The present invention relates to a laundry dryer.
More in particular, the present invention relates to a rotary-drum household laundry dryer to which the following description refers purely by way of example without implying any loss of generality.
As it is known, rotary-drum household laundry dryers currently on the market generally comprise: a substantially parallelepiped-shaped, outer boxlike casing structured for resting on the floor; a substantially cylindrical rotatable drum which is structured for housing the laundry to be dried and which is housed in axially rotating manner inside the casing so to rotate about a substantially horizontally-oriented longitudinal reference axis, directly facing a laundry loading/unloading opening formed in the front wall of the casing; a porthole door hinged to the front wall of the casing to rotate to and from a closing position in which the door rests completely against the front wall of the casing to close the laundry loading/unloading opening and airtight seal the rotatable drum; an electrically-powered motor assembly which is housed inside the casing and is structured for driving into rotation the rotatable drum about its longitudinal reference axis; a closed-circuit, hot-air generator which is housed inside the casing and is structured to circulate inside the rotatable drum a stream of hot air which has a very low moisture content and flows through the rotatable drum and over the laundry inside the drum to rapidly dry the laundry; and finally an electronic central control unit which controls both the motor assembly and the hot-air generator to perform, on command, one of the user-selectable drying cycles stored in the same central control unit.
In most of the rotary-drum household laundry dryers currently on the market, the rotatable drum furthermore consists in a substantially cylindrical, rigid tubular body which is generally made of metal material and extends substantially horizontally inside the boxlike casing, locally aligned to the laundry loading/unloading opening. This rigid tubular body may be furthermore structured for resting on a number of idle supporting rollers which are arranged at the two axial ends of the tubular body locally parallel to the drum longitudinal reference axis, and are fixed to the boxlike casing in free revolving manner so as to allow the tubular body to freely rotate about its horizontally-oriented longitudinal reference axis. The circular front rim of the tubular body surrounds the laundry loading/unloading opening and is coupled in substantially airtight and axially rotating manner to the front wall of the boxlike casing; whereas the circular rear rim of the tubular body abuts against the rear wall of the boxlike casing and is coupled in substantially airtight and axially rotating manner directly to said rear wall.
The closed-circuit, hot-air generator in turn comprises: an air recirculating conduit which extends on the bottom of the boxlike casing and has a first end directly connected to a first air-vent realized in the rear wall of the boxlike casing, within the perimeter of the rear rim of the tubular body, and a second end directly connected to a second air-vent realized on the annular frame that delimits the laundry loading/unloading opening on the front wall of the casing; and an electrically-powered centrifugal fan which is located along the air recirculating conduit and is structured to produce an airflow which flows in closed loop through the air recirculating conduit and the rotatable drum.
The stream of hot air produced by the hot-air generator generally enters into the tubular body via the first air-vent realized in the rear wall of the boxlike casing, flows inside the tubular body for the entire length of the latter, and finally comes out of the tubular body via the second air-vent realized on the annular frame that delimits the laundry loading/unloading opening on the front wall of the casing.
The closed-circuit, hot-air generator furthermore comprises: an air-cooling device which is located along the air recirculating conduit, and is structured to cool the moist air arriving from the rotatable drum, so as to cause the condensation of the surplus moisture inside the airflow; an air-heating device which is located along the air recirculating conduit, downstream of the air-cooling device, and which is structured for heating the dehumidified airflow arriving from the air-cooling device and directed back to the rotatable drum, so that the airflow directed back into the rotatable drum is heated to a temperature preferably, though not necessarily, higher than or equal to that of the moist air flowing out of the same rotatable drum.
The closed-circuit, hot-air generator is finally provided with an air-filtering member which is arranged along the air recirculating conduit, upstream of the air-cooling device, to prevent the fluff and/or lint particles from reaching and clogging up the air-cooling device, the air-heating device and the centrifugal fan.
