycle when driving around curves. With such tilting, the resultant of the weight force and the centrifugal force runs substantially along the vertical axis of the vehicle body, preventing the vehicle from turning over. Accordingly, lateral tipping of the vehicle toward the bend outer side can be prevented, even in the case of a relatively narrow track width of the laterally tiltable vehicle (as compared with conventional, multitrack vehicles).
Different types of laterally tiltable vehicles having three or four wheels have been disclosed in practice. For example, in some three-wheeled vehicles, merely the vehicle body and the central wheel can be tilted, whereas the wheel pair has two eccentric wheels which are arranged on a common axle and cannot be tilted. In general, however, a solution is preferred, in which all the wheels can tilt together with the vehicle body, since this solution requires less installation space in relation to the width of the vehicle and the vehicle is therefore of narrower overall design.
One important aspect in laterally tiltable vehicles is ability to right itself (self-uprighting) after tilting. Normally, the centroid of the vehicle drops during lateral tilting of the vehicle body. This means, however, that the vehicle body of the laterally tilted, multitrack vehicle will not upright itself again automatically. An elegant possibility for achieving automatic uprighting of the laterally tilted vehicle body is to raise the centroid of the vehicle during lateral tilting as the tilting angle increases. In addition, this solution affords the essential advantage that the vehicle automatically assumes a stable, upright position even at a standstill, since the centroid of the vehicle is at the lowest in this position. Accordingly, the present disclosure is directed to providing an automatic self-uprighting multitrack, laterally bitable vehicle. The present disclosure is further directed to providing such a vehicle having a compact overall design, in order to keep the required installation space as small as possible in order to realize a narrow vehicle.
In accordance with various exemplary embodiments, the present disclosure provides a laterally tiltable, multitrack vehicle. The vehicle comprises a vehicle body and three wheels, the first and second wheels of the three wheels being assigned to a common axle to form a first wheel pair. Each wheel of the wheel pair is rotatably mounted on a wheel support. The wheel supports of the wheel pair are connected to one another in an articulated manner via a double lever which is mounted rotatably at a first pivot point on the vehicle body. The wheel supports of the wheel pair also are connected to one another in an articulated manner via a parallel trailing arm which runs parallel to the double lever and is configured to transmit lateral tilting of one wheel support to the other wheel support. Each wheel support of the wheel pair is configured to connect in a force-transmitting manner to the vehicle body via a link at at least one second pivot point, which is spaced apart from the first pivot point, for transmitting lateral tilting of the wheel support to the vehicle body, wherein the link forms an oblique angle with respect to the double lever.
Additional objects and advantages of the present disclosure will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the present disclosure. Various objects and advantages of the present disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and together with the description, serve to explain the principles of the present disclosure.
At least some features and advantages will be apparent from the following detailed description of embodiments consistent therewith, which description should be considered with reference to the accompanying drawings, wherein:
Although the following detailed description makes reference to illustrative embodiments, many alternatives, modifications, and variations thereof will be apparent to those skilled in the art. Accordingly, it is intended that the claimed subject matter be viewed broadly.
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. However, these various exemplary embodiments are not intended to limit the disclosure. To the contrary, the disclosure is intended to cover alternatives, modifications, and equivalents. In the drawings and the description, similar elements are provided with similar reference numerals. It is to be noted that the features explained individually in the description can be mutually combined in any technically expedient manner and disclose additional embodiments of the present disclosure.
In accordance with the present teachings, a laterally tiltable, multitrack motor vehicle is provided. The vehicle has at least three wheels, a vehicle body, for example a vehicle frame, and at least one wheel pair. The wheel pair includes two wheels which are assigned to a common axle. Each of the wheels of the wheel pair is mounted rotatably on a wheel support. The wheel supports of the wheel pair are connected to one another in an articulated manner via a double lever. The double lever is mounted rotatably at a first pivot point on the vehicle body. As used herein, a double lever is a lever of the type in which forces act both on one side and on the other side of the pivot point, as is generally understood by those of skill in the art.
