The present invention relates to pillows having a latex foam layer and at least one additional foam component. In particular, the present invention relates to pillows including a latex foam layer and an additional foam component that are each disposed about an internal foam layer to provide comfort and support to the body of a user, or a portion thereof, resting on the pillow.
As is generally the case with pillows, the effectiveness and desirability of the pillow is partly a function of well the pillow supports the body of a user and partly a function of how well the pillow conforms to the body of a user and provides a feeling of softness. In this regard, many users find pillows comprised of latex foam to be particularly desirable, as such pillows provide an increased amount of support to the body of a user and offer an orthopedically correct sleeping position that reduces and prevents pain in the body of a user, or a portion thereof, resting on such a pillow. That increased amount of support, however, is often accompanied by an increased amount of heat retention in that latex pillow, as well as an increased cost that leaves many users looking for suitable alternatives to latex foam pillows.
The present invention includes pillows having a latex foam layer and at least one additional foam component. In particular, the present invention relates to pillows including a latex foam layer and an additional foam component that are each disposed about an internal foam layer to provide comfort and support to the body of a user, or a portion thereof, resting on the pillow.
In one exemplary embodiment of the present invention, a pillow is provided that includes an internal foam layer having a first surface and a second surface. The pillow also includes a latex foam layer, along with an additional foam component in the form of a flexible foam layer, that are each disposed about the internal foam layer. The latex foam layer is generally comprised of a planar piece of flexible latex foam having a first abutment end and a second abutment end. The flexible foam layer, on the other hand, can be comprised of a variety of different foams and includes a first mating end, which is connected to the first abutment end of the latex foam layer, and a second mating end, which is connected to the second abutment end of the latex foam layer. In this regard, once connected, the latex foam layer and the flexible foam layer thus form a continuous outer foam layer that substantially surrounds the internal foam layer of the pillow.
By wrapping the latex foam layer and the additional foam component (or flexible foam layer) around the internal foam layer, the latex foam layer and the flexible foam layer are generally positioned and configured to both form the longitudinal edges of the pillow as well as the support surfaces of the pillow. For example, in some embodiments, the latex foam layer forms a first longitudinal edge of the pillow, and the flexible foam layer forms a second longitudinal edge of the pillow, with both the first longitudinal edge and the second longitudinal edge of the pillow having an arcuate shape. In some embodiments, the latex foam layer and the flexible foam layer can further be positioned such that the latex foam layer substantially covers the first surface of the internal foam layer and the flexible foam layer substantially covers the second surface of the internal foam layer. In this regard, in some embodiments, the latex foam layer and the flexible foam layer each form a support surface of the pillow.
Regardless of the particular configuration, the latex foam layer, the internal foam layer, and the additional foam component (or flexible foam layer) are each generally comprised of a foam that is capable of suitably distributing the pressure from to user's body, or portion thereof, across the pillow. In some embodiments, the internal foam layer, the additional flexible foam layer, or both are comprised of a visco-elastic foam. In certain embodiments, the latex foam of the latex foam layer has a hardness, density, or both that is different than that of the flexible foam layer, such that a pillow can be provided where one support surface of the pillow provides a softer surface on which to rest, while the other support surface of the pillow provides a desired amount of support. In further embodiments, the internal foam layer has a hardness, density, or both that is different from the latex foam layer, the flexible foam layer, or both to further modify the feel and comfort of the pillow (e.g., softer or more firm).
To further enhance the comfort, in some embodiments, the pillow further includes one or more additional features to increase the comfort of a user lying on the pillow. For example, in some embodiments, to increase the movement of air through the pillow and reduce the retention of heat in the pillow, the latex foam layer defines a plurality of columnar voids that extend through the latex foam layer and are in fluid communication with the internal foam layer to allow for an increased amount of air to travel through and dissipate heat away from the internal foam layer and the remainder of the pillow.
In addition to having a plurality of columnar voids that provide enhanced air flow, in some embodiments, the pillow includes an outer cover that surrounds the latex foam layer and the flexible foam layer. Such an outer cover is typically comprised of a textile having a sufficient amount of durability, but that also has a sufficient amount of breathability to allow air and heat to travel through the outer cover and away from the pillow. For instance, in some embodiments, the outer cover is comprised of one hundred percent cotton.
Further features and advantages of the present invention will become evident to those of ordinary skill in the art after a study of the description, figures, and non-limiting examples in this document.
The present invention includes pillows having a latex foam layer and at least one additional foam component. In particular, the present invention relates to pillows including a latex foam layer and an additional foam component that are each disposed about an internal foam layer to provide comfort and support to the body of a user, or a portion thereof, resting on the pillow.
