The present disclosure relates generally to a packer assembly and other downhole tools used in wells, and specifically, to a lattice seal packer assembly.
After a well is drilled and a target reservoir has been encountered, completion and production operations are performed, which may include sand control processes to prevent formation sand, fines, and other particulates from entering production tubing along with a formation fluid. Typically, one or more sand screens may be installed along the formation fluid flow path between production tubing and the surrounding reservoir. Additionally, the annulus formed between the production tubing and the casing (if a cased hole) or the formation (if an open hole) may be packed with a relatively coarse sand or gravel during gravel packing operations to filter the sand from the formation fluid. This coarse sand or gravel also supports the borehole in uncased holes and prevents the formation from collapsing into the annulus.
Generally, gravel packing operations include placing a lower completion assembly downhole within the target reservoir. The lower completion assembly may include one or more screens along the production tubing that is disposed between packer assemblies. After the lower completion assembly is placed in the desired location downhole, the packer assemblies are set (e.g., expanding or swelling the packer) to define zones within the annulus.
Often, a packer in the packer assembly includes rubber elements, which may be incompatible with certain downhole fluids. Additionally, the stiffness of rubber elements are often dependent on localized temperatures downhole, which may limit the completion operations.
The present disclosure is directed to a packer assembly that includes a lattice seal that addresses one or more of the foregoing issues.
Various embodiments of the present disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments of the disclosure. In the drawings, like reference numbers may indicate identical or functionally similar elements.
Illustrative embodiments and related methods of the present disclosure are described below as they might be employed in a lattice seal packer assembly and method of operating the same. In the interest of clarity, not all features of an actual implementation or method are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. Further aspects and advantages of the various embodiments and related methods of the disclosure will become apparent from consideration of the following description and drawings.
The foregoing disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper,” “uphole,” “downhole,” “upstream,” “downstream,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the apparatus in use or operation in addition to the orientation depicted in the figures. For example, if the apparatus in the figures is turned over, elements described as being “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” may encompass both an orientation of above and below. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
Referring initially to
Even though
In one or more exemplary embodiments, and as illustrated in
In one or more exemplary embodiments, the lattice cell is shaped such that it is adapted to expand radially when compressed axially such that the seal 170 expands in the radial direction indicated by numeral 173 when the blocking members 155 and 160 compress the seal 170 in the directions indicated by the numerals 171 and 172 (i.e., axial compression). In one or more exemplary embodiments, the blocking members 155 and 160 compress the lattice seal 170 until the lattice structure 175 acts as a solid structure (i.e., at least a portion of the voids within the plurality of voids 176 formed within the lattice structure 175 are eliminated) and the lattice structure 175 contacts the casing 80 to form a sealing surface that sealingly engages the inner surface of the casing 80 to fluidically isolate at least a portion of the inner surface of the casing 80. In one or more exemplary embodiments, the lattice seal 170 includes a skin 180 that surrounds at least a portion of the lattice structure 175. In one or more exemplary embodiments, the skin 180 is a solid material that acts as the sealing surface when the lattice seal 170 expands in the radial direction to contact the inner surface of the casing 80. However, there are a variety of ways that the lattice seal 170 may form the sealing surface. For example, the lattice cells may be infiltrated with an elastomer 185 and the elastomer 185 acts as the sealing surface when the lattice seal 170 expands in the radial direction to contact the inner surface of the casing 80. In one or more exemplary embodiments, the elastomer 185 may be a swelling elastomer and the lattice structure 175 expands in the radial direction in response to the swelling of the swellable elastomer 185. In one or more other exemplary embodiments, the lattice cells may be infiltrated with a powder that acts as a semi-compressible material, such as a metal powder that is a residue of additive manufacturing. In another example, the lattice cells are filled with salts/scale from the wellbore fluids. Generally, as seal 170 expands in the radial direction, an outer circumference of the seal 170 increases. In one or more exemplary embodiments, the skin 180 expands to allow for the increase in outer circumference. In one or more exemplary embodiments, the skin 180 includes connecting members 180a that extend between axial ribs 180b as shown in
In one or more other exemplary embodiments, the lattice seal 170 may expand outward by “buckling” outward towards the casing 80 to form the sealing surface. In one or more exemplary embodiments and as shown in
In one or more exemplary embodiments and as illustrated in
In one or more exemplary embodiments, a method of operating the packer 120 may include positioning the packer 120 between adjacent first and second zones of a wellbore and expanding the seal 170, 190, or 200 in a radially outward direction to sealingly engage the inner surface of the casing 80 and to move a first plurality of connecting members relative to a second plurality of connecting members. In one or more exemplary embodiments, expanding the seal 170 includes sealingly engaging the elastomer 185 against the inner surface of the casing 80. In one or more exemplary embodiments, expanding the seal element 200 includes sealingly engaging the elastomer 210 against the inner surface of the casing 80. In one or more exemplary embodiments, expanding the seal 170 includes capturing debris from downhole fluids within one or more of the plurality of cells such that the seal 170 expands radially outward.