In some of the rotary-drum household laundry dryers currently on the market, the air-filtering member consists in a substantially wedge-shaped filtering cartridge which is fitted in removable manner into the air-vent realized on the annular frame that delimits the laundry loading/unloading opening on the front wall of the casing, so to cover/close the whole air-vent. Thus, when the porthole door is in the wide-opened position, the user is allowed to manually extract the wedge-shaped filtering cartridge from the air-vent realized on the annular frame that delimits the laundry loading/unloading opening for periodical cleaning.
DE8437357U1 discloses a wedge-like filtering cartridge for laundry driers which consists in a substantially bag- or pocket-shaped rigid shell which has a V-shaped cross section and is dimensioned for being inserted/plugged into the air-vent realized on the annular frame that delimits the laundry loading/unloading opening, so as to cover/close the whole air-vent. This bag-shaped rigid shell is furthermore divided into two or four valve-like pieces which are laterally hinged to one another, so that the rigid shell is openable in a book-like or leaflet-like manner. The flat central portion of each valve-like piece is provided with a large throughout opening which is completely covered with a close-mesh net capable to restrain the fluff and/or lint particles within the bag-shaped rigid shell.
Unluckily, periodical cleaning of the DE8437357U1 wedge-like filtering cartridge is particularly unpleasant to the user because the particular structure of the filtering cartridge allows the fluff and/or lint particles to accumulate on opposite faces of the inner and outer valve-like pieces, creating several problems at opening of the filtering cartridge.
Aim of the present invention is to provide a laundry dryer having an air-filtering cartridge which is easier to clean.
In compliance with the above aims, according to the present invention there is provided a laundry dryer having an air-filtering cartridge as claimed in claim 1 and preferably, though not necessarily, in any one of the dependent Claims.
A non-limiting embodiment of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
With reference to
Inside the boxlike casing 2, the laundry dryer 1 additionally comprises an electrically-powered motor assembly 5 structured for driving into rotation the rotatable drum 3 about its longitudinal reference axis; a closed-circuit, hot-air generator 6 which is structured to circulate through the rotatable drum 3 a stream of hot air having a low moisture level, and which flows over and rapidly dries the laundry located inside the drum 3; an electronic central control unit (not shown in the drawing) controls the motor assembly 5, the hot-air generator 6 to perform, on command, one of the user-selectable drying cycles preferably, though not necessarily, stored in the same central control unit, a further control unit 7 may be provided for controlling the operation of compressor 19.
With reference to
The circular front rim 3f of tubular body 3 surrounds the laundry loading/unloading opening realized on the front wall 2a of boxlike casing 2 and is coupled in substantially airtight and axially rotating manner to the front wall 2a, preferably with the interposition of a first circular sealing gasket. The circular rear rim 3r of tubular body 3 instead abuts against the rear wall 2b of boxlike casing 2 and is coupled in substantially airtight and axially rotating manner directly to said rear wall 2b with the interposition of a second circular sealing gasket. Front and rear circular sealing gaskets are therefore substantially coaxial to the longitudinal reference axis L of tubular body 3.
The stream of hot air produced by the hot-air generator 6 preferably enters into tubular body 3 through the rear mouth of tubular body 3, i.e. the mouth of tubular body 3 delimited by the rear rim 3r, flows inside tubular body 3 for the entire length of the latter, and finally comes out of tubular body 3 through the front mouth of tubular body 3, i.e. the mouth of tubular body 3 delimited by the front rim 3f, or vice versa.
In other words, the stream of hot air produced by the hot-air generator 6 preferably enters into tubular body 3 via a first air-vent 9 which is incorporated in the rear wall 2b of casing 2 locally aligned/faced to the rear mouth of tubular body 3, i.e. within the perimeter of the rear rim 3r of tubular body 3, and comes out of tubular body 3 via a second substantially slot-shaped, air-vent 10 which is preferably incorporated in the annular frame that, on front wall 2a, delimits the laundry loading/unloading opening of boxlike casing 2.
