The present invention relates to a laundry dryer, in particular a domestic laundry dryer, comprising a drum intended for laundry to be dried, which is provided with at least one air line for supplying air and/or discharging air, wherein said air line can be closed by means of a temperature-activated air-flow blocking unit.
A laundry dryer of this kind is disclosed in DE 10 2007 061 521 A1. This describes a laundry dryer which is equipped with a fire-extinguishing device. This fire-extinguishing device can comprise a valve, which is arranged in an air duct to convey an air flow through a laundry drum, wherein, when the fire-extinguishing device is triggered, the valve can be controlled so that it closes off the air duct.
In the case of laundry dryers, it is repeatedly possible for certain small elements, such as, for example, lint or even small pieces of plastic, to accumulate and become deposited in the drum. When a certain temperature is reached, these elements could catch fire. This needs to be prevented. Some countries already enforce, or will shortly enforce, corresponding test methods to demonstrate that fire is unable to escape from the laundry dryer. To this end, for example, from 2013, tests will be performed in the USA to ensure that a cloth placed over the laundry dryer cannot ignite during the test.
Therefore, manufacturers of laundry dryers are keen to be able offer laundry dryers in which fire can be actively extinguished in the interior of the laundry dryer or in which fire can at least be prevented from escaping to the outside. To this end, it is known that the fire can be actively controlled by extinguishing by means of water or other chemicals once the extinguishing process has been triggered by a temperature sensor. However, a solution of this kind generally requires a functioning power supply to operate the temperature sensor and possibly further mechanisms. Alternatively, it also possible to control the fire passively by no longer using readily combustible plastic parts, but only using fire-resistant plastics or metals. However, this is only possible if higher manufacturing costs are accepted.
The present invention is based on the object of suggesting a laundry dryer, such as, in particular, a domestic laundry dryer, in which a fire occurring in the drum cannot in any way escape from the drum and for it to be extinguished automatically where possible.
This object is achieved with a laundry dryer as claimed in the independent claim. Advantageous developments of the invention are the subject matter of the dependent claims, the following description and the accompanying drawing.
A laundry dryer according to the invention comprises a drum intended to hold laundry to be dried, which is provided with at least one air line for supplying air, discharging air or both. Usually, here, there is an air inlet line to supply hot, dry air to the drum and an air outlet line to discharge moist and cooled air, which, for ease of description are described collectively as “air lines”. Obviously, it is also possible for a plurality of air lines of this kind to be provided.
The laundry dryer according to the invention is characterized by the fact that the air line can be closed by means of a temperature-activated air-flow blocking unit containing an expansion material that expands at a temperature such as those caused by a fire that has developed or is developing, to such an extent that the air line is closed thereby. Here, “expansion material” should be understood to be a material, which, from a certain temperature, expands,—wherein the thermal expansion in no way has to be in linear correlation with the temperature, but can also only start when a certain expansion temperature has been reached—to such an extent that the air line is closed thereby. Since, for example, fire in the drum caused by cotton lint, wool lint or small pieces of plastic can easily achieve temperatures of 500° C. to 800° C. and above, it is sufficient for the expansion material to undergo linear expansion and/or volume expansion at a temperature below the temperature range mentioned above, for example at 350° C. to 450° C. This solution according to the invention to the problem described above inter alia has the advantage that it is substantially more cost-effective than active fire extinguishing systems for controlling drum fires. In addition, this solution is completely independent of the power supply of the laundry dryer, since it represents an exclusively “mechanical” solution without any requirement to be connected to a power supply.
According to an advantageous development of the invention, the laundry dryer is characterized by the fact that the air-flow blocking unit comprises a hollow space, which is a part of the air line and contains the expansion material, which, at the temperature that can be caused by a fire, closes the air line in that it expands in a certain—defined or specified—way or in other words increases its volume. In this way, the air-flow blocking unit is able to close the air line directly, without the aid of an intrinsic mechanical or electrical device, in the event of a fire. Hence, no intrinsic mechanical actuation is required for the air-flow blocking unit, in particular no electrical power connection is required for its actuation.
Preferably, the expansion material is arranged in the air line completely filling its cross section and hence is embodied such that it comprises through-holes—and to be precise below the temperature range at which its volume expands—wherein the through-holes are dimensioned such that they become closed on a volume expansion of the expansion material such as that which occurs at a temperature resulting in the case of a fire. Hence, the closure of these through-holes causes the air line to be closed. This embodiment is structurally very simple to produce and functions very reliably without further intervention from outside; hence, it closes the air line very reliably and securely solely and exclusively at the temperature caused by a fire.
According to a further advantageous embodiment of the laundry dryer according to the invention, the expansion material is arranged in the air-flow blocking unit such that it serves as an actuating device for a closing device for closing the air line as soon as it expands its length and/or volume when a temperature such as that caused by a fire is reached. With this embodiment, the expansion material can also be described as a triggering device or as a trigger for a closing device for closing the air line. Here, according to an advantageous development of the invention, the air-flow blocking unit comprises a container holding the expansion material and a locking device for locking the closing device. At the same time, the closing device is kept locked for as long as the expansion material has not yet expanded and the locking occurs in a (first) position in which the air line is open. In other words, the air line remains open for as long as the expansion material has not yet expanded and hence the closing device has not yet become unlocked. Hence, the unlocking of the closing device only takes place when the expansion material expands, wherein the closing device then closes the air line.