In one or more exemplary embodiments, any one of the lattice seals 170, 190, and 200 eliminates the need for a back-up system and dramatically reduces the possibility of element swab-off and premature set in permanent packer elements, such as the packer 120. In one or more exemplary embodiments, any one of the lattice seals 170, 190, and 200 also enables higher temperature operation and use in a wide range of fluids. In one or more exemplary embodiments, any one of the lattice seals 170, 190, and 200 that is comprised of a metal may perform the load bearing functionality of slips, allowing for the traditional slips to be removed which reduces the length, complexity, and manufacturing cost of the packer assembly 120. In one or more exemplary embodiments, omission of the slips would also reduce movement during pressure reversals that could meet more demanding requirements from operators for cyclic testing.
Exemplary embodiments of the present disclosure can be altered in a variety of ways. In some embodiments, any one of the lattice seals 170, 190, and 200 is not limited use with the packer 120, but may be included in any one of a variety of downhole tools. Additionally, the lattice structure 175 may be included in any one of variety of downhole tools, such as for example an expansion joint; a travel joint; a seal bore; an anchor such as for example a liner hanger; and a bridge plug. In one or more exemplary embodiments, the lattice structure 175 may be used as to energize a spring or a collet that forms a part of a downhole tool.
In one or more exemplary embodiments, the lattice structure 175 may comprise a lattice elements, such as for example a plurality of rods, plates, acicular elements, corpuscular elements, solids, or any other component. In one or more exemplary embodiments, the lattice structure 175 may be a uniform lattice, a conformal lattice, or a non-uniform lattice. In one or more exemplary embodiments, the geometry of the lattice structure 175 does not vary in the uniform lattice. In one or more exemplary embodiments, the lattice elements of the uniform lattice are parallel with each other on different sides of the lattice structure 175. In one or more exemplary embodiments, the lattice elements are distorted to follow the geometry of the lattice structure 175 in the conformal lattice. In one or more exemplary embodiments, the non-uniform lattice structure may include a continuous gradation of cells as a function of position along the lattice structure 175. In one or more exemplary embodiments, the variation may include cell shape, density, size, mechanical properties, or any other property affected by geometric changes. In one or more exemplary embodiments, the lattice structure 175 includes a first plurality of lattice elements or connecting members and a second plurality of lattice elements or connecting members that move relative to the first plurality of connecting members. In one or more exemplary embodiments, one of more of the lattice cells is formed from at least two connecting members, with each of the at least two connecting members being from the first plurality of connecting members or from the second plurality of connecting members. In one or more exemplary embodiments, the lattice structure 175 is comprised of a metal. In one or more exemplary embodiments, the lattice structure 175 is comprised of a plastic. In one or more exemplary embodiments, the lattice seal 170 and/or the lattice structure includes a metamaterial. In one or more exemplary embodiments, the metamaterial achieves unique properties by using a precise design. In one or more exemplary embodiments, the metamaterial gains unique properties due to unique use of repeating patterns in the construction of the metamaterial. For example, the shape, geometry, size, orientation, and arrangement of patterns are used to create mechanical properties of the bulk structure of the metamaterial that are different from the mechanical properties of the raw material. In one or more exemplary embodiments, the lattice structure 175 includes lattice elements that have a center-to-center spacing of any of one: less than 0.5 inches; less than 0.25 inches; less than 0.1250 inches; and less than 0.625 inches.