Furthermore, the wheel supports of the wheel pair are connected to one another in an articulated manner via a parallel trailing arm which runs parallel to the double lever. The parallel trailing arm serves to transmit lateral tilting of one wheel support to the same extent to the other wheel support and, therefore, ensures parallel orientation of both wheel supports with respect to one another during lateral tilting. Moreover, in accordance with the present disclosure, each wheel support of the wheel pair can be connected in a force-transmitting manner to the vehicle body for controllable force transmission via a link. The link runs obliquely with respect to the double lever, at at least one second pivot point which is spaced apart from the first pivot point. The links serve to transmit lateral tilting of the wheel support to the vehicle body. The vehicle body is therefore pivoted about the first pivot point during the lateral tilting of the wheels or wheel supports of the wheel pair. The first and the at least one second pivot point and the arrangement of the links with regard to the double lever are expediently selected in such a way that the vehicle body is pivoted in the same direction in which the wheel supports tilt laterally. Since the links do not run parallel to, but rather obliquely with respect to the double lever and therefore also with respect to the parallel trailing arm, the links transmit the tilting of the wheel support at a different, in particular greater transmission ratio than the parallel trailing arm transmits the tilting of one wheel support to the other wheel support. The vehicle body is therefore pivoted to a more pronounced extent by a certain amount than the wheel supports tilt laterally. This leads as a consequence to the centroid of the vehicle body being raised in comparison with a position of the centroid when the body of the vehicle is in the non-tilted operating position of the vehicle. As a result, automatic self-uprighting of the vehicle body into the upright, neutral position is made possible, since the centroid of the vehicle has the lowest location when the vehicle body is in the upright, neutral position.
In accordance with one aspect of the present disclosure, the oblique position of the links with respect to the parallel trailing arm or double lever relates to an oblique position, for example, with respect to a roadway plane. The wheels, rotatably mounted on the wheel supports, stand in an upright, neutral position of the vehicle body with respect to the roadway plane. In other words, the oblique position of the links causes the ends of the links to be arranged at different heights with regard to a vertical axis of the vehicle.
In order to make tilting of the vehicle equally possible in both lateral directions of the vehicle, the links have controllable force transmission. In the context of the present disclosure, this means that during lateral tilting of the vehicle body by means of the force transmission control, the links can be controlled optionally so as to transmit force between the corresponding wheel support and the second pivot point. This can ensure that, during tilting of the vehicle, one of the two links transmits a force between the wheel support and the vehicle body, while the other does not. The two links therefore do not block the pivoting of the vehicle body during the tilting or lateral tilting of the entire vehicle. The controllable force transmission thus allows, for example, when driving around a bend, during which lateral tilting of the vehicle body is desired, decoupling of a link from the second pivot point on the vehicle body such that the decoupled link cannot transmit any force between the corresponding wheel support and the vehicle body, while the other link remains connected to the second pivot point and correspondingly acts in a force-transmitting manner.
In accordance with another aspect of the present disclosure, the links may have a telescopic configuration. It is thus possible that, during each driving maneuver of the vehicle, both links are connected in each case to the second pivot point on the vehicle body, but only one link is active, that is to say transmits force, during lateral tilting of the vehicle. For example, a telescopic link in a pressure loading direction may transmit force, while a telescopic link subjected to a tensile load extends telescopically and, therefore, does not transmit any force between the corresponding wheel support and the vehicle body. This telescopic behavior of the links can be activated or deactivated by means of the controllable force transmission depending on the current driving maneuver of the vehicle. As a result, when the vehicle is driving in a straight line, for example, both links transmit force both in a tensile and in a compressive direction and stabilize the vehicle body in the upright, neutral position. Only while driving around a bend, during which lateral tilting of the vehicle body is desired, the controllable force transmission brings about the telescopic behavior of merely one link, while the other link remains rigid in its longitudinal direction and therefore has a force-transmitting effect.