With reference to
In other words, hot-air generator 6 provides for continually dehumidifying and heating the air circulating inside rotatable drum 3 to rapidly dry the laundry inside the drum, and substantially comprises:
With reference to
With reference to
In other words, the rotatable drum 3 extends inside the upper boxlike cabinet 17, immediately above the supporting basement 16; the laundry loading/unloading opening of boxlike casing 2 is realized in the front wall of the upper boxlike cabinet 17; and the porthole door 4 is hinged to the front wall of the same upper boxlike cabinet 17.
The lower supporting basement 16, in turn, is preferably, though not necessarily, structured for internally housing a central/intermediate section of air recirculating conduit 11, and the air-cooling device 13, the air-heating device 14 and the centrifugal fan 12 of hot-air generator 6 are preferably located inside said central/intermediate section of the air recirculating conduit 11. Thus the lower supporting basement 16 is preferably, though not necessarily, structured for internally housing part of the hot-air generator 6.
Preferably, though not necessarily, the lower supporting basement 16 is moreover structured to directly support the drum-supporting rollers 8. In other words, the idle rollers 8 that support in free revolving manner the tubular body 3 are preferably fixed in axially rotating manner directly to the top of the lower supporting basement 16.
With reference to
The first air/refrigerant heat exchanger, traditionally referred to as the “evaporator” of the heat-pump circuit, is located inside the air recirculating conduit 11, and it is structured to remove/absorb heat from the airflow f arriving from rotatable drum 3, thus forming the air-cooling device 13 of the hot-air generator 6. The second air/refrigerant heat exchanger, traditionally referred to as the “condenser” of the heat-pump circuit, is instead located inside the air recirculating conduit 11 downstream of the first air/refrigerant heat exchanger 13, and it is structured to release heat to the airflow f arriving from the first air/refrigerant heat exchanger 13, thus forming the air-heating device 14 of the hot-air generator 6.
In the example shown, in particular, the first and second air/refrigerant heat exchangers 13 and 14 are arranged one after the other along the section of air recirculating conduit 11 which is integrated into the lower supporting basement 16 of boxlike casing 2.
In addition to the above, the heat-pump circuit 18 furthermore comprises: an electrically-powered refrigerant compressing device 19 which is interposed between the refrigerant-outlet of air/refrigerant heat exchanger 13 and the refrigerant-inlet of air/refrigerant heat exchanger 14, and it is structured for compressing the gaseous-state refrigerant directed towards heat exchanger 14 so that refrigerant pressure and temperature are much higher at the refrigerant-inlet of heat exchanger 14 than at the refrigerant-outlet of heat exchanger 13; and an expansion valve or similar known passive/operated refrigerant expansion device (for example a capillary tube, a thermostatic valve or an electrically-controlled expansion valve) which is interposed between the refrigerant-outlet of air/refrigerant heat exchanger 14 and the refrigerant-inlet of air/refrigerant heat exchanger 13, and it is structured so as to cause a rapid expansion of the refrigerant directed towards the air/refrigerant heat exchanger 13, so that refrigerant pressure and temperature are much higher at the refrigerant-outlet of heat exchanger 14 than at the refrigerant-inlet of air/refrigerant heat exchanger 13.
According to a different embodiment not shown, the hot air generator 6 may comprise an electric heater as air-heating device 14 and an air-air type heat exchanger as air-cooling device 13, where the airflow f is cooled by air taken from and exhausted to the environment surrounding the laundry machine. An appropriate air pumping device is further arranged to pump ambient air through the air-air type heat exchanger.
With reference to
In the example shown, the centrifugal fan 12 of the hot-air generator 6 is preferably at least partly housed/recessed into the lower supporting basement 16 of casing 2, i.e. into the rear wall 2b of the boxlike casing 2, roughly at the end of the central/intermediate section of the air recirculating conduit 11, and the outer volute or impeller housing of the centrifugal fan 12 is shaped/structured so as to directly communicate with, i.e. be fluidly connected to, both the central/intermediate section of the air recirculating conduit 11 and with the air-vent 9 integrated in the rear wall 2b of casing 2.
