Laundry treating appliances, such as washing machines, combination washer/dryers, refreshers, and non-aqueous systems, can have a configuration based on a rotating drum that at least partially defines a treating chamber in which laundry items are placed for treating. The laundry treating appliance can have a controller that implements a number of user-selectable, pre-programmed cycles of operation having one or more operating parameters. Hot water, cold water, or a mixture thereof, along with various treating chemistries, can be supplied to the treating chamber in accordance with the cycle of operation. In addition, hot air, cold air, or a mixture thereof can be supplied to the treating chamber in accordance with the cycle of operation and via an air flow assembly.
In one aspect, the present disclosure relates to a method of extracting liquid from a laundry load residing in a rotating drum of a laundry treating appliance during a rinsing phase of operation, the method comprising: a) supplying water into the drum; b) heating the supplied water to a predetermined temperature to form hot water; c) rotating the drum at a spinning speed; d) sensing a parameter indicative of a residual moisture content of the laundry load; and e) repeating at least c) and d) until the sensed parameter indicates a residual moisture content below a predetermined threshold.
In another aspect, the present disclosure relates to a method of operating a laundry treating appliance with a treating chamber for treating a load of laundry the method comprising heating a water supply to a predetermined temperature to form a hot water rinse; supplying the hot water rinse to the treating chamber during a hot rinse cycle; spinning the treating chamber in an extraction cycle to remove excess moisture from the load of laundry; sensing a parameter indicative of a remaining moisture content value in the load of laundry; comparing the remaining moisture content value to a pre-determined remaining moisture content value; and repeating the extraction cycle until the remaining moisture content value is less than the pre-determined remaining moisture content value.
In the drawings:
Aspects of the disclosure relate to a method of removing moisture from a load of laundry in a combination washing and drying machine after a wash cycle and before a drying cycle. Laundry treating appliances can be provided with structures and functionality both for washing and drying laundry items within a single appliance. In the case of such a combination washing and drying appliance, in addition to the components provided in a traditional washing machine, additional components for drying laundry items are also provided within the appliance. Non-limiting examples of such drying components include an air flow pathway, including an air inlet and an air outlet to the tub interior, a condenser, a blower, a heating element, and a manifold.
In traditional combination washing and drying machines, a drying cycle can expend extra energy drying clothes that remain too damp from the washing cycle. This can result in poor drying performance and wasted energy resources. The present disclosure sets forth a combination washing and drying machine including an intermittent step between a washing cycle and a drying cycle of the combination washing and drying machine. To summarize, at the end of a washing cycle during a rinse cycle near the end of the washing cycle, hot water is introduced. Increasing the temperature of the rinse cycle enables an increased water extraction capability during the spin cycle. The remaining moisture content (RMC) of the load of laundry is checked to ensure it is below a certain threshold before the combination washing and drying machine moves into a drying cycle.
Washing machines are typically categorized as either a vertical axis washing machine or a horizontal axis washing machine. The terms vertical axis and horizontal axis are often used as shorthand terms for the manner in which the appliance imparts mechanical energy to the load of laundry, even when the relevant rotational axis is not absolutely vertical or horizontal. As used herein, the “vertical axis” washing machine refers to a washing machine having a rotatable drum, perforate or imperforate, that holds fabric items and a clothes mover, such as an agitator, impeller, nutator, and the like within the drum. The clothes mover moves within the drum to impart mechanical energy directly to the clothes or indirectly through wash liquid in the drum. The clothes mover can typically be moved in a reciprocating rotational movement. In some vertical axis washing machines, the drum rotates about a vertical axis generally perpendicular to a surface that supports the washing machine. However, the rotational axis need not be vertical. The drum can rotate about an axis inclined relative to the vertical axis.
As used herein, the “horizontal axis” washing machine refers to a washing machine having a rotatable drum, perforated or imperforate, that holds laundry items and washes the laundry items. In some horizontal axis washing machines, the drum rotates about a horizontal axis generally parallel to a surface that supports the washing machine. However, the rotational axis need not be horizontal. The drum can rotate about an axis inclined or declined relative to the horizontal axis. In horizontal axis washing machines, the clothes are lifted by the rotating drum and then fall in response to gravity to form a tumbling action. Mechanical energy is imparted to the clothes by the tumbling action formed by the repeated lifting and dropping of the clothes. Vertical axis and horizontal axis machines are best differentiated by the manner in which they impart mechanical energy to the fabric articles.
