The present invention relates to a lathe machining member that is mounted on a lathe to be lathe machined.
Conventionally, when metal or the like is machined by using a lathe, a work as a lathe machining member is mounted on and fixed to a chuck of the lathe and the work is cut by using a cutting tool or a drill to form a desired shape. Specifically, when an axisymmetric member such as a screw is formed by lathe machining, a solid cylindrical work made of a solid material is generally applied as the work (see, for example, Patent Literature 1).
Patent Literature 1: Japanese Laid-open Patent Publication No. 2003-291002
However, because a large part of the work is cut off by lathe machining, when a rare and expensive material such as a noble metal alloy is applied as a raw material, the material is wasted and it is difficult to reduce costs.
The present invention has been made in view of the above, and it is an object of the present invention to provide a lathe machining member that, when forming a product made of a rare and expensive material by lathe machining, is capable of reducing waste of such material and reducing costs.
To solve the problem described above and achieve the object, a lathe machining member according to the present invention that is mounted on a lathe to be lathe machined, includes: a cylindrical core portion, at least a part of which is made of a noble metal alloy and which has a diameter larger than a maximum diameter of a shape obtained by lathe machining; and a hollow-cylindrical peripheral portion made of a material different from the material of the core portion, wherein the core portion is arranged in a hollow portion of the peripheral portion with no space.
The lathe machining member according to the invention as set forth in the invention described above, the core portion includes a hollow-cylindrical outer core portion; and an inner core portion that is arranged in a hollow portion of the outer core portion with no space, wherein one of the outer core portion and the inner core portion is made of the noble metal alloy and the other one of the outer core portion and the inner core portion is made of a material different from the noble metal alloy.
The lathe machining member according to the invention as set forth in the invention described above, a diameter of the inner core portion is smaller than the maximum diameter.
The lathe machining member according to the invention as set forth in the invention described above, the peripheral portion is made of an alloy material.
The lathe machining member according to the invention as set forth in the invention described above, the alloy material is one material selected from the group consisting of copper-nickel silver, silver-copper alloy, brass, phosphor bronze, and beryllium copper.
The lathe machining member according to the invention as set forth in the invention described above, the alloy material is one material selected from the group consisting of free-cutting brass, free-cutting phosphor bronze, free cutting nickel silver, and free-cutting beryllium copper.
The lathe machining member according to the invention as set forth in the invention described above, the peripheral portion is made of iron.
According to the present invention, a cylindrical core portion, at least a part of which is made of a noble metal alloy and which has a diameter larger than a maximum diameter of a shape obtained by lathe machining, and a hollow-cylindrical peripheral portion, which is made of a material different from the material of the core portion, are included. The core portion is arranged in a hollow portion of the peripheral portion with no space. Therefore, most of a portion to be cut off by using a lathe can be made of a material other than the noble metal alloy. Consequently, when a rare and expensive material such as noble metal alloy is used as a raw material for forming a machined product, it is possible to reduce waste of such material, enabling to reduce costs.
Best modes for carrying out the present invention (hereinafter, “embodiments”) are explained below with reference to the accompanying drawings.
The peripheral portion 2 is made of an alloy material. Any one material selected from a group of, for example, copper-nickel silver, silver-copper alloy, brass, phosphor bronze, and beryllium copper can be applied as the alloy material. Further, any one material (free-cutting material) selected from a group of, for example, free-cutting brass, free-cutting phosphor bronze, free cutting nickel silver, and free-cutting beryllium copper can be applied as the alloy material. A material other than the alloy material (for example, iron) may be applied to the peripheral portion 2.
The core portion 3 is made of a noble metal alloy. For example, an alloy mainly consisting of silver (Ag), palladium (Pd), gold (Au), platinum (Pt), zinc (Zn), copper (Cu), iron (Fe), and nickel (Ni), an alloy mainly consisting of palladium, silver, and copper, or an alloy mainly consisting of silver, platinum, zinc, gold, and copper may be applied as the noble metal alloy. The lathe machining member 1 is formed by a wire drawing process or a drawing process such that a predetermined ratio is maintained between the diameter of the peripheral portion 2 and the diameter of the core portion 3.
In
Although a case is illustrated in
According to the first embodiment of the present invention described above, the cylindrical core portion 3, at least a part of which is made of a noble metal alloy and which has the diameter larger than the maximum diameter of a shape obtained by lathe machining, and the hollow-cylindrical peripheral portion 2, which is made of a material different from the material of the core portion 3, are included. Further, the core portion 3 is arranged in the hollow portion of the peripheral portion 2 with no space. Therefore, most of a portion to be cut off by using the lathe can be made of a material other than the noble metal alloy. Consequently, when a rare and expensive material such as a noble metal alloy is used as a raw material for forming a machined product, it is possible to reduce waste of such material, enabling to reduce costs.
The core portion 8 includes a hollow-cylindrical outer core portion 81 and an inner core portion 82 that is arranged in a hollow portion of the outer core portion 81 with no space. One of the outer core portion 81 and the inner core portion 82 is made of a noble metal alloy similarly to the core portion 3 described above, and the other is made of metal, such as cooper or aluminum, other than the noble metal alloy. A combination of the materials of the outer core portion 81 and the inner core portion 82 may be determined depending on intended end-usage of a machined product.
In
According to the second embodiment of the present invention described above, similarly to the first embodiment, when a rare and expensive material such as a noble metal alloy is used as a raw material for shaping a machined produce, it is possible to reduce waste of such material, enabling to reduce costs.
Furthermore, according to the second embodiment of the present invention, because the core portion 8 includes the outer core portion 81 and the inner core portion 82, which are made of mutually different metals (including a noble metal alloy), it is possible to combine optimal materials depending on use of the machined product.
In the second embodiment, a multi-layer structure formed of more than two layers made of mutually different metals may be applied to the core portion instead of the two layers formed of the outer core portion and the inner core portion.
The embodiment is described above as best modes for carrying out the present invention; however, the present invention should not be limited to the above embodiment. The present invention can include various embodiments and the like not described herein. Further, various design changes and the like may be made in the range without departing from the technical idea as specified by the claims.
As described above, the present invention is useful as a member to be mounted on a lathe to be lathe machined.
Number | Date | Country | Kind |
---|---|---|---|
2008-206239 | Aug 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/064141 | 8/10/2009 | WO | 00 | 1/25/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/016609 | 2/11/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2196303 | Hensel et al. | Apr 1940 | A |
2527599 | Terry | Oct 1950 | A |
2872899 | Trespalacios | Feb 1959 | A |
2930115 | Dietzsch, Sr. et al. | Mar 1960 | A |
3982933 | Rudolph et al. | Sep 1976 | A |
4500027 | Nakajima | Feb 1985 | A |
6386423 | Adler et al. | May 2002 | B1 |
Number | Date | Country |
---|---|---|
05-309538 | Nov 1993 | JP |
06-050391 | Feb 1994 | JP |
07-275924 | Oct 1995 | JP |
2000-343365 | Dec 2000 | JP |
2003-291002 | Oct 2003 | JP |
Entry |
---|
Silver Data Sheet—posted online Nov. 19, 2002, 3 pages. |
Internet Archive Wayback Machine “http://www.mindat.org/min-2045.html” from Sep. 27, 2003. |
International Search Report dated Oct. 6, 2009, issued for PCT/JP2009/064141. |
Office Action for Japanese Patent Application 2010-523916 mailed on Jul. 3, 2012. |
Number | Date | Country | |
---|---|---|---|
20110123827 A1 | May 2011 | US |