With reference to
In the example shown, the air-filtering walls 21 of shell 20 are preferably, though not necessarily, substantially specularly inclined to the center-plane M of the air-filtering shell or vessel 20, so that the air-filtering shell or vessel 20 has a substantially V- or U-shaped cross section.
The substantially bag- or pocket-shaped, air-filtering shell or vessel 20 is moreover divided into two complementary valve-like pieces 23 which are selectively separable to one another, and each valve-like piece 23 preferably incorporates a respective permeable-to-air sidewall 21 of the air-filtering shell or vessel 20. Preferably the two valve-like pieces 23 are furthermore laterally hinged to one another approximately at the bottom of the air-filtering shell or vessel 20, i.e. opposite to the upper mouth of the air-filtering shell or vessel 20, for reciprocal rotation about a transversal reference axis A which is preferably substantially parallel to the permeable-to-air sidewalls 21 of the air-filtering shell or vessel 20, so that the whole air-filtering shell or vessel 20 is openable in a book-like manner about reference axis A.
In the example shown, the two valve-like pieces 23 of the air-filtering shell or vessel 20 are preferably pivotally jointed to one another via a pair of connecting hinges 24 which are aligned to the reference axis A and are located approximately on the bottom of the air-filtering shell or vessel 20, i.e. opposite to the upper mouth of the air-filtering shell or vessel 20. Furthermore the articulation axis of the two connecting hinges 24, i.e. the rotation axis A of the two valve-like pieces 23, preferably substantially lies on the center-plane M of the air-filtering shell or vessel 20, and further preferably, it extends transversally relative to the direction of the airflow f passing through the air-filtering cartridge 15.
With reference to
Preferably, the two pieces 25 of the upper lid 22 furthermore incorporate a manually-operable snap-on locking mechanism 26 which is structured for selectively rigidly anchoring the two pieces 25 to one another when they are reciprocally coupled to form/compose the permeable-to-air upper lid 22, thus preventing any unintended opening of the first air-filtering shell or vessel 20.
In the example shown, each permeable-to-air, preferably substantially plate-like-shaped piece 25 of the upper lid 22 is preferably realized in one piece with a respective valve-like piece 23 of the bag-shaped, air-filtering shell or vessel 20. As an alternative, the permeable-to-air upper lid 22 of the air-filtering cartridge 15 may be permanently rigidly associated/fixed to one of the two valve-like pieces 23 of the air-filtering shell or vessel 20, and be structured for selectively couple in a rigid and stable, though easily releasable manner to the edge of the other valve-like piece 23 of the air-filtering shell or vessel 20.
With reference to
Preferably, though not necessarily, the permeable-to-air sidewalls 31 of the second air-filtering shell or vessel 30 are furthermore structured to restrain fluff and/or lint particles having smaller dimensions than that restrained by the permeable-to-air sidewalls 21 of the first air-filtering shell or vessel 20.
Second air-filtering shell or vessel 30 is mechanically slidingly coupled to the first air-filtering shell or vessel 20, so that the permeable-to-air sidewalls 31 of the second air-filtering shell or vessel 30 are able to slide sideways with respect to the corresponding permeable-to-air sidewalls 21 of the first air-filtering shell or vessel 20.
In other words, the second air-filtering shell or vessel 30 is mechanically coupled to the first air-filtering shell or vessel 20 in sliding manner, so that each permeable-to-air sidewall 31 of the second air-filtering shell or vessel 30 is able to slide sideways with respect to the corresponding permeable-to-air sidewall 21 of the first air-filtering shell or vessel 20, in a direction d which is substantially parallel to the same permeable-to-air sidewall 21 of the first air-filtering shell or vessel 20.
With reference to
Preferably, the pass-through opening or slot 27 is delimited by the peripheral borders of the two valve-like pieces 23 of the first air-filtering shell or vessel 20.