Referring first to
By positioning and configuring the latex foam layer 30 and the flexible foam layer 40 around the internal foam layer 20, the latex foam layer 30 and the flexible foam layer 40 generally form both the longitudinal edges of the pillow, as well as the support surfaces of the pillow. In particular, in the exemplary embodiment shown in
Additionally, in the exemplary embodiment shown in
Referring still to
Regardless of the particular configuration, the latex foam layer 30, the internal foam layer 20, and the flexible foam layer 40 are each generally comprised of a foam that is capable of suitably distributing the pressure from a user's body or portion thereof across the pillow 10. Such foams include, but are not limited to, latex foam, reticulated or non-reticulated visco-elastic foam (sometimes referred to as memory foam or low-resilience foam), reticulated or non-reticulated non-visco-elastic foam, polyurethane high-resilience foam, soy foam, expanded polymer foams (e.g., expanded ethylene vinyl acetate, polypropylene, polystyrene, or polyethylene), and the like. Furthermore, the foams may include gel additives or inserts.
Of course, the latex foam layer 30 of the pillow 10 is comprised primarily of latex foam. Latex is a stable dispersion (emulsion) of polymer microparticles in an aqueous medium, with the microparticles preferably having a size range of about 10 to 1000 nm. Latexes may be natural or synthetic. Thus, the latex foam for the latex foam layer 30 of the pillow 10 can be prepared, for example, from natural rubber latex or from one or more of such synthetic latexes, such as polybutadiene/styrene latex, polybutadiene/acrylonitrile latex, polychloroprene latex and the like, or from a mixture of natural rubber latex and one or more such synthetic latexes. In this regard, the latex foam for the latex foam layer 30 of the pillow 10 may include conventional latex foams, as well as visco-elastic latex foams. In some embodiments, the solids content of the latex foam is from about 20 to 75% by weight. In other embodiments, the solids content of the latex foam is from about 50 to 75% by weight.
With respect to the internal foam layer 20 and the flexible foam layer 40, one or both are generally comprised of a foam that is different that the latex foam of the latex foam layer 30. For example, one or both of the internal foam layer 20 and the flexible foam layer 40 could be comprised of as visco-elastic foam. Generally, a visco-elastic foam capable of use in an exemplary pillow of the present invention has a hardness of at least about 10 N to no greater than about 80 N, as measured by exerting pressure from a plate against a sample of the material to a compression of at least 40% of an original thickness of the material at approximately room temperature (i.e., 21° C. to 23° C.), where the 40% compression is held for a set period of time as established by the International Organization of Standardization (ISO) 2439 hardness measuring standard. In some embodiments, the visco-elastic foam used in one or both of the internal foam layer 20 and the flexible foam layer 40 in the pillow 10 has hardness of about 10 N, about 20 N, about 30 N, about 40 N, about 50 N, about 60 N, about 70 N, or about 80 N to provide a desired degree of comfort and body-conforming qualities.
To the extent that visco-elastic foam is used in one or both of the internal foam layer 20 and the flexible foam layer 40, the visco-elastic foam can also have as density that assists in providing a desired degree of comfort and body-conforming qualities, as well as an increased degree of material durability. In some embodiments, the visco-elastic foam used in one or both of the internal foam layer 20 and the flexible foam layer 40 in the pillow 10 is no less than about 30 kg/m3 to no greater than about 150 kg/m3. In some embodiments, the density of the visco-elastic foam is about 30 kg/m3, about 40 kg/m3, about 50 kg/m3, about 60 kg/m3, about 70 kg/m3, about 80 kg/m3, about 90 kg/m3, about 100 kg/m3, about 110 kg/m3, about 120 kg/m3, about 130 kg/m3, about 140 kg/m3, or about 150 kg/m3.
In one exemplary embodiment, and as shown
Furthermore, in some embodiments, the density or hardness of the internal foam layer 20 is not the same as the density or hardness of the latex foam layer 30, the flexible foam layer 40, or both the latex foam layer 30 and the flexible foam layer 40. For example, as shown in
Of course, the selection of foams having a particular density or hardness will affect other characteristics of the foam, including the manner in which the foam responds to pressure and the overall feel of the foam. It should be appreciated though that a foam having a desired density and hardness can readily be selected for a particular application or support cushion (e.g., pillow) as desired.
Referring still to
Although not shown in
Referring again to the exemplary embodiment shown in
In some embodiments, where there is an adhesive area between two layers of a latex foam, a latex adhesive is used. When cured or dried, the latex adhesive has a flexibility and plasticity that is very close to that of the material of the surrounding latex foam layers. Accordingly, when the latex adhesive is cured/dried, the latex component of the adhesive is the same as or closely similar to the latex in the foam layers, so that the presence of the adhesive between the layers of latex foam, or between latex foam and another type or types of foam, is imperceptible. In other words, the latex adhesive acts homogeneously with latex-containing foam, so that the presence of adhesive or an adhesive layer or boundary is imperceptible.
