1. Field of the Invention
The present invention generally relates to a launching device and particularly to a launching device having interchangeable barrels and pressure bottles, capable of launching a variety of different objects.
2. Discussion of Related Art
Pneumatic guns and devices are known in the art and are used for a variety of different purposes. Some pneumatic devices are designed to propel various objects, but may be limited by either pressure or volume as to what objects can be propelled. These limitations may be due to the size and particular configuration of the device, or due to the type of object being propelled. For example, pressure in paint ball guns is limited to a safe velocity for that sport. These pressures and volumes are well below those that are needed to propel a large payload, such as a grappling hook. Further, modification of such a device to enable it to handle these larger payloads is typically not possible.
Pneumatic launching devices may also require a specially designed launching apparatus to which the object to be propelled is affixed prior to launching. This is the subject of the rescue apparatus disclosed in US Re. 36,965 to Salvemini. Salvemini utilizes a self-propelled pressurized missile configured to carry an object, such as a flotation device, when the missile is projected from the device. This type of device has limitations based on the particular configuration of the missile and the type of object the missile is designed to accommodate. In addition, the size of the pressurized missile may not allow the device to propel an item such as a grappling hook because the projectile may interfere with the hook's function and inhibit its ability to obtain a secure mount on a surface, beam, branch or the like. Further, this type of device would require a substantial amount of time to reload for reuse.
Some pneumatic guns and devices provide only the ability to pump or cock the gun to produce the required pressure to launch an object. This type of pumping can be very strenuous and time consuming to the user, and will not produce the pressure or volume of compressed gas required to project or propel a large or heavy object. Other pneumatic devices may provide a source of compressed gas to provide the necessary pressure to launch the object, but are frequently configured for launching only limited types of projectiles, such as tennis balls, baseballs, and the like. Reconfiguration of these devices for launching different sizes and types of balls often requires a substantial amount of time and effort. In addition, many of these types of devices do not provide the ability to vary the amount of compressed gas to be expelled upon actuation. They also typically expel gas into a chamber upon attachment of a gas source to the device.
Other methods of launching a projectile with compressed gas utilize various styles of pumps, which may be built into the unit, or may be spring driven. These designs are also not suitable to launch a substantial payload without a considerable amount of work to pump air into an internal chamber or an incredible amount of cocking effort by the user to load a spring. These styles also do not typically allow for quick and easy installment or removal of a pressure vessel, and typically feature a fixed barrel of a single caliber.
While there are a variety of types of pneumatic devices capable of launching an object, there are no known devices capable of receiving a variety of different sizes of launching barrels and cylinders with quick connecting and disconnecting mechanisms. This type of interchangeability would allow the device to be used for a variety of different purposes. There are also no known launching devices available in the art capable of launching a large object such as a grappling hook, due to the amount of pressure needed to propel such a large or heavy object.
Thus, there is a desire and need in the art to provide a launching device configured to quickly disconnect and connect a variety of different shapes and sizes of launching barrels and cylinders of compressed gas. There is also a desire and need to provide a launching device that enables a user to select evacuation levels to allow for launching either a small object, such as a tennis ball or a larger object, such as a grappling hook.
Accordingly, the present invention provides a launching device having interchangeable barrels of varying sizes and calibers, and capable of launching a variety of objects of various shapes, sizes and weight. The present invention is particularly suited for use as a rescue device and is capable of projecting or propelling a large object, such as a grappling hook, for climbing, rescue, body retrieval, and the like while providing for quick reconfiguration to accommodate different sizes of barrels and cylinders for using the launching device for alternative purposes, such as a fire extinguisher.
In one embodiment of the present invention, a launching device includes a launch unit having a first coupling element to which a barrel is releasably connected and a second coupling element to which a cylinder is releasably connected. The launch unit further includes a selector pin to allow a user to pre-select an evacuation level of the contents of the cylinder.
In another embodiment of the present invention, a launching device includes a launch unit, a trigger, a bolt assembly having a hollow bolt, and a locking sear. A barrel is connected to the launch unit and a valve assembly is connected to the launch unit and to a cylinder. The bolt assembly is movable between a first and second position and upon actuation of the trigger, the bolt assembly moves from the first position to the second position where it is in engagement with the valve assembly and the locking sear engages the bolt assembly holding the bolt assembly in the second position.