Regardless of the axis of rotation, a washing machine can be top-loading or front-loading. In a top-loading washing machine, laundry items are placed into the drum through an access opening in the top of a cabinet, while in a front-loading washing machine laundry items are placed into the drum through an access opening in the front of a cabinet. If a washing machine is a top-loading horizontal axis washing machine or a front-loading vertical axis washing machine, an additional access opening is located on the drum.
The exemplary laundry treating appliance of
The laundry holding system comprises a tub 14 dynamically suspended within the structural support system of the cabinet 12 by a suitable suspension system 28 and a drum 16 provided within the tub 14, the drum 16 defining at least a portion of a laundry treating chamber 18. The drum 16 is configured to receive a laundry load comprising articles for treatment, including, but not limited to, a hat, a scarf, a glove, a sweater, a blouse, a shirt, a pair of shorts, a dress, a sock, and a pair of pants, a shoe, an undergarment, and a jacket. The drum 16 can include a plurality of perforations 20 such that liquid can flow between the tub 14 and the drum 16 through the perforations 20. It is also within the scope of the present disclosure for the laundry holding system to comprise only one receptacle with the receptacle defining the laundry treating chamber for receiving the load to be treated. At least one lifter 22 can extend from a wall of the drum 16 to lift the laundry load received in the treating chamber 18 while the drum 16 rotates.
The laundry holding system can further include a door 24 which can be movably mounted to the cabinet 12 to selectively close both the tub 14 and the drum 16. A bellows 26 can couple an open face of the tub 14 with the cabinet 12, with the door 24 sealing against the bellows 26 when the door 24 closes the tub 14.
The combination washing and drying machine 10 can further comprise a washing circuit which can include a liquid supply system for supplying water to the combination washing and drying machine 10 for use in treating laundry during a cycle of operation. The liquid supply system can include a source of water, such as a household water supply 40, which can include separate valves 42 and 44 for controlling the flow of hot and cold water, respectively. Water can be supplied through an inlet conduit 46 directly to the tub 14 or the drum 16 by controlling first and second diverter mechanisms 48 and 50, respectively. The diverter mechanisms 48, 50 can be a diverter valve having two outlets such that the diverter mechanisms 48, 50 can selectively direct a flow of liquid to one or both of two flow paths. Water from the household water supply 40 can flow through the inlet conduit 46 to the first diverter mechanism 48 which can direct the flow of liquid to a supply conduit 52. The second diverter mechanism 50 on the supply conduit 52 can direct the flow of liquid to a tub outlet conduit 54 which can be provided with a spray nozzle 56 configured to spray the flow of liquid 58 into the tub 14. In this manner, water from the household water supply 40 can be supplied directly to the tub 14. While the valves 42, 44 and the conduit 46 are illustrated exteriorly of the cabinet 12, it will be understood that these components can be internal to the cabinet 12.
The combination washing and drying machine 10 can also be provided with a dispensing system for dispensing treating chemistry to the treating chamber 18 for use in treating the load of laundry according to a cycle of operation. The dispensing system can include a treating chemistry dispenser 62 which can be a single dose dispenser, a bulk dispenser, or an integrated single dose and bulk dispenser and is fluidly coupled to the treating chamber 18. The treating chemistry dispenser 62 can be configured to dispense a treating chemistry directly to the tub 14 or mixed with water from the liquid supply system through a dispensing outlet conduit 64. The dispensing outlet conduit 64 can include a dispensing nozzle 66 configured to dispense the treating chemistry into the tub 14 in a desired pattern and under a desired amount of pressure. For example, the dispensing nozzle 66 can be configured to dispense a flow or stream of treating chemistry into the tub 14 by gravity, i.e. a non-pressurized stream. Water can be supplied to the treating chemistry dispenser 62 from the supply conduit 52 by directing the diverter mechanism 50 to direct the flow of water to a dispensing supply conduit 68.
The treating chemistry dispenser 62 can include multiple chambers or reservoirs for receiving doses of different treating chemistries. The treating chemistry dispenser 62 can be implemented as a dispensing drawer that is slidably received within the cabinet 12, or within a separate dispenser housing which can be provided in the cabinet 12. The treating chemistry dispenser 62 can be moveable between a fill position, where the treating chemistry dispenser 62 is exterior to the cabinet 12 and can be filled with treating chemistry, and a dispense position, where the treating chemistry dispenser 62 are interior of the cabinet 12.
Non-limiting examples of treating chemistries that can be dispensed by the dispensing system during a cycle of operation include one or more of the following: water, enzymes, fragrances, stiffness/sizing agents, wrinkle releasers/reducers, softeners, antistatic or electrostatic agents, stain repellants, water repellants, energy reduction/extraction aids, antibacterial agents, medicinal agents, vitamins, moisturizers, shrinkage inhibitors, and color fidelity agents, and combinations thereof.