In accordance with another aspect of the present disclosure, the links can be releasably connected to the second pivot point during operation of the vehicle. It is thus possible, during lateral tilting of the vehicle, to keep the force-transmitting link connected to the second pivot point on the vehicle body, while the other link is decoupled or detached from the second pivot point.
In accordance with the present teachings and to simplify construction, precisely one common second pivot point is may be provided for both links, with the result that a dedicated pivot point does not have to be provided on the vehicle body for each link.
In order to provide satisfactory driving comfort of the vehicle, each wheel is mounted on a respective wheel support in a manner which is resilient and damped in terms of oscillations. In particular, vibrations of the respective wheel, for example due to uneven road surfaces, are therefore absorbed directly at the wheel itself and are not substantially transmitted, at least not in an undamped manner, to the double lever, the parallel trailing lever, or the link and, therefore, to the other wheel support of the wheel pair or the vehicle body.
In one exemplary embodiment, the multitrack, laterally tiltable vehicle includes two wheel pairs. The first wheel pair of the vehicle forms steerable front wheels and the second wheel pair forms the rear wheels of the vehicle.
As shown in the rear view of
The drive of the vehicle 1 may be, for example, an electric motor or a combustion engine, or a combination of an electric motor and a combustion engine (a hybrid drive).
As shown in
In addition to the articulated parallelogram, each of the two wheel supports 6 of the wheel pair 3 can be connected in a force-transmitting manner to the vehicle body 5 with controllable force transmission via a respective link 10 which runs obliquely with respect to the double lever 8, at at least one second pivot point 11 which is spaced apart from the first pivot point 7. With the aid of the links 10, a transmission of the lateral tilting of the wheel supports 6 to the vehicle body 5 is realized, as will be described in more detail below. In the exemplary embodiment of the present disclosure, the oblique position of the links 10 with respect to the parallel trailing arm 9 or double lever 8 relates to an oblique position with respect to a roadway plane, on which the wheels 2, which are rotatably mounted on the wheel supports 6, stand in an upright, neutral position of the vehicle body 5. In other words, the ends of the links 10 are situated in the installed state at different heights with regard to a vehicle vertical axis, as illustrated in
In the exemplary embodiment which is shown in
These alternative configurations can be realized, for example, by the links 10 being configured as longitudinally rigid links which can optionally be coupled or connected in an articulated manner to the pivot point 11 and can likewise be detached or decoupled from the pivot point 11. This variant is described with respect to the exemplary embodiment of the vehicle 1 shown in
An alternative exemplary embodiment of the controllable force transmission of the links 10 to the pivot point 11 of the vehicle body 5 can be achieved by use of links 10 having telescopic configuration. For example, the links 10 could transmit forces in a compressive direction between the pivot point 11 and the respective wheel support 6 in a completely pushed-together (i.e., collapsed) arrangement, whereas the same links could telescope in a tensile direction depending on the current driving situation (driving in a straight line or driving around a bend) and therefore would not transmit any force between the pivot point 11 and the respective wheel support 6.