In one or more exemplary embodiments, the lattice structure 175 may be an auxetic lattice 212 and form a portion of a plug 215 as illustrated in
In one or more exemplary embodiments, the lattice structure 175 may create a first material 222 that has a high Poisson's ratio and that forms a portion of compression plug or a bridge plug 225 as illustrated in
In one or more exemplary embodiments, the lattice structure 175 is a shear expanding lattice 228 and forms a portion of an anchor 230 as shown in
In one or more exemplary embodiments, the lattice structure 175 may be structured to create a second material 239 in which different Poisson's ratios can be created in different directions within the second material 239. For example, the second material 239 may form the auxetic lattice in one direction while having a very high expansion ratio in the transverse direction. In one or more exemplary embodiments and as illustrated in
In one or more exemplary embodiments, the lattice structure 175 can survive high temperatures, aggressive wellbore fluids, high run-in speeds, and forgiving backup rings. In one or more exemplary embodiments, the lattice structure 175 can create materials that have a Poisson's ratio that is not normally found in nature.
In one or more exemplary embodiments, forces or movement in the axial direction are generally perpendicular to forces or movement in the radial direction.
A method of optimizing the design of a metamaterial that includes the lattice structure 175 includes creating a preliminary design of the component using a mechanical metamaterial; numerically analyzing the design based on a loading profile; changing the preliminary design based on the results from the numerical analysis, which creates a new design; and using additive manufacturing to create the new design to form the lattice structure 175. The components of the design that can be optimized include any one of a lattice cell shape, the weight of the lattice elements, the conformal profile of the lattice, the stiffness of the lattice flexures, or the material in the lattice structure 175.
In one or more exemplary embodiments, the lattice cells may be used to hold or secure a coating to the lattice structure 175 and/or to the skin 180. In one or more exemplary embodiments, securing a coating to the lattice structure 175 and/or to the skin 180 may be appropriate when the lattice structure 175 and/or to the skin 180 forms a portion of the exterior surface of the lattice seal 170. For example, the lattice structure 175 and/or to the skin 180 can be adjacent to a flow path that is at least partially defined by an inner surface of a tubing or the mandrel 165. In one or more exemplary embodiments, the lattice structure 175 and/or to the skin 180 may also be a “skeleton” to hold a second material, such as for example, a synthetic resin. The lattice structure 175 and/or to the skin 180 could be filled with Teflon® or another synthetic resin so that scale and paraffin would have a lower propensity to stick to the tubing or the mandrel 165. In one or more exemplary embodiments, the synthetic resin could also be used to reduce the fluid friction or to reduce tool sliding friction. In one or more exemplary embodiments, using the lattice structure 175 and/or to the skin 180 that is composed of a metal material encourages the Teflon® to stick to the metal material and prevents peeling when exposed to damage. In one or more exemplary embodiments, the lattice cells could also be at least partially filled with any one or more of an erosion resistant coating, an energy absorbing coating, and a corrosion resistant coating. In one or more exemplary embodiments, the coating may also be used for energy dampening. Generally, a viscoelastic material can absorb the energy from particles that would cause erosion and could also be used to absorb acoustic energy such as from acoustic telemetry, acoustic logging, perforating charges, or drilling. However and in one or more exemplary embodiments, the lattice cells within the lattice structure 175 and/or to the skin 180 that is located on a flow surface, or adjacent to the flow path, can remain unfilled. In one or more exemplary embodiments, the unfilled lattice cells may create turbulence to help redirect the flow of a fluid or to provide restriction to the fluid flow. In one or more exemplary embodiments, the lattice structure 175 and/or to the skin 180 that has unfilled lattice cells may also serve as a “shark skin” to reduce fluid friction and to reduce flow separation, with flow separation often resulting in increased drag and increased propensity to form scale. In one or more exemplary embodiments, the lattice structure 175 and/or to the skin 180 that is located on the flow surface can also help with heat transfer, which would encourage the cooling of electronics as well as for flow velocity sensors.