The combination washing and drying machine 10 can also include a recirculation and drain system for recirculating liquid within the laundry holding system and draining liquid from the combination washing and drying machine 10. Liquid supplied to the tub 14 through tub outlet conduit 54 and/or the dispensing supply conduit 68 typically enters a space between the tub 14 and the drum 16 and can flow by gravity to a sump 70 formed in part by a lower portion of the tub 14. The sump 70 can also be formed by a sump conduit 72 that can fluidly couple the lower portion of the tub 14 to a pump 74. The pump 74 can direct liquid to a drain conduit 76, which can drain the liquid from the combination washing and drying machine 10, or to a recirculation conduit 78, which can terminate at a recirculation inlet 80. The recirculation inlet 80 can direct the liquid from the recirculation conduit 78 into the drum 16. The recirculation inlet 80 can introduce the liquid into the drum 16 in any suitable manner, such as by spraying, dripping, or providing a steady flow of liquid. In this manner, liquid provided to the tub 14, with or without treating chemistry can be recirculated into the treating chamber 18 for treating the load of laundry within.
The liquid supply and/or recirculation and drain system can be provided with a heating system which can include one or more devices for heating laundry and/or liquid supplied to the tub 14, such as a steam generator 82, an inline heater 83 and/or a sump heater 84. Liquid from the household water supply 40 can be provided to the steam generator 82 through the inlet conduit 46 by controlling the first diverter mechanism 48 to direct the flow of liquid to a steam supply conduit 86. Steam generated by the steam generator 82 can be supplied to the tub 14 through a steam outlet conduit 87. The steam generator 82 can be any suitable type of steam generator such as a flow through steam generator or a tank-type steam generator. Alternatively, the sump heater 84 can be used to generate steam in place of or in addition to the steam generator 82. In addition or alternatively to generating steam, the steam generator 82 and/or sump heater 84 can be used to heat the laundry and/or liquid within the tub 14 as part of a cycle of operation.
It is noted that the illustrated suspension system, liquid supply system, recirculation and drain system, and dispensing system are shown for exemplary purposes only and are not limited to the systems shown in the drawings and described above. For example, the liquid supply, dispensing, and recirculation and pump systems can differ from the configuration shown in
The combination washing and drying machine 10 also includes a drive system for rotating the drum 16 within the tub 14. The drive system can include a motor 88, which can be directly coupled with the drum 16 through a drive shaft 90 to rotate the drum 16 about a rotational axis during a cycle of operation. The motor 88 can be a brushless permanent magnet (BPM) motor having a stator 92 and a rotor 94. Alternately, the motor 88 can be coupled to the drum 16 through a belt and a drive shaft to rotate the drum 16, as is known in the art. Other motors, such as an induction motor or a permanent split capacitor (PSC) motor, can also be used. The motor 88 can rotate the drum 16 at various speeds in either rotational direction.
The motor 88 can rotate the drum 16 at various speeds in opposite rotational directions. In particular, the motor 88 can rotate the drum 16 at tumbling speeds wherein the fabric items in the drum 16 rotate with the drum 16 from a lowest location of the drum 16 towards a highest location of the drum 16, but fall back to the lowest location of the drum 16 before reaching the highest location of the drum 16. The rotation of the fabric items with the drum 16 can be facilitated by the at least one lifter 22. Typically, the force applied to the fabric items at the tumbling speeds is less than about 1 G. Alternatively, the motor 88 can rotate the drum 16 at spin speeds wherein the fabric items rotate with the drum 16 without falling. The spin speeds can also be referred to as satellizing speeds or sticking speeds. Typically, the force applied to the fabric items at the spin speeds is greater than or about equal to 1 G. As used herein, “tumbling” of the drum 16 refers to rotating the drum at a tumble speed, “spinning” the drum 16 refers to rotating the drum 16 at a spin speed, and “rotating” of the drum 16 refers to rotating the drum 16 at any speed.
The combination washing and drying machine 10 can further include a drying system 96 that can be a closed loop or an open loop circuit. A closed loop system is illustrated where the drying system 96 can include a blower 98, a condenser 100, and a heating element 102. The condenser 100 can be provided with a condenser drain conduit (not shown) that fluidly couples the condenser 100 with the pump 74 and the drain conduit 76. Condensed liquid collected within the condenser 160 can flow through the condenser drain conduit to the pump 74, where it can be provided to the recirculation and drain system. In an exemplary aspect, the drying system 96 can be provided adjacent an upper portion of the tub 14, though it will be understood that the drying system 96 need not be provided adjacent an upper portion of the tub 14, and can be provided at any suitable location adjacent the tub 14. It is further contemplated that an open loop circuit is implemented where air is heated, passes through the drum 16 and is exhausted out of the combination washing and drying machine 10, in which case a condenser 100 is not necessary. Drying air 104 can be introduced through the front of the drum 16 or via the back of the drum 16 as illustrated.