As can be seen in
As shown in
A laterally tiltable, multitrack vehicle as described above and in accordance with the present teachings is not restricted to the exemplary embodiment(s) disclosed herein, but rather also encompasses other embodiments which have an identical effect. For example, instead of at the common pivot point 11, the two links 10 could be connected in a force-transmitting manner at two different pivot points which would be arranged symmetrically with respect to the center longitudinal plane 12. Furthermore, the specific arrangement of the links 10 relative to the parallel trailing arm 9 and the double lever 8 and the arrangement of the articulation points on the respective wheel supports 6 shown in
In addition, a laterally tiltable, multitrack vehicle in accordance with the present teachings need not be a motor vehicle and instead may be a vehicle powered by other means, including being powered by the occupants of the vehicle themselves (e.g., muscle power). That is to say, although the present teachings are described with respect to a motor vehicle, other vehicles are encompassed within the scope of the present disclosure.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the written description and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” include plural referents unless expressly and unequivocally limited to one referent. Thus, for example, reference to “a sensor” includes two or more different sensors. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
It will be apparent to those skilled in the art that various modifications and variations can be made to the system and method of the present disclosure without departing from the scope its disclosure. Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure disclosed herein. It is intended that the specification and embodiment described herein be considered as exemplary only.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 203 926 | Mar 2013 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2353503 | Rost et al. | Jul 1944 | A |
2474471 | Dolan | Jun 1949 | A |
3417985 | Hannan | Dec 1968 | A |
3558123 | Yew | Jan 1971 | A |
3572456 | Healy | Mar 1971 | A |
5040812 | Patin | Aug 1991 | A |
5040823 | Lund | Aug 1991 | A |
5069476 | Tsutsumi et al. | Dec 1991 | A |
5116069 | Miller | May 1992 | A |
5161425 | Baskett et al. | Nov 1992 | A |
5161822 | Lund | Nov 1992 | A |
5207451 | Furuse et al. | May 1993 | A |
5324056 | Orton | Jun 1994 | A |
5337847 | Woods et al. | Aug 1994 | A |
5347457 | Tanaka et al. | Sep 1994 | A |
5580089 | Kolka | Dec 1996 | A |
5611555 | Vidal | Mar 1997 | A |
5762351 | SooHoo | Jun 1998 | A |
5765115 | Ivan | Jun 1998 | A |
5765846 | Braun | Jun 1998 | A |
5772224 | Tong | Jun 1998 | A |
5791425 | Kamen et al. | Aug 1998 | A |
5825284 | Dunwoody et al. | Oct 1998 | A |
5839082 | Iwasaki | Nov 1998 | A |
5927424 | Van Den Brink et al. | Jul 1999 | A |
6026920 | Obeda et al. | Feb 2000 | A |
6116618 | Shono et al. | Sep 2000 | A |
6142494 | Higuchi | Nov 2000 | A |