The second air-filtering shell or vessel 30 is preferably shaped/structured so as to be manually extractable in drawer-like manner from the first air-filtering shell or vessel 20, in a direction d which is substantially parallel to the rotation axis A of the two valve-like pieces 23 of the air-filtering shell or vessel 20.
The second, substantially bag-shaped, air-filtering shell or vessel 30, similarly to the first bag-shaped air-filtering shell or vessel 20, is preferably divided into two complementary valve-like pieces 32 which are selectively separable to one another, and each of the two valve-like pieces 32 incorporates a respective permeable-to-air sidewall 31 of the air-filtering shell or vessel 30. Furthermore the two valve-like pieces 32 of air-filtering shell or vessel 30 are preferably laterally hinged to one another so that the whole bag-shaped, air-filtering shell or vessel 30 is openable in a book-like manner.
With reference to
Preferably, each valve-like piece 32 of the second air-filtering shell or vessel 30 is furthermore shaped/structured so to mechanically couple with a respective valve-like piece 23 of the first air-filtering shell or vessel 20, so as to be able to slide with respect to the same respective valve-like piece 23 in a direction d which is both substantially parallel to the reference laying plane of the same valve-like piece 23 of the first air-filtering shell or vessel 20, and also substantially parallel to the rotation axis A of the two valve-like pieces 23 of the air-filtering shell or vessel 20.
With reference to
The second, substantially bag-shaped, air-filtering shell or vessel 30 is preferably also provided with a manually-operated, snap-on locking mechanism 35 which is structured for selectively rigidly anchoring the second air-filtering shell or vessel 30 to the first air-filtering shell or vessel 20, so to prevent any unintended extraction of the second air-filtering shell or vessel 30 from the first air-filtering shell or vessel 20. The snap-on locking mechanism 35 comprises one or more recesses 35a formed in one or both valve-like piece 32 of the second air-filtering shell or vessel 30 and one or more protrusions 35b correspondingly located on one or both valve-like piece 23 of the first air-filtering shell or vessel 20. Each protrusion 35b engages a corresponding recess 35a when the second air-filtering shell or vessel 30 is completely inserted into the first air-filtering shell or vessel 20
With reference to
The air filtering cartridge further comprises a permeable-to-air upper lid 122 which is rigidly associated/fixed to the second, substantially bag-shaped, air-filtering shell or vessel 130, so as to contemporaneously close the upper mouth of the second air-filtering shell or vessel 130 and the upper mouth of the first air-filtering shell or vessel 120. According to the invention, the airflow f, after having passed through the upper lid 122, passes first through the second substantially bag- or pocket-shaped, air-filtering shell or vessel 130 and then through the first bag- or pocket-shaped, air-filtering shell or vessel 120.
Again the second air-filtering shell or vessel 130 is mechanically slidingly coupled to the first air-filtering shell or vessel 120, so that the permeable-to-air sidewalls 131 of the second air-filtering shell or vessel 130 are able to slide sideways with respect to the corresponding permeable-to-air sidewalls 121 of the first air-filtering shell or vessel 120.
The substantially bag-shaped, air-filtering shell or vessel 120 is divided into two complementary valve-like pieces 123 which are selectively separable to one another, and each of the two valve-like pieces 123 incorporates a respective permeable-to-air sidewall 121 of the air-filtering shell or vessel 120. Furthermore the two valve-like pieces 123 of air-filtering shell or vessel 120 are preferably laterally hinged to one another so that the whole bag-shaped, air-filtering shell or vessel 120 is openable in a book-like manner.
Similarly to the air-filtering shell or vessel 120, the second, substantially bag-shaped, air-filtering shell or vessel 130 is divided into two complementary valve-like pieces 132 which are selectively separable to one another, and each of which incorporates a respective permeable-to-air sidewall 131 of the air-filtering shell or vessel 130.