The combination washing and drying machine 10 also includes a control system for controlling the operation of the combination washing and drying machine 10 to implement one or more cycles of operation. The control system can include a controller 106 located within the cabinet 12 and a user interface 108 that is operably coupled with the controller 106. The user interface 108 can include one or more knobs, dials, switches, displays, touch screens and the like for communicating with the user, such as to receive input and provide output. The user can enter different types of information including, without limitation, cycle selection and cycle parameters, such as cycle options.
The controller 106 can include the machine controller and any additional controllers provided for controlling any of the components of the washing machine 10. For example, the controller 106 can include the machine controller and a motor controller. Many known types of controllers can be used for the controller 106. It is contemplated that the controller is a microprocessor-based controller that implements control software and sends/receives one or more electrical signals to/from each of the various working components to effect the control software. As an example, proportional control (P), proportional integral control (PI), and proportional derivative control (PD), or a combination thereof, a proportional integral derivative control (PID control), can be used to control the various components.
As illustrated in
The controller 106 can be operably coupled with one or more components of the combination washing and drying machine 10 for communicating with and controlling the operation of the component to complete a cycle of operation. For example, the controller 106 can be operably coupled with the motor 88, the pump 74, the treating chemistry dispenser 62, the steam generator 82, the sump heater 84, and the drying system 96 to control the operation of these and other components to implement one or more of the cycles of operation.
The controller 106 can also be coupled with one or more sensors 114 provided in one or more of the systems of the washing machine 10 to receive input from the sensors, which are known in the art and illustrated in
Referring now to
The wash phase 202 can include a main wash cycle 214 where at least one treating chemistry is dispensed into the treating chamber 18 for washing the load of laundry. Upon completion of washing the load of laundry, wash water can be drained from the treating chamber 18. It should be understood that numerous steps can be associated with the main wash cycle 212 including dispensing a treating chemistry and/or liquid into the treating chamber numerous times and draining the wash water numerous times.
The wash phase 202 can further include a rinse cycle 216 occurring after the main wash cycle 212 where new water is added to the treating chamber 18. The rinse cycle 216 can include a single rinse, where water is supplied to rinse the load of laundry followed spinning the drum to extract the water. It is also contemplated that multiple rinses can occur to ensure all of the treating chemistry is removed from the load of laundry to form rinsed laundry. To enable multiple rinses, the method 200 can include a first extraction cycle 218 including spinning the load of laundry to facilitate the extraction of liquid from the load of laundry. The liquid can subsequently be drained from the sump 70. The first extraction cycle 218 can include different levels of extraction, i.e. different rotational speeds, for moving liquid out of the treating chamber 18 prior to entering the rinse cycle 216 again for a subsequent rinse.
Upon completion of the wash phase 202, an intermediate phase 204 can commence. The intermediate phase includes heating a water supply to form a hot water rinse for a hot rinse cycle 220. The water supply can range in temperature from at least 15° C. (˜60° F.) to 55° C. (˜130° F.). By way of non-limiting example the hot water valves 42 can supply hot water with a temperature of 55° C. and the cold water valve 44 can supply cold water with a temperature of 15° C. The hot rinse for the hot rinse cycle 220 can therefore utilize hot water with the hot water valve 42 at 100% on supplying a hot rinse of less than or equal to 55° C. It is further contemplated that heating the water supply entails heating a cold water supply with a heater, by way of non-limiting example by utilizing the steam generator 82, inline heater 83 and/or the sump heater 84 as described herein. An adjustment can occur with regards to material and clothes load temperatures based on heat transfer from the hot rinse. These temperatures can vary, they should be between greater than 15° C. and less than or equal to 55° C.
A final extraction cycle 222 with the drum spinning to ensure maximum extraction of liquid from the load of laundry. It is contemplated that the drum can rotate with higher speeds than during the first extraction cycle 218. However, the introduction of hot water to the treating chamber 18 increases the energy of the water molecules in the load of laundry which increases the propensity for the water molecules to leave the treating chamber 18. This intermediate phase 204, therefore, does not require maximum rotational speeds to achieved a pre-determined remaining moisture content (RMC) when compared to the wash phase 202 without including the subsequent hot rinse cycle 220.