6149226 | Hoelzel | Nov 2000 | A |
6213561 | Witthaus | Apr 2001 | B1 |
6250649 | Braun | Jun 2001 | B1 |
6311795 | Skotnikov | Nov 2001 | B1 |
6328125 | Van Den Brink et al. | Dec 2001 | B1 |
6390505 | Wilson | May 2002 | B1 |
6425585 | Schuekle et al. | Jul 2002 | B1 |
6435522 | Van Den Brink et al. | Aug 2002 | B1 |
6446980 | Kutscher et al. | Sep 2002 | B1 |
6454035 | Waskow et al. | Sep 2002 | B1 |
6467783 | Blondelet et al. | Oct 2002 | B1 |
6722676 | Zadok | Apr 2004 | B2 |
6805362 | Melcher | Oct 2004 | B1 |
6817617 | Hayashi | Nov 2004 | B2 |
7066474 | Hiebert et al. | Jun 2006 | B2 |
7073806 | Bagnoli | Jul 2006 | B2 |
7097187 | Walters et al. | Aug 2006 | B2 |
7131650 | Melcher | Nov 2006 | B2 |
7229086 | Rogers | Jun 2007 | B1 |
7389592 | Tsuruta et al. | Jun 2008 | B2 |
7487985 | Mighell | Feb 2009 | B1 |
7568541 | Pfeil et al. | Aug 2009 | B2 |
7591337 | Suhre et al. | Sep 2009 | B2 |
7607695 | Moulene et al. | Oct 2009 | B2 |
7640086 | Nakashima et al. | Dec 2009 | B2 |
7641207 | Yang | Jan 2010 | B2 |
7648148 | Mercier | Jan 2010 | B1 |
7665742 | Haerr et al. | Feb 2010 | B2 |
7673883 | Damm | Mar 2010 | B2 |
7887070 | Kirchner | Feb 2011 | B2 |
7896360 | Buma | Mar 2011 | B2 |
7946596 | Hsu et al. | May 2011 | B2 |
8050820 | Yanaka et al. | Nov 2011 | B2 |
8104781 | Gazarek | Jan 2012 | B2 |
8260504 | Tsujii et al. | Sep 2012 | B2 |
8262111 | Lucas | Sep 2012 | B2 |
8345096 | Ishiyama et al. | Jan 2013 | B2 |
8641064 | Krajekian | Feb 2014 | B2 |
8818700 | Moulene et al. | Aug 2014 | B2 |
20010028154 | Sebe | Oct 2001 | A1 |
20020109310 | Lim et al. | Aug 2002 | A1 |
20020171216 | Deal | Nov 2002 | A1 |
20030071430 | Serra et al. | Apr 2003 | A1 |
20030102176 | Bautista | Jun 2003 | A1 |
20030141689 | Hamy | Jul 2003 | A1 |
20030197337 | Dodd et al. | Oct 2003 | A1 |
20040051262 | Young | Mar 2004 | A1 |
20040100059 | Van Den Brink | May 2004 | A1 |
20040134302 | Ko et al. | Jul 2004 | A1 |
20040236486 | Krause et al. | Nov 2004 | A1 |
20050051976 | Blondelet et al. | Mar 2005 | A1 |
20050082771 | Oh | Apr 2005 | A1 |
20050127656 | Sato et al. | Jun 2005 | A1 |
20050184476 | Hamm | Aug 2005 | A1 |
20050199087 | Li et al. | Sep 2005 | A1 |
20050206101 | Bouton | Sep 2005 | A1 |
20050275181 | MacIsaac | Dec 2005 | A1 |
20060049599 | Lehane | Mar 2006 | A1 |
20060091636 | Shelton | May 2006 | A1 |
20060151982 | Mills | Jul 2006 | A1 |
20060170171 | Pedersen | Aug 2006 | A1 |
20060220331 | Schafer et al. | Oct 2006 | A1 |
20060226611 | Xiao et al. | Oct 2006 | A1 |
20060249919 | Suzuki et al. | Nov 2006 | A1 |
20060276944 | Yasui et al. | Dec 2006 | A1 |
20070075517 | Suhre et al. | Apr 2007 | A1 |
20070078581 | Nenninger et al. | Apr 2007 | A1 |
20070126199 | Peng et al. | Jun 2007 | A1 |
20070151780 | Tonoli et al. | Jul 2007 | A1 |
20070182120 | Tonoli et al. | Aug 2007 | A1 |
20070193803 | Geiser | Aug 2007 | A1 |
20070193815 | Hobbs | Aug 2007 | A1 |
20070228675 | Tonoli et al. | Oct 2007 | A1 |
20080012262 | Carabelli et al. | Jan 2008 | A1 |
20080033612 | Raab | Feb 2008 | A1 |
