As shown in
To control its general operations, the washing machine 20 includes a machine controller 50. The machine controller 50 sends control signals to various components of the washing machine, including the drive controller 36, for carrying out a selected washing operation, which may include multiple washing, rinsing, and extraction phases. The machine controller 50 includes a control panel 56 that can be used by a user to entering operation instructions and parameter. The machine controller 50 includes a microprocessor 52 and a non-volatile memory 54 for storing program software and operation data. In a preferred embodiment, the memory 54 storing the software programs for the microprocessor is read-only.
To control the operations of the machine and to receive operational information, the machine controller is interfaced with active components of the washing machine by means of proper communication and power connections. As shown in
Turning now to
The variation of the rotational speed caused by the load imbalance is also reflected in the phase angle between the voltage and current applied to the drive by the drive controller. As shown in
In accordance with a feature of the invention, the amplitude 82 of the phase angle variation is used by the drive controller 36 to assess the magnitude of load imbalance in the drum. To that end, the drive controller 36 includes a detection circuitry 46 for sensing the phase angle between the current and voltage applied to the drive during the imbalance detection phase. The detected phase angle variation is analyzed by the microprocessor 38 to determine the amplitude of the phase angle variation. The drive controller 36 then provides a signal to indicate to the machine controller 50 the degree of load imbalance in the drum as indicated by the magnitude of phase angle variation. In a preferred embodiment, measurements of the phase angle are taken when the load imbalance is at about the 3 o'clock and 9 o'clock positions, where the load imbalance has the strongest effect on the phase angle, to ensure an accurate assessment of the magnitude of the load imbalance in the wash drum.
In a preferred embodiment, for simplicity of communication and control, the drive controller 36 characterizes the detected load imbalance as being in one of a plurality of pre-defined load imbalance zones, each of which corresponds to a range of phase angle variation amplitude. The number of imbalance zones can be selected based on a balance between the desired precision of the load imbalance indication and the simplicity of operation control, but preferably more than three load imbalance zones are used. As illustrated in
In one embodiment, the signal for indicating the load imbalance is generated using the relay 66 in the circuitry of the drive controller 36. The relay 66 is operated to close and open such that its ON/OFF state as a function of time is indicative of the detected load imbalance zone. By way of example, if the phase angle variation amplitude is equal to or less than the first zone threshold level T1, the load imbalance is in the first zone Z1. In that case, the contact of the on-board relay 66 is closed all the time, i.e., with an ON/OFF frequency of zero. If the phase angle variation amplitude is greater than the threshold level T1 but less than the threshold level T2, the detected imbalance falls in the second zone Z2. To indicate the imbalance zone Z2, the on-board relay 66 is closed and opened (or “pulsed”) at a rate of 1 Hz. If the phase angle variation amplitude is greater than the zone 2 threshold level T2 but less or equal to the zone 3 threshold level T3, the detected imbalance is in the third zone Z3, which is indicated by pulsing the on-board relay 66 at a rate of 2 Hz. If the phase angle variation amplitude is greater than the zone 3 threshold level T3 but less or equal to the zone 4 level T4, the on-board relay 66 is pulsed at a rate of 3 Hz to indicate that the imbalance is in the fourth zone Z4. If the phase angle variation amplitude is greater than the zone 4 threshold level T4, the imbalance is in the fifth zone Z5, which is the zone of the highest degree of imbalance. In that case, the on-board relay contact remains open.
The machine controller 50 receives the load-imbalance signal provided by the drive controller 36 and makes a decision as to the proper drum rotation speed that should be used for the water extraction operation with the detected load imbalance. To that end, in an embodiment, the machine controller 50 has firmware in the memory 54 that is programmed to recognize the time-dependent ON/OFF state of the relay 66 to determine the imbalance zone in which the detected load imbalance falls. Once the severity of the load imbalance as indicated by the imbalance zone signal is known, the machine controller 50 can select the proper drum rotation speed to be used for the extraction operation. As mentioned above, each of the five imbalance zones Z1-Z5 has a pre-selected extraction speed limit associated therewith. The machine controller 50, however, is not bound to use the particular extraction speed limit associated with the indicated imbalance zone as the extraction rotation speed, but can pick a lower rotation speed, such as one of the lower extraction speed limits associated with the other imbalance zones.