In one or more exemplary embodiments, the lattice structure 175 may be included in, or serve as, a crumple zone and be crushed to absorb energy, which would prevent or reduce the likelihood that sensitive components would be damaged from shock loads. In one or more exemplary embodiments, and using the anisotropy of the lattice structure 175, shock energy may be absorbed in one direction (axial from the bit) while still being stiff to another desired sensitivity direction (such as radial acceleration or collapse pressure). In one or more exemplary embodiments, the lattice structure 175 may make an impression for fishing expeditions. In one or more exemplary embodiments, the lattice structure 175 may be used to create a shear pin or equivalent frangible device. In one or more exemplary embodiments, the lattice cells within the lattice structure 175 may be filled with a degradable material, which would provide different shear strengths to the shear pin. That is, when the lattice cells are filled with the degradable material, the shear pin would be much stronger than after the material has degraded, which could serve as a surface safety device to prevent premature shifting of a tool, such as the accidental firing of a tubing conveyed perforating gun or the accidental shifting of a sleeve. In one or more exemplary embodiments, and after the tool is installed and after the material has degraded, then the shear value is reduced to enable easier shifting of the tool.
In one or more exemplary embodiments, the lattice structure 175 enables a more compliant structure, so that for example packer slips are more likely to be held in place. In one or more exemplary embodiments, the compliance in the packer slip or the element shoe allows for some movement in the component but maintains a holding force. In one or more exemplary embodiments, the lattice structure 175 may be used to maintain a loading on any other moving part, such as elastomeric packer elements. In one or more exemplary embodiments, the compliance of the lattice structure 175 may act as a spring element with variable stiffness and with tailorable stiffness (i.e., having a first spring constant (force per displacement) until a certain displacement is reached, at which point the stiffness increases). In one or more exemplary embodiments, the tailored compliance also allows for more effective load distribution, such as on the sealing surface of a safety valve flapper. In one or more exemplary embodiments, the compliance may have a negative stiffness. In one or more exemplary embodiments, the lattice structure 175 is constructed from lattices of different stiffnesses and/or widths. In one or more exemplary embodiments, as the lattice structure 175a is initially pulled, the stiffness is positive (force/stroke>0). In one or more exemplary embodiments, and as the pull is increased, the stiffness becomes negative. In one or more exemplary embodiments, with the variable stiffness, different stiffnesses may be created in different directions. For example, a low stiffness (high compliance) may be present on the sealing surfaces and in the transverse direction, and where high force is needed the lattice structure 175 can exhibit high stiffness in the pressure holding direction. In one or more exemplary embodiments, the high compliances on the sealing surfaces allows for achieving a consistent contact between the sealing surfaces even if the surfaces are damaged or defective. In one or more exemplary embodiments, the high stiffness allows for holding a high load and for minimizing extrusion.
In one or more exemplary embodiments, the lattice structure 175 has an open cell porous structure, which may be used to filter solids from a fluid. Thus, a hydrostatic set tool or a hydraulic set tool may include the lattice structure 175 to act as a filter on the entrance of the tool. In one or more exemplary embodiments, the lattice structure 175 provides a high porosity and thus lower pressure drop. In one or more exemplary embodiments, the lattice structure 175 can also be engineered to have varying porosity or pore size along an axis, similar to PetroGuard® Advanced Mesh screen by Halliburton Energy Services of Houston, Tex. In one or more exemplary embodiments, the lattice structure 175 is different from a woven mesh, such as in the PetroGuard® Advanced Mesh screen, because the lattice structure 175 is constructed via an additive manufacturing technique, or three dimensional (“3D”) printing rather than a woven process.
In one or more exemplary embodiments, the lattice structure 175 may be designed to create a tortuous pathway, which provides a flow restriction. In one or more exemplary embodiments and for the hydraulic set tool, the tortuous pathway restricts the speed at which the tool sets and prevents dynamic damage from occurring. In one or more exemplary embodiments, providing the hydraulic set tool with the lattice structure 175 eliminates the need for some jet components, which can be costly and difficult to install. In one or more exemplary embodiments, additional friction from flow through a screen formed from the lattice structure 175 would allow for a better distribution of the flow of a liquid, which is very important for gas wells that are using inflow control devices, as well as for injection wells that have limited entry.