20080100018 | Dieziger | May 2008 | A1 |
20080114509 | Inoue et al. | May 2008 | A1 |
20080135320 | Matthies | Jun 2008 | A1 |
20080164085 | Cecinini | Jul 2008 | A1 |
20080197597 | Moulene et al. | Aug 2008 | A1 |
20080197599 | Comstock et al. | Aug 2008 | A1 |
20080238005 | James | Oct 2008 | A1 |
20080255726 | Fischlein et al. | Oct 2008 | A1 |
20080258416 | Wilcox | Oct 2008 | A1 |
20080272562 | Sabelstrom et al. | Nov 2008 | A1 |
20090085311 | Kim et al. | Apr 2009 | A1 |
20090105906 | Hackney et al. | Apr 2009 | A1 |
20090108555 | Wilcox | Apr 2009 | A1 |
20090171530 | Bousfield | Jul 2009 | A1 |
20090289437 | Steinhilber | Nov 2009 | A1 |
20090299565 | Hara et al. | Dec 2009 | A1 |
20090312908 | Van Den Brink | Dec 2009 | A1 |
20090314566 | Rust | Dec 2009 | A1 |
20100025944 | Hara et al. | Feb 2010 | A1 |
20100032914 | Hara et al. | Feb 2010 | A1 |
20100032915 | Hsu et al. | Feb 2010 | A1 |
20100044977 | Hughes et al. | Feb 2010 | A1 |
20100044979 | Haeusler et al. | Feb 2010 | A1 |
20100152987 | Gorai | Jun 2010 | A1 |
20110006498 | Mercier | Jan 2011 | A1 |
20110095494 | White | Apr 2011 | A1 |
20110148052 | Quemere | Jun 2011 | A1 |
20110215544 | Rhodig | Sep 2011 | A1 |
20110254238 | Kanou | Oct 2011 | A1 |
20120098225 | Lucas | Apr 2012 | A1 |
20120248717 | Tsujii et al. | Oct 2012 | A1 |
20130068550 | Gale | Mar 2013 | A1 |
20130153311 | Huntzinger | Jun 2013 | A1 |
20130168934 | Krajekian | Jul 2013 | A1 |
20140252730 | Spahl et al. | Sep 2014 | A1 |
20140252731 | Spahl et al. | Sep 2014 | A1 |
20140252733 | Spahl et al. | Sep 2014 | A1 |
20140252734 | Spahl et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
679 966 | Aug 1939 | DE |
1 937 578 | Jan 1963 | DE |
6801096 | Nov 1967 | DE |
40 35 128 | Jun 1992 | DE |
41 35 585 | May 1993 | DE |
42 36 328 | Sep 1993 | DE |
43 15 017 | Sep 1994 | DE |
196 21 947 | Oct 1997 | DE |
197 35 912 | Mar 1998 | DE |
198 48 294 | Oct 1999 | DE |
198 38 328 | Dec 1999 | DE |
198 31 162 | Jul 2000 | DE |
102 51 946 | Mar 2004 | DE |
103 49 655 | Jun 2005 | DE |
10 2004 027 202 | Oct 2005 | DE |
10 2004 058 523 | Jun 2006 | DE |
11 2006 002 581 | Sep 2008 | DE |
102007024769 | Nov 2008 | DE |
10 2008 046 588 | Mar 2010 | DE |
10 2009 042 662 | Mar 2011 | DE |
10 2010 000 884 | Jul 2011 | DE |
10 2010 000 886 | Jul 2011 | DE |
10 2010 055 947 | Aug 2011 | DE |
102010041404 | Mar 2012 | DE |
0 592 377 | Apr 1994 | EP |
0 626 307 | Nov 1994 | EP |
0 658 453 | Jun 1995 | EP |
1 030 790 | Aug 2000 | EP |
1 142 779 | Oct 2001 | EP |
1 153 773 | Nov 2001 | EP |
1 155 950 | Nov 2001 | EP |
1 180 476 | Feb 2002 | EP |
1 228 905 | Aug 2002 | EP |
1 346 907 | Sep 2003 | EP |
1 348 617 | Oct 2003 | EP |
1 419 909 | May 2004 | EP |
1 539 563 | Jun 2005 | EP |
1 630 081 | Mar 2006 | EP |
1 702 773 | Sep 2006 | EP |
1 872 981 | Jan 2008 | EP |
1 944 228 | Jul 2008 | EP |
2 030 814 | Mar 2009 | EP |
2 077 223 | Jul 2009 | EP |
2 199 122 | Jun 2010 | EP |
2 213 561 | Aug 2010 | EP |
2 663 283 | Dec 1991 | FR |
2 768 203 | Mar 1999 | FR |
2 872 699 | Jan 2006 | FR |
2 927 026 | Aug 2009 | FR |