In yet another embodiment of the present invention, a method of using a launching device having a launch unit with a first and second coupling element and a trigger is provided, the method includes the steps of: selecting a barrel from a plurality of available barrels; releasably connecting the selected barrel to one of the first and second coupling elements; and releasably connecting a source of compressed gas to the other of the first and second coupling elements.
In still another embodiment of the present invention, a method of using a launching device as a fire extinguisher is provided, the launching device having a launch unit and the launch unit including a first coupling element, a second coupling element and a trigger, the method comprising the steps of: releasably quick connect coupling a cone shaped barrel having a diffuser to one of the first and second coupling elements; releasably quick connect coupling a cylinder to the other of the first and second coupling elements, the cylinder containing liquid carbon dioxide; expelling the contents of the cylinder from the launching device upon actuation of the trigger wherein the liquid carbon dioxide is converted to a dry ice substance as it passes through the diffuser.
Other features of the present invention will become more apparent to persons having ordinary skill in the art to which the present invention pertains from the following description and claims taken in conjunction with the accompanying figures.
The foregoing features, as well as other features, will become apparent with reference to the description and figures below, in which like numerals represent like elements, and in which:
The present invention provides a launching device configured to receive barrels varying in size and caliber, and capable of launching a variety of objects having different weights, shapes and sizes. Examples of such objects may include grapple hooks for climbing and rescue, pellets, arrows, shot loads for survival activities, and “duck dummies” for training hunting dogs. The present invention also provides the ability to pre-select the volume of compressed gas expelled from the launching device upon activation, and allows for containment of the compressed gas in its holding reservoir until actuation of the launching device by a user. Another feature unique to the present invention is the ability to quickly disconnect and reconnect various barrels and tanks or cylinders to and from the unit. This quick and easy connection allows a user to quickly reconfigure launching device 20 to use for different purposes.
Referring now to
Cylinder Connection
As most clearly shown in
The valve assembly 34 may also include a valve spring 40, a spring collar 42 and a valve pin 44 as shown in
Barrel Connection
Second coupling element 26 may be threadably connected to launch unit 22 as shown in
Launch Unit
Launch unit 22 includes an upper receiver portion 50 and a lower receiver portion 52 as most clearly shown in
Referring to
Cocking lever 78 provides a mechanical advantage for easier cocking action and includes a grip 80 to provide a comfortable gripping surface for the user. Many available devices utilize a very light spring and simple pull-back bolt, which only permits the user to produce a small amount of pressure. Others may utilize a heavy spring and a cocking lever that requires a substantially larger angle of downward rotation, and this requires more effort by the user. In contrast to these devices, the present invention incorporates a heavy bolt spring 57 to drive the bolt assembly 54 only approximately 1.905 cm (¾ inches), and only requires an angle of rotation of approximately 30 degrees to cock the launching device 20. With this configuration, the spring is compressed about 113.4 kilograms (250 pounds), with only 13.6 kilograms (30 pounds) of cocking force, thus providing for an easier cocking effort by the user.
Cocking the Launching Device
To cock launching device 20 (i.e., to place it in a ready to fire position), safety 74 must be engaged as shown in
Launching an Object in Partial Evacuation Mode
To use launching device 20 to propel small or light weight objects (such as tennis balls, paint balls, and the like), only a small amount of compressed gas may be required. For this type of projectile, launching device 20 may be placed in a “partial evacuation” mode by moving selector pin 90 to the up position as described above for cocking launching device 20 and as shown in
When launching device 20 is fired in the partial evacuation mode, sear linkage 66 is in an up position and prevents locking sear 68 from contacting bolt lug 64. The valve pin 44 will be thrust quickly into the cylinder 28 containing compressed gas and pressure remaining in the cylinder 28, together with the biasing force of valve spring 40, urges the valve pin 44 back to a closed condition quickly after firing. Therefore, the cylinder 28 is only momentarily opened, releasing only a small amount of compressed gas. The amount of compressed gas released can be modified by changing the force of bolt spring 57 (i.e., providing a spring having a different force rating), the mass of bolt assembly 54, the pressure of the compressed gas within the source of compressed gas 28, or the force of valve spring 40 in valve assembly 34.