Each of the two valve-like pieces 132 of the second air-filtering shell or vessel 130 is furthermore mechanically slidingly coupled to a respective valve-like piece 123 of the first air-filtering shell or vessel 120, so as to be able to slide with respect to the valve-like piece 123 in a direction d′ which is both substantially parallel to the reference laying plane of the permeable-to-air sidewall 121 of the same valve-like piece 123, and also substantially perpendicular to the permeable-to-air upper lid 122, i.e. substantially perpendicular to the upper mouth of the first and second air-filtering shells or vessels 120 and 130.
With reference to
With reference to
The second, substantially bag-shaped, air-filtering shell or vessel 130, in turn, is divided into two complementary valve-like pieces 132 each of which is mechanically slidingly coupled by means of guiding surfaces 134, 134a to a respective valve-like piece 123 of the first air-filtering shell or vessel 120, so as to be able to slide with respect to the valve-like piece 123 in a direction d′ which is substantially perpendicular to the rotation axis A′ of the two valve-like pieces 123 of the air-filtering shell or vessel 120. Guiding surfaces 134, 134a are formed, respectively, on each valve-like piece 132 of the second air-filtering shell or vessel 130 and on each valve-like piece 123 of the first air-filtering shell or vessel 120.
With reference to
Preferably, though not necessarily, the permeable-to-air sidewalls 131 of the second air-filtering shell or vessel 130 are furthermore structured to restrain fluff and/or lint particles having smaller dimensions than that restrained by the permeable-to-air sidewalls 121 of the first air-filtering shell or vessel 120.
With reference to
Preferably, the two pieces 125 of the upper lid 122 furthermore incorporate a manually-operable snap-on locking mechanism 126 which is structured for selectively rigidly anchoring the two pieces 125 to one another when they are reciprocally coupled to form/compose the permeable-to-air upper lid 122, thus preventing any unintended opening of both air-filtering shells or vessels 120 and 130.
In the example shown, each permeable-to-air piece 125 of the upper lid 122 is preferably realized in one piece with a respective valve-like piece 132 of the second air-filtering shell or vessel 130.
As an alternative, the permeable-to-air upper lid 122 of the air-filtering cartridge 15 may be permanently rigidly associated/fixed to one of the two valve-like pieces 132 of the second air-filtering shell or vessel 130, and be structured for selectively coupling in a rigid and stable, though easily releasable manner to the edge of the other valve-like piece 132 of the air-filtering shell or vessel 130.
With reference to
The air filtering cartridge further comprises a permeable-to-air upper lid 222 which is rigidly associated/fixed to the first, substantially bag-shaped, air-filtering shell or vessel 220, so as to contemporaneously close the upper mouth of the first air-filtering shell or vessel 220 and the upper mouth of the second air-filtering shell or vessel 230. According to the invention, the airflow f, after having passed through the upper lid 222, passes first through the second substantially bag- or pocket-shaped, air-filtering shell or vessel 230 and then through the first bag- or pocket-shaped, air-filtering shell or vessel 220.
The first air-filtering shell or vessel 220 is mechanically slidingly coupled to the second air-filtering shell or vessel 230, so that the permeable-to-air sidewalls 221 of the first air-filtering shell or vessel 220 are able to slide sideways with respect to the corresponding permeable-to-air sidewalls 231 of the second air-filtering shell or vessel 230.
The second substantially bag-shaped, air-filtering shell or vessel 230 is divided into two complementary valve-like pieces 232 which are selectively separable to one another, and each of the two valve-like pieces 232 incorporates a respective permeable-to-air sidewall 231 of the air-filtering shell or vessel 230. Furthermore the two valve-like pieces 232 of air-filtering shell or vessel 230 are preferably laterally hinged to one another so that the whole bag-shaped, air-filtering shell or vessel 230 is openable in a book-like manner.
Similarly to the air-filtering shell or vessel 230, the first substantially bag-shaped, air-filtering shell or vessel 220 is divided into two complementary valve-like pieces 223 which are selectively separable to one another, and each of which incorporates a respective permeable-to-air sidewall 221 of the air-filtering shell or vessel 230.