2 937 000 | Apr 2010 | FR |
2 946 944 | Dec 2010 | FR |
2 322 837 | Sep 1998 | GB |
2 382 334 | Nov 2001 | GB |
2 374 327 | Oct 2002 | GB |
2 390 065 | Dec 2003 | GB |
2 394 701 | May 2004 | GB |
2 444 250 | Jun 2008 | GB |
2 450 740 | Jan 2009 | GB |
2 472 180 | Feb 2011 | GB |
2 492 757 | Jan 2013 | GB |
4-69710 | Mar 1992 | JP |
4-71918 | Mar 1992 | JP |
4-108018 | Apr 1992 | JP |
2001-206036 | Jul 2001 | JP |
2003-81165 | Mar 2003 | JP |
2004-306850 | Nov 2004 | JP |
2005-193890 | Jul 2005 | JP |
2006-7865 | Jan 2006 | JP |
2006-44467 | Feb 2006 | JP |
2006-168503 | Jun 2006 | JP |
2006-232197 | Sep 2006 | JP |
2006-281918 | Oct 2006 | JP |
2006-341718 | Dec 2006 | JP |
2007-10511 | Jan 2007 | JP |
2007-69688 | Mar 2007 | JP |
2007-106332 | Apr 2007 | JP |
2007-161013 | Jun 2007 | JP |
2007-186179 | Jul 2007 | JP |
2007-210456 | Aug 2007 | JP |
2007-238056 | Sep 2007 | JP |
2008-1236 | Jan 2008 | JP |
2008-62854 | Mar 2008 | JP |
2008-120360 | May 2008 | JP |
2008-132933 | Jun 2008 | JP |
2009-270918 | Nov 2009 | JP |
2010-155486 | Jul 2010 | JP |
2010-168000 | Aug 2010 | JP |
9406642 | Mar 1994 | WO |
9627508 | Sep 1996 | WO |
9709223 | Mar 1997 | WO |
9727071 | Jul 1997 | WO |
9941136 | Aug 1999 | WO |
9947372 | Sep 1999 | WO |
9954186 | Oct 1999 | WO |
0224477 | Mar 2002 | WO |
02068228 | Sep 2002 | WO |
03021190 | Mar 2003 | WO |
03057549 | Jul 2003 | WO |
2004011319 | Feb 2004 | WO |
2004041621 | May 2004 | WO |
2005039955 | May 2005 | WO |
2005058620 | Jun 2005 | WO |
2006006859 | Jan 2006 | WO |
2006129020 | Dec 2006 | WO |
2008043870 | Apr 2008 | WO |
2008044838 | Apr 2008 | WO |
2008053827 | May 2008 | WO |
2008065436 | Jun 2008 | WO |
2009059099 | May 2009 | WO |
2009074752 | Jun 2009 | WO |
2009087595 | Jul 2009 | WO |
WO-2009106978 | Sep 2009 | WO |
2010009928 | Jan 2010 | WO |
2010015986 | Feb 2010 | WO |
2010015987 | Feb 2010 | WO |
2010035877 | Apr 2010 | WO |
2010106385 | Sep 2010 | WO |
2010116641 | Oct 2010 | WO |
2011023862 | Mar 2011 | WO |
2011053228 | May 2011 | WO |
2011059456 | May 2011 | WO |
2011074204 | Jun 2011 | WO |
2011083335 | Jul 2011 | WO |
2011107674 | Sep 2011 | WO |
Entry |
---|
Office Action dated Mar. 11, 2015 for U.S. Appl. No. 14/201,628. |
German Search Report for Application No. 10 2013 203 923.9 dated Oct. 8, 2013. |
German Search Report for Application No. 10 2013 203 922.0 dated Oct. 14, 2013. |
German Search Report for Application No. 10 2013 203 927.1 dated Nov. 5, 2013. |
German Search Report for Application No. 10 2013 203 926.3 dated Oct. 31, 2013. |
German Search Report for Application No. 10 2013 203 924.7 dated Oct. 24, 2013. |
Office Action dated Oct. 10, 2014 for U.S. Appl. No. 14/201,602. |
Office Action dated Nov. 28, 2014 for U.S. Appl. No. 14/201,550. |
Office Action dated Sep. 4, 2014 for U.S. Appl. No. 14/201,628. |
Office Action dated Dec. 26, 2014 for U.S. Appl. No. 14/201,628. |
Office Action dated Dec. 19, 2014 for U.S. Appl. No. 14/201,586. |
Number | Date | Country | |
---|---|---|---|
20140252732 A1 | Sep 2014 | US |