In one or more exemplary embodiments, the lattice structure 175 may serve as the equivalent of a honeycomb structure to provide support to load bearing walls. In one or more exemplary embodiments, the lattice structure 175 provides an open volume for use as a hydraulic chamber, a vacuum chamber, or as a liquid spring. In one or more exemplary embodiments, a portion of the lattice cells within the lattice structure 175 stores fluid.
In one or more exemplary embodiments, the lattice structure 175 may form a portion of one or more walls of a pressure housing or provide strain relief at the edges of pressure housings.
In one or more exemplary embodiments, the lattice structure 175 may be used to form at least a portion of an expandable tubular, such as for example an expandable patch, an expandable liner, an expandable casing, an expandable hanger, and an expandable screen. In one or more exemplary embodiments, and when the lattice structure 175 is used form a portion of an expandable screen, the expandable screen is configured to expand and filter. In one or more exemplary embodiments, the lattice structure 175 may provide a consistent filter size as the expansion changes.
In one or more exemplary embodiments, a portion of the lattice structure 175 may be designed with lattice elements that behave like expandable the truss members as described in U.S. Patent Application No. 2013/0220643, the entire disclosure of which is hereby incorporated by reference. In one or more exemplary embodiments, the lattice cells in the lattice structure 175 could be configured such that the lattice cells are a smaller version of the pattern cut into the expandable truss support structure, which gives the expandable truss support structure a large expansion ratio. This would be beneficial because it would limit the amount of damage done to the hydraulic inflation setting tool used to expand the support structure. Truss elements could also be made with rounded edges, which would further reduce the damage done to the inflatable tool.
In one or more exemplary embodiments, a downhole tool that includes the lattice structure 175 may be run in-hole quickly, which saves rig time and associated operational expenses. In one or more exemplary embodiments, the cost of poor quality (“COPQ”) associated with back-ups and premature deployment would be reduced or eliminated when the lattice structure 175 forms a portion of the downhole tool. In one or more exemplary embodiments, the downhole tool that includes the lattice structure 175 may require less material, and therefore may be associated with reduced cost. In one or more exemplary embodiments, the downhole tool that includes the lattice structure 175 may have less mass. In one or more exemplary embodiments, the downhole tool that includes the lattice structure 175 has lower density than a solid structure and, thus, has less mass for the same volume. In one or more exemplary embodiments, the downhole tool that includes the lattice structure 175 forms a compliant mechanism. That is, the downhole tool that includes the lattice structure 175 can be designed to move under load. In one or more exemplary embodiments, the downhole tool that includes the lattice structure 175 may increase vibration dampening. In one or more exemplary embodiments, the downhole tool that includes the lattice structure 175 dampens vibrations, as the bending of the lattice structure 175 absorbs and dampens the vibrations much better than a solid structure.
In one or more exemplary embodiments, the lattice seal 170 and/or the lattice structure 175 are not limited to packer applications. The lattice seal 170 and/or the lattice structure 175 may be used in crumple zones such that the lattice structure 175 is designed to be crushed or to be compacted while under load and/or may be used as a filled lattice, such that the lattice structure 175 can be filled with another component that either provides stiffness, compliance, sealing, or chemical delivery. Additionally, the lattice seal 170 and/or the lattice structure 175 may be used to create a non-isotropic, non-homogenous metal. For example, a lattice structure 175, especially a layered lattice, may be used to create a metallic component that is non-isotropic or non-homogenous (i.e., additional stiffness could be designed into the part at one point and additional compliance at another or the component could have reduced stiffness for axial motion but retain high stiffness in burst and collapse).
In one or more exemplary embodiments, the sealing surface of the lattice seals 170, 190, and 200 may contact an inner surface of the wellbore if the wellbore is an open hole wellbore.