Launching an Object in Full Evacuation Mode
The user may alternatively select a “full evacuation” mode by moving selector pin 90 to a lowered position within L-shaped slot 91 as shown in
Grappling Hook
As shown in
In the embodiment shown in
Fire Extinguisher Embodiment
Another unique and advantageous feature of the present invention is the ability to use launching device 20 to project liquid carbon dioxide outwardly from launching device 20 for use as a fire extinguisher. In this embodiment, a cylinder 104 containing liquid carbon dioxide (CO2) may be used instead of cylinder 28 containing compressed air or nitrogen. The cylinder 104 may be coupled to launch unit 22. A quick connect coupling element, such as first coupling element 24, may be utilized in the same manner as in the attachment of cylinder 28 and as shown in
Benefits of the Present Invention
As stated previously, launching device 20 is capable of launching a variety of different objects due to the ability to quick connect any desired barrel size and shape suited for the particular object to be projected from launching device 20. The device is capable of instant engagement and disengagement of barrels and cylinders and is particularly advantageous for use in climbing, rescue or body retrieval activities. A user may carry a variety of different types of barrels that may be quickly installed on launching device 20 to reconfigure it for various uses. A user may also carry several cylinders 28 for quickly replacing an exhausted cylinder. If launching device 20 is constructed of materials such as polymers and non-ferrous metals or stainless steel, the present invention is also suitable for underwater applications such as for propelling a spear or harpoon. Other types of payloads that can be propelled from launching device 20 include flotation devices, survival gear, rappelling gear, and the like, which may be releasably mounted to barrel 30 in a similar manner as grappling hook 94. Another advantage of the present invention over other devices is the use of compressed gas instead of ignitable propellants. This benefit reduces the incidence of flash and excessive reports upon firing. The launching device 20 of the present invention also provides for the ability of the user to select between partial and full evacuation of the contents of the cylinder 28 (or 104) by simply moving the selector pin 90. In addition, the ability to reconfigure the launching device 20 to be used for fire fighting provides further superior features over other launching devices available in the art.
Thus, the present invention provides superior capabilities over other launching devices. An example of such superior capabilities includes the ability to launch a 0.4536 kg (1 pound) hook with 30.48 meters (100 feet) of rope approximately 24.384 meters (80 feet) vertically in the full evacuation mode. An example of the capabilities of the launching device in partial evacuation mode is its ability to fire an arrow at approximately 182.88 meters/second (600 feet/second) and yield approximately 12 shots per charged cylinder. In contrast, the average compound bow only shoots 60.96–76.2 meters/second (200–250 feet/second).
While the invention has been described in conjunction with specific embodiments, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, the present invention attempts to embrace all such alternatives, modifications and variations that fall within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2816484 | Grages | Dec 1957 | A |
3989027 | Kahelin | Nov 1976 | A |
4019480 | Kenaio | Apr 1977 | A |
4038961 | Olofsson | Aug 1977 | A |
4079901 | Mayhew et al. | Mar 1978 | A |
4709686 | Taylor et al. | Dec 1987 | A |
4750568 | Roxton et al. | Jun 1988 | A |
4819609 | Tippmann | Apr 1989 | A |
4834059 | Moorhouse et al. | May 1989 | A |
4890597 | Ekstrom | Jan 1990 | A |
4936282 | Dobbins et al. | Jun 1990 | A |
5706795 | Gerwig | Jan 1998 | A |
RE36965 | Salvemini | Nov 2000 | E |
6244261 | West, Jr. | Jun 2001 | B1 |
6371099 | Lee | Apr 2002 | B1 |
6450160 | Fu et al. | Sep 2002 | B1 |
6540160 | Rodriguez-Amaya et al. | Apr 2003 | B1 |
20020170551 | Kotsiopoulos et al. | Nov 2002 | A1 |
20030041849 | Perry et al. | Mar 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050066951 A1 | Mar 2005 | US |