Each of the two valve-like pieces 223 of the first air-filtering shell or vessel 220 is furthermore mechanically slidingly coupled to a respective valve-like piece 232 of the second air-filtering shell or vessel 230, so as to be able to slide with respect to the valve-like piece 232 in a direction d′ which is both substantially parallel to the reference laying plane of the permeable-to-air sidewall 231 of the same valve-like piece 232, and also substantially perpendicular to the permeable-to-air upper lid 222, i.e. substantially perpendicular to the upper mouth of the first and second air-filtering shells or vessels 220 and 230.
With reference to
With reference to
The first, substantially bag-shaped, air-filtering shell or vessel 220, in turn, is divided into two complementary valve-like pieces 223 each of which is mechanically slidingly coupled by means of guiding surfaces 234, 234a to a respective valve-like piece 232 of the second air-filtering shell or vessel 230, so as to be able to slide with respect to the valve-like piece 232 in a direction d′ which is substantially perpendicular to the rotation axis A′ of the two valve-like pieces 232 of the air-filtering shell or vessel 230. Guiding surfaces 234, 234a are formed, respectively, on each valve-like piece 232 of the second air-filtering shell or vessel 230 and on each valve-like piece 223 of the first air-filtering shell or vessel 220.
With reference to
Preferably, though not necessarily, the permeable-to-air sidewalls 231 of the second air-filtering shell or vessel 230 are furthermore structured to restrain fluff and/or lint particles having smaller dimensions than that restrained by the permeable-to-air sidewalls 221 of the first air-filtering shell or vessel 220.
With reference to
Preferably, the two pieces 225 of the upper lid 222 furthermore incorporate a manually-operable snap-on locking mechanism 226 which is structured for selectively rigidly anchoring the two pieces 225 to one another when they are reciprocally coupled to form/compose the permeable-to-air upper lid 222, thus preventing any unintended opening of both air-filtering shells or vessels 220 and 230.
In the example shown, each permeable-to-air piece 225 of the upper lid 222 is preferably realized in one piece with a respective valve-like piece 223 of the first air-filtering shell or vessel 220.
In the inner face side of one valve-like piece 232 of the second air-filtering shell or vessel 230, a spacer 241 may be provided to keep valve-like pieces 232 spaced one another at a predetermined distance when the second air-filtering shell or vessel 230 is in a closed position, i.e. the two valve-like pieces 232 are coupled. The spacer 241 allows the valve-like pieces 232 to be pressed against the valve-like pieces 223 of the first air-filtering shell or vessel 220 to eliminate or reduce the possibility that the airflow f can flow between the first and second air-filtering shells or vessels 220, 230 rather than through the second air-filtering shell or vessel 230 first.
General operation of the rotary-drum household laundry drier 1 is clearly inferable from the above description, with no further explanation required.
The advantages connected to the particular structure of the substantially air-filtering cartridge 15 are large in number.
In the air-filtering cartridge 15, in fact, the fluff and/or lint particles tends to accumulate/settle on the inner face of the air-filtering walls 21, 31; 121, 131, 221, 231 of both air-filtering shells or vessels 20, 120, 220 and 30, 130, 230 thus the fluff and/or lint particles remains inside the air-filtering shells or vessels 20, 120, 220 and 30, 130, 220 when the user disassembles/opens the air-filtering cartridge 15 for periodical cleaning.
Clearly, changes may be made to the rotary-drum household laundry drier 1 as described herein without, however, departing from the scope of the present invention.
For example, the air-cooling device 13 of hot-air generator 6 may comprise an air/air heat exchanger which is located inside the air recirculating conduit 11, preferably upstream of the centrifugal fan 12, and is structured for using the external fresh air to cool down the airflow f arriving from rotatable drum 3; whereas the air-heating device 14 of hot-air generator 6 may consists in a resistor which is located inside the air recirculating conduit 11, downstream of the air/air heat exchanger and preferably also downstream of centrifugal fan 12.
Number | Date | Country | Kind |
---|---|---|---|
12175287.7 | Jul 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/063297 | 6/25/2013 | WO | 00 |