In one or more exemplary embodiments and as shown in
In one or more exemplary embodiments, the one or more computers 355 includes a computer processor 370 and a computer readable medium 375 operably coupled thereto. Instructions accessible to, and executable by, the computer processor 370 are stored on the computer readable medium 375. A database 380 is also stored in the computer readable medium 375. In one or more exemplary embodiments, the computer 355 also includes an input device 385 and an output device 390. In one or more exemplary embodiments, web browser software is stored in the computer readable medium 375. In one or more exemplary embodiments, three dimension modeling software is stored in the computer readable medium. In one or more exemplary embodiments, software that includes advanced numerical method for topology optimization, which assists in determining optimum void shape, void size distribution, and void density distribution or other topological features in any portion of any one of the lattice seals 170, 190, 200, the skin 180, or the lattice structure 175, is stored in the computer readable medium. In one or more exemplary embodiments, software involving finite element analysis and topology optimization is stored in the computer readable medium. In one or more exemplary embodiments, the input device 385 is a keyboard, mouse, or other device coupled to the computer 355 that sends instructions to the computer 355. In one or more exemplary embodiments, the input device 385 and the output device 390 include a graphical display, which, in several exemplary embodiments, is in the form of, or includes, one or more digital displays, one or more liquid crystal displays, one or more cathode ray tube monitors, and/or any combination thereof. In one or more exemplary embodiments, the output device 390 includes a graphical display, a printer, a plotter, and/or any combination thereof. In one or more exemplary embodiments, the input device 385 is the output device 390, and the output device 390 is the input device 385. In several exemplary embodiments, the computer 355 is a thin client. In several exemplary embodiments, the computer 355 is a thick client. In several exemplary embodiments, the computer 355 functions as both a thin client and a thick client. In several exemplary embodiments, the computer 355 is, or includes, a telephone, a personal computer, a personal digital assistant, a cellular telephone, other types of telecommunications devices, other types of computing devices, and/or any combination thereof. In one or more exemplary embodiments, the computer 355 is capable of running or executing an application. In one or more exemplary embodiments, the application is an application server, which in several exemplary embodiments includes and/or executes one or more web-based programs, Intranet-based programs, and/or any combination thereof. In one or more exemplary embodiments, the application includes a computer program including a plurality of instructions, data, and/or any combination thereof. In one or more exemplary embodiments, the application written in, for example, HyperText Markup Language (HTML), Cascading Style Sheets (CSS), JavaScript, Extensible Markup Language (XML), asynchronous JavaScript and XML (Ajax), and/or any combination thereof.
In one or more exemplary embodiments, the printer 360 is a conventional three-dimensional printer. In one or more exemplary embodiments, the printer 360 includes a layer deposition mechanism for depositing material in successive adjacent layers; and a bonding mechanism for selectively bonding one or more materials deposited in each layer. In one or more exemplary embodiments, the printer 360 is arranged to form a unitary printed body by depositing and selectively bonding a plurality of layers of material one on top of the other. In one or more exemplary embodiments, the printer 360 is arranged to deposit and selectively bond two or more different materials in each layer, and wherein the bonding mechanism includes a first device for bonding a first material in each layer and a second device, different from the first device, for bonding a second material in each layer. In one or more exemplary embodiments, the first device is an ink jet printer for selectively applying a solvent, activator or adhesive onto a deposited layer of material. In one or more exemplary embodiments, the second device is a laser for selectively sintering material in a deposited layer of material. In one or more exemplary embodiments, the layer deposition means includes a device for selectively depositing at least the first and second materials in each layer. In one or more exemplary embodiments, any one of the two or more different materials may be ABS plastic, PLA, polyamide, glass filled polyamide, sterolithography materials, silver, titanium, steel, wax, photopolymers, polycarbonate, and a variety of other materials. In one or more exemplary embodiments, the printer 360 may involve fused deposition modeling, selective laser sintering or laser melting, multi-jet modeling, stereolithography, fused deposition modeling, and/or photopolymerization.