In some embodiments, such a latex adhesive is made from latex, a thickener and a cure package. In some embodiments, the latex is primarily a natural latex. In other embodiments, the latex is a mixture of from 80-100% natural latex and from 0-20% synthetic latex. The cure package typically is made from cure-related items and other additive materials which initiate and control the curing process and bring other desirable properties to the final latex adhesive. The thickener is chosen for its ability to increase the viscosity of the compound.
While various embodiments are possible and are directly related to the ultimate properties desired, in one particular exemplary embodiment, the following formulations and ratios are used:
In an alternative embodiment, the thickener comprises 0.5% to 5.0% of the total weight of the latex adhesive. In some embodiments, the thickener is a polyacrylate, which increases the viscosity of the latex adhesive. In other embodiments, the thickener is any suitable material which can increase the viscosity of the latex compound, while still allowing the latex adhesive to retain its overall properties and integrity. Typically, the thickener is white, clear, or neutral in color.
In another alternative embodiment, the cure package comprises 2.0% to 7.0% of the total weight of the latex adhesive. In some embodiments, the cure package is a synthetic and/or natural rubber latex vulcanization package consisting of sulfur, zinc oxide, accelerators, accelerator activator and antioxidant to promote vulcanization with heat and protect the finished latex adhesive from oxidative aging.
In one particular exemplary embodiment, the cure package itself includes the following formulation and ratios:
The latex (natural and synthetic), master-batch/cure system, and thickener are mixed or combined to form a latex adhesive which can be used anywhere a soft pliable glue bond is required such as, but not limited to, a latex to latex bond, latex to foam bond, fiber to foam bond, and foam to foam bond. In some embodiments, the latex adhesive is applied at an elevated temperature (heat), or, in some other embodiments, at room temperature. The main goal of the latex adhesive is to mimic the viscoelastic properties of the two adhering surfaces and, in turn, avoiding a hard layered surface or seam which, in some instances, is undesirable.
The latex adhesive can be applied to the surfaces in a variety of manners based on the application involved or the machinery available for production. In some embodiments, the latex adhesive is sprayed onto the surfaces with a spray gun. In other embodiments, the latex adhesive is applied with one or more brushes, rollers spongers, or other such applicators. In still other embodiments, the latex adhesive is poured onto one or more surfaces and spread as needed. In other embodiments, the latex adhesive is adhered in a sheet-like manner. In other embodiments, the latex adhesive is used in a gel-like application. In other embodiments, the latex adhesive is applied at or near room temperature, while, in other embodiments, heat is used to activate and start the curing and bonding process.
In some embodiments, the latex adhesive has a density and hardness that provides good performance and adhesion results while in use, but also, after setting, has characteristics related to comfort of the user. In this regard, the latex adhesive does not harden over time, as such hardening can compromise the comfort of the final user, particularly when one or more layers are utilized or one or more adhesive layers 60 are used.
With further respect to the use of different foam layers in an exemplary pillow of the present invention, and referring now to
Referring now to
As yet another refinement of the present invention, although the embodiments shown in
The following list of references are incorporated herein by reference:
One of ordinary skill in the art will recognize that additional embodiments are also possible without departing from the teachings of the present invention or the scope of the claims which follow. This detailed description, and particularly the specific details of the exemplary embodiments disclosed herein, is given primarily for clarity of understanding, and no unnecessary limitations are to be understood therefrom, for modifications will become apparent to those skilled in the art upon reading this disclosure and may be made without departing from the spirit or scope of the claimed invention.
This application claims priority to U.S. Provisional Application Ser. No. 61/774,808, filed Mar. 8, 2013; U.S. Provisional Application Ser. No. 61/777,468, filed Mar. 12, 2013; and U.S. Provisional Application Ser. No. 61/791,583, filed Mar. 15, 2013, the entire disclosures of each of which are incorporated herein by this reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/021637 | 3/7/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/138552 | 9/12/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5138732 | Wattie et al. | Aug 1992 | A |
8656537 | Leifermann | Feb 2014 | B2 |
8991921 | Peterson | Mar 2015 | B2 |
20020078507 | Pearce | Jun 2002 | A1 |
20050278852 | Wahrmund | Dec 2005 | A1 |
20060059628 | Hamilton | Mar 2006 | A1 |
20120102654 | Lee | May 2012 | A1 |
20120204350 | Katsnelson | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
2012-81094 | Apr 2012 | JP |
10-2010-0107889 | Oct 2010 | KR |
WO 01-80690 | Nov 2001 | WO |
Entry |
---|
International Searching Authority, International Search Report and Written Opinion, dated Jul. 12, 2014, 11 pgs,. |
Number | Date | Country | |
---|---|---|---|
20160022063 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
61774808 | Mar 2013 | US | |
61777468 | Mar 2013 | US | |
61791583 | Mar 2013 | US |