According to an advantageous development of this embodiment, the closing device comprises a first plate with first air passages and a second plate with second air passages, wherein the second plate is arranged movably, in particular rotatably relative to the first plate. Here, the arrangement is such that the second air passages can be moved by an actuating device out of a first position, in which they have a fluid connection to the first air passages, into a second position in they do not have a fluid connection to the first air passages. Hence, the movement of the second air passages into the second position closes the air line and therefore prevents the fire from escaping from the drum via the air line. Once again, this embodiment of the invention does not require any mechanical influence from outside or any electrical power connection in order to prevent any fire that occurs from escaping from the drum, but is solely and exclusively triggered or activated by the corresponding increase in temperature. Here, it is of advantage for the actuating device to comprise a spring which strikes the second plate in its first position to move it in the direction of the second position. With this arrangement, the expansion material functions as a blocking device, which prevents the movement of the second plate for as long as the expansion material has not yet expanded and enables or releases a movement of the second plate with the second air passages initiated by the spring when the expansion material has expanded sufficiently and hence released the route for the movement of the second plate.
To ensure the reliability of the automatic activation and for the extent of the action which causes the expansion of the expansion material, it is of advantage for the expansion material to expand by a factor of at least 100%, preferably at least 200%. In other words, at a temperature such as that caused by a fire, the thickness of the expansion material is then at least twice, preferably at least three times, its thickness at room temperature.
A simple and inexpensive embodiment of the present invention is enabled if a fabric, a felt, a foamed material or a similar material is used as the expansion material, wherein this material is preferably formed from ceramic fibers, which in turn are not fire-sensitive, even at high temperatures and hence do not self-ignite.
However, it is also possible advantageously to use the following materials—which should be treated as examples only—as the expansion material:
According to a further advantageous development of the invention, the drum of the laundry dryer comprises an air inlet embodied such that the air-flow blocking unit can be arranged in the air inlet. Alternatively or additionally, the drum is advantageously embodied such that it comprises a bearing shield in which this or an additional air-flow blocking unit can be arranged, wherein this air-flow blocking unit is then arranged in the region of the drum's air outlet.
Further advantages, features and special aspects of the invention may be derived from the following description of advantageous embodiments depicted in the figures in the attached drawing, which show:
From the air inlet 22, air can flow through the drum 20 and leaves the drum 20 again via an air outlet 26 (only shown schematically) which is provided in a bearing shield 24, and leaves the laundry dryer 10 again via an air duct 40 via an air flow, which is indicated by means of an arrow A. An air-flow blocking unit 50 is arranged in the bearing shield 24 wherein
It is evident in
Alternatively to the above described embodiment of the expansion material 70, the expansion material 70 can also be provided with through-holes 72 and/or embodied such that its thickness and/or its diameter is smaller than the hollow space 32 in which it is located to such a degree that the expansion material 70 in the hollow space 32—possibly additionally or alternatively by means of the flow through the through-holes 72—can be easily circulated or permeated by the air flow and does not impede it, or at least does not impede it substantially, at the outlet through the air outlet 26. This is indicated schematically by arrows C which indicate partial air flows. It is evident that, on the occurrence of a fire, due to the expansion caused thereby, the expansion material 70 located in the hollow space 32 automatically prevents the escape of air from the air outlet 26 in that its increase in thickness and/or volume causes the air line 30 or 40, which includes the hollow space 32 or the air outlet 26, to close. The expanded state, in which the through-holes 72 are shown, is shown as a dashed line in
According to
In
As soon as a temperature is achieved in or on the plates 67, 68 and hence on the container 62 such as that caused by combustion or a fire, the expansion material 70 expands and thereby presses the displaceable stop bolt 64 away from the container onto the second plate 68 until the stop bolt 64 is located close to the second plate 68 or lies thereupon. This situation is depicted in
Hence, with the second embodiment of the laundry dryer, the air line can be closed indirectly by the increase in volume or length of the expansion material 70. In other words, here, the expansion material 70 serves as a trigger for the closing mechanism 65 surrounding the plates 67, 68.
Obviously, the invention described above is not restricted to the two embodiments described in detail. The different variants of the temperature-activated air-flow blocking unit described above can be used in both condenser dryers and tumble dryers and each guarantee reliable and automatic closure of the air line or the air lines in the case of a fire, without requiring any external influence. Since there is no requirement for connection to the mains or the provision of a battery etc. for the operation, or maintenance of standby mode, of the air-flow blocking unit, the fault tolerance of the air-flow blocking unit is also very high. It should be noted that, features of the invention described with respect to individual embodiments, such as, for example, the embodiment and arrangement of the two plates or of the hollow space to accommodate the expansion material and their dimensions and the materials used, can also be present individually or in combination, unless specified otherwise or impossible for technical reasons.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 082 861.3 | Sep 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/067707 | 9/11/2012 | WO | 00 | 3/18/2014 |