In one or more exemplary embodiments, as illustrated in
In several exemplary embodiments, the one or more computers 355, the printer 360, and/or one or more components thereof, are, or at least include, the computing device 1000 and/or components thereof, and/or one or more computing devices that are substantially similar to the computing device 1000 and/or components thereof. In several exemplary embodiments, one or more of the above-described components of one or more of the computing device 1000, one or more computers 355, and the printer 360 and/or one or more components thereof, include respective pluralities of same components.
In several exemplary embodiments, a computer system typically includes at least hardware capable of executing machine readable instructions, as well as the software for executing acts (typically machine-readable instructions) that produce a desired result. In several exemplary embodiments, a computer system may include hybrids of hardware and software, as well as computer sub-systems.
In several exemplary embodiments, hardware generally includes at least processor-capable platforms, such as client-machines (also known as personal computers or servers), and hand-held processing devices (such as smart phones, tablet computers, personal digital assistants (PDAs), or personal computing devices (PCDs), for example). In several exemplary embodiments, hardware may include any physical device that is capable of storing machine-readable instructions, such as memory or other data storage devices. In several exemplary embodiments, other forms of hardware include hardware sub-systems, including transfer devices such as modems, modem cards, ports, and port cards, for example.
In several exemplary embodiments, software includes any machine code stored in any memory medium, such as RAM or ROM, and machine code stored on other devices (such as floppy disks, flash memory, or a CD ROM, for example). In several exemplary embodiments, software may include source or object code. In several exemplary embodiments, software encompasses any set of instructions capable of being executed on a computing device such as, for example, on a client machine or server.
In several exemplary embodiments, combinations of software and hardware could also be used for providing enhanced functionality and performance for certain embodiments of the present disclosure. In one or more exemplary embodiments, software functions may be directly manufactured into a silicon chip. Accordingly, it should be understood that combinations of hardware and software are also included within the definition of a computer system and are thus envisioned by the present disclosure as possible equivalent structures and equivalent methods.
In several exemplary embodiments, computer readable mediums include, for example, passive data storage, such as a random access memory (RAM) as well as semi-permanent data storage such as a compact disk read only memory (CD-ROM). One or more exemplary embodiments of the present disclosure may be embodied in the RAM of a computer to transform a standard computer into a new specific computing machine. In several exemplary embodiments, data structures are defined organizations of data that may enable an embodiment of the present disclosure. In one or more exemplary embodiments, a data structure may provide an organization of data, or an organization of executable code.
In several exemplary embodiments, the network 365, and/or one or more portions thereof, may be designed to work on any specific architecture. In one or more exemplary embodiments, one or more portions of the network 365 may be executed on a single computer, local area networks, client-server networks, wide area networks, internets, hand-held and other portable and wireless devices and networks.
In several exemplary embodiments, a database may be any standard or proprietary database software, such as Oracle, Microsoft Access, SyBase, or DBase II, for example. In several exemplary embodiments, the database may have fields, records, data, and other database elements that may be associated through database specific software. In several exemplary embodiments, data may be mapped. In several exemplary embodiments, mapping is the process of associating one data entry with another data entry. In one or more exemplary embodiments, the data contained in the location of a character file can be mapped to a field in a second table. In several exemplary embodiments, the physical location of the database is not limiting, and the database may be distributed. In one or more exemplary embodiments, the database may exist remotely from the server, and run on a separate platform. In one or more exemplary embodiments, the database may be accessible across the Internet. In several exemplary embodiments, more than one database may be implemented.
In several exemplary embodiments, a computer program, such as a plurality of instructions stored on a computer readable medium, such as the computer readable medium 375, the system memory 1000e, and/or any combination thereof, may be executed by a processor to cause the processor to carry out or implement in whole or in part the operation of the system 350, and/or any combination thereof. In several exemplary embodiments, such a processor may include one or more of the computer processor 370, the processor 1000a, and/or any combination thereof. In several exemplary embodiments, such a processor may execute the plurality of instructions in connection with a virtual computer system.