For instance, in the example with five imbalance zones Z1-Z5, the extraction speed SI is the maximum operational speed of the drum 24 and is associated with the imbalance zone Z1 that has the lowest degree of load imbalance, while the extraction speeds S2, S3, S4 and S5 have decreasing values selected in accordance with the magnitude of load imbalance associated with their respective imbalance zones. If the detected imbalance is in zone 1, the machine controller 50 may use any of the five preset extraction speeds, instead of being required to use the maximum speed S1. If the detected imbalance is in zone 2, the machine controller may choose one speed from S2, S3, S4, and S5. If the detected imbalance is in zone 3, the machine controller may choose one speed from S3, S4, and S5. If the detected imbalance is in zone 4, the machine controller may choose one speed from S4, and S5. If the detected imbalance is in zone 5, the machine controller may set the extraction speed to the value of S5, which is the lowest of the pre-set extraction speeds.
Alternatively, depending on the extraction needs, instead of choosing from a set of pre-defined extraction speeds based on the detected imbalance zone, the machine controller 50 may initiate a redistribution operation to redistribute the load in the drum 24 to have a better load balance. In the redistribution operation, the drum 24 is rotated at a low speed such that the centrifugal force on the clothing is less than 1 G. This allows the clothing to tumble and mix in the drum 24 to achieve a more even distribution. After the redistribution operation, the machine controller 50 repeats the imbalance sensing operation, and receives a new imbalance zone signal from the drive controller 36. The machine controller 50 may then set the drum rotation speed for water extraction based on that signal, or repeat the redistribution operation if necessary. Once the extraction speed is set, the machine controller 50 sends signals through the command line 60 to communicate to the drive controller 36 the selected extraction speed. The drive controller 36 then operates the motor 28 to rotate the drum 24 at the selected speed to carries out the extraction operation.
The imbalance detection and extraction rotation speed control as described above provides advantages over conventional methods of balance detection and speed control. First, the communication of the detected load imbalance from the drive controller 36 to the machine controller 50 enables the machine controller to select a proper drum spin speed for the laundry load. The machine controller 50 can be programmed to compare the desired rotation speed for the type of laundry load with the highest allowed spin speed for the detected imbalance zone, and make an intelligent decision on whether it is necessary to attempt a redistribution of the laundry load in the drum. Also, custom firmware for the drive controller 36 and machine controller 50 may be used to allow the machine controller to remain in control of the extraction speed so that it does not exceed a desired speed for the particular laundry load, even when the detected imbalance zone permits a higher extraction speed. In other words, the machine controller 50 is not required to automatically choose the highest spin speed allowed by the detected imbalance as the actual spin speed, which may be too high for the garments in the laundry load or may adversely affect other laundry processes. Since the machine controller 50, rather than the drive controller 36, is in control of setting the extraction speed, it has the flexibility of displaying on the control panel 56 the desired extraction speed together with the actual extraction speed upon initiating the extraction step, allowing the user to intervene if necessary. Moreover, with the imbalance zone information provided by the drive controller 36, the machine controller 50 can select a proper extraction speed before the extraction operation begins, instead of having to rely on the use of vibration sensors mounted in the machine to detect excess vibrations during the actual extraction operation. Another significant advantage is that digital signals are a more cost effective way of communication than the analog signals used in conventional imbalance control systems.
The process of detecting load imbalance and setting the extraction speed for the drum according to the detected load imbalance is summarized in the flowchart in
Based on the received signal, the machine controller determines whether it should initiate a load redistribution operation (step 94). If there is no need for load redistribution, the machine controller selects an extraction speed (step 96), which does not exceed, but may be lower than, the speed limit associated with the detected imbalance zone. The machine controller sends a command to the drive controller (step 98), along with the selected extraction speed, to the drive controller. The drive controller then controls the motor to rotate the drum to the selected extraction speed to extract water from the load step 100). If, on the other hand, the machine controller decides that it is necessary to redistribute the load in the drum to obtain a better balance, it sends a command to the drive controller to start a load redistribution operation (step 102). In response, the drive controller rotates the drum at a redistribution speed to tumble the laundry load in the drum to more evenly distribute the load in the drum (step 104). After the redistribution operation, the machine controller again directs the drive controller to perform the imbalance detection operation (step 84). This process may be repeated until the machine controller decides that the load imbalance in the drum is acceptable for the extraction operation.
In view of the many possible embodiments to which the principles of this invention may be applied, it should be recognized that the embodiment described herein with respect to the drawing Figures is meant to be illustrative only and should not be taken as limiting the scope of invention. Those of skill in the art will recognize that the elements of the illustrated embodiments can be modified in arrangement and detail without departing from the spirit of the invention. Therefore, the invention as described herein contemplates all such embodiments as may come within the scope of the following claims and equivalents thereof.