In several exemplary embodiments, a plurality of instructions stored on a non-transitory computer readable medium may be executed by one or more processors to cause the one or more processors to carry out or implement in whole or in part the above-described operation of each of the above-described exemplary embodiments of the system, the method, and/or any combination thereof. In several exemplary embodiments, such a processor may include one or more of the microprocessor 1000a, any processor(s) that are part of the components of the system, and/or any combination thereof, and such a computer readable medium may be distributed among one or more components of the system. In several exemplary embodiments, such a processor may execute the plurality of instructions in connection with a virtual computer system. In several exemplary embodiments, such a plurality of instructions may communicate directly with the one or more processors, and/or may interact with one or more operating systems, middleware, firmware, other applications, and/or any combination thereof, to cause the one or more processors to execute the instructions.
In one or more exemplary embodiments, the instructions may be generated, using in part, advanced numerical method for topology optimization to determine optimum shape, size, density, and distribution of the voids formed within any portion of any one of the lattice seals 170, 190, 200, the skin 180, or the lattice structure 175, or other topological features.
During operation of the system 350, the computer processor 370 executes the plurality of instructions that causes the manufacture of any portion of any one of the lattice seals 170, 190, 200, skin 180, or the lattice structure 175 using additive manufacturing. Thus, any portion of any one of the lattice seals 170, 190, 200, skin 180, or the lattice structure 175 are at least partially manufactured using an additive manufacturing process. In one or more exemplary embodiments, any portion of any one of the lattice seals 170, 190, 200, skin 180, or the lattice structure 175 are engineered to have extremely high strength-to-weight ratios, customizable stiffness and modulus, and even more exotic bulk properties such as auxeticism (where a material exhibits a negative Poisson's ratio, such that it increases in thickness under tensile load), a thin skin, and combinations thereof that are fabricated using additive manufacturing. Thus, the back-up system, and swab/premature setting resistance can be built into an element itself, instead of relying on additional tool components or operational limitations.
In several exemplary embodiments, while different steps, processes, and procedures are described as appearing as distinct acts, one or more of the steps, one or more of the processes, and/or one or more of the procedures may also be performed in different orders, simultaneously and/or sequentially. In several exemplary embodiments, the steps, processes and/or procedures may be merged into one or more steps, processes and/or procedures. In several exemplary embodiments, one or more of the operational steps in each embodiment may be omitted. Moreover, in some instances, some features of the present disclosure may be employed without a corresponding use of the other features. Moreover, one or more of the above-described embodiments and/or variations may be combined in whole or in part with any one or more of the other above-described embodiments and/or variations.
Thus, a downhole tool has been described. Embodiments of the downhole tool may generally include an elongated base pipe and an expandable element disposed on the base pipe and that is radially expandable from a first configuration to a second configuration. For any of the foregoing embodiments, downhole tool may include any one of the following elements, alone or in combination with each other:
Thus, a method has been described. Embodiments of the method may generally include positioning a packer assembly between first and second zones of a wellbore and expanding the expandable element in a radially outward direction to sealingly engage an inner surface of the wellbore and to move the first plurality of connecting members relative to the second plurality of connecting members. For any of the foregoing embodiments, the method may include any one of the following, alone or in combination with each other:
The foregoing description and figures are not drawn to scale, but rather are illustrated to describe various embodiments of the present disclosure in simplistic form. Although various embodiments and methods have been shown and described, the disclosure is not limited to such embodiments and methods and will be understood to include all modifications and variations as would be apparent to one skilled in the art. Therefore, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Accordingly, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the disclosure as defined by the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/016190 | 2/17/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/133498 | 8/25/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5165703 | Morvant | Nov 1992 | A |
6581682 | Parent et al. | Jun 2003 | B1 |
8776876 | Hart et al. | Jul 2014 | B2 |
20040026313 | Arlon Fischer | Feb 2004 | A1 |
20080251250 | Brezinski et al. | Oct 2008 | A1 |
20100038860 | Cour | Feb 2010 | A1 |
20110240286 | Williams | Oct 2011 | A1 |
20160145968 | Marya | May 2016 | A1 |
Number | Date | Country |
---|---|---|
1680573 | Jul 2008 | EP |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT /US2015/019243 dated Sep. 25, 2015, (8 pages). |
Number | Date | Country | |
---|---|---|---|
20170342797 A1 | Nov 2017 | US |