The intermediate phase 204 further includes an intermediate RMC check at 224 upon completion of the final extraction cycle 222. Determining an RMC includes sensing a parameter indicative of the remaining moisture in the load of laundry. An RMC of the load of laundry can be determined using any suitable method and can be based on the output from the at least one sensor 114, by way of non-limiting example in the form of a moisture sensor. In another example, the RMC can be estimated based on readings of one or more moisture sensors in the form of conductivity strips. Another parameter that can be utilized is determining the mass of the load of laundry in the drum upon completion of the final extraction cycle 222.
If the RMC is equal to or less than a pre-determined amount the controller 106 initiates the drying phase 206. If the RMC is greater than the pre-determined amount, the controller 106 re-starts the intermediate phase 204. This loop is repeated until the desired RMC is reached, which is followed by the drying phase 206. The final extraction cycle 222 can be conducted with an extended plateau, or time period.
The drying phase 206 can include at 226 introducing the drying air 104 as already described herein to the treating chamber 18. It is further contemplated that the drying phase 206 can include a final RMC check 228 to ensure the load of laundry is sufficiently dry. The drying phase 206 can further include a tumbling cycle 230 in which the load of laundry is tumbled at low speeds to prevent wrinkling.
A method 300 of extracting liquid from a load of laundry residing in the rotating drum 16 is illustrated in
In the event repeating occurs, the method 300 can supplying a new batch of water to the drum 16. Furthermore, the method heating again and increasing the predetermined temperature to a higher temperature than the initial heating at 304. It is further contemplated that the spinning speed is increased when compared to the initial spinning speed at 308 in the event a repeat occurs.
The aspects disclosed herein provide an intermediate phase for method of operating a combination washing and drying machine. By introducing a hot rinse cycle, the RMC is significantly reduced when compared to a method of operation without the intermediate phase. Benefits associated with the disclosure herein include eliminating the problem of having an elevated remaining moisture content (RMC) of the load of laundry at the end of the wash phase before entering the drying phase. This can result in improvement in drying efficiency, reduction of cycle time, and reduction of energy consumption by the combination washing and drying machine.
To the extent not already described, the different features and structures of the various aspects can be used in combination with each other as desired, or can be used separately. That one feature can not be illustrated in all of the aspects is not meant to be construed that it cannot be, but is done for brevity of description. Thus, the various features of the different aspects can be mixed and matched as desired to form new aspects, whether or not the new aspects are expressly described.
While the present disclosure has been specifically described in connection with certain specific aspects thereof, it is to be understood that this is by way of illustration and not of limitation. Reasonable variation and modification are possible within the scope of the forgoing disclosure and drawings without departing from the spirit of the present disclosure. Hence, specific dimensions and other physical characteristics relating to the aspects disclosed herein are not to be considered as limiting, unless expressly stated otherwise.
This application is a continuation of U.S. patent application Ser. No. 17/316,038 filed May 10, 2021, now U.S. Pat. No. 11,692,300, issued Jul. 4, 2023, which is a continuation of U.S. patent application Ser. No. 16/586,060 filed Sep. 27, 2019, now U.S. Pat. No. 11,028,527, issued on Jun. 8, 2021, both of which are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2737799 | Knipmeyer | Mar 1956 | A |
3426555 | McCutcheon, Jr. | Feb 1969 | A |
4891892 | Narang | Jan 1990 | A |
5038586 | Nukaga et al. | Aug 1991 | A |
5207764 | Akabane et al. | May 1993 | A |
6446357 | Woerdehoff et al. | Sep 2002 | B2 |
7300468 | Wright et al. | Nov 2007 | B2 |
7627920 | Wong et al. | Dec 2009 | B2 |
7651532 | Wright et al. | Jan 2010 | B2 |
7765628 | Wong et al. | Aug 2010 | B2 |
7941885 | Wong et al. | May 2011 | B2 |
8276230 | Kim | Oct 2012 | B2 |
8347520 | Kuwabara | Jan 2013 | B2 |
8533881 | Brockman et al. | Sep 2013 | B2 |
8832966 | Ashrafzadeh et al. | Sep 2014 | B2 |
8919009 | Colombo et al. | Dec 2014 | B2 |
9062407 | Kim et al. | Jun 2015 | B2 |
9080273 | Moschutz et al. | Jul 2015 | B2 |
9322125 | Brockman et al. | Apr 2016 | B2 |
9353475 | Ashrafzadeh et al. | May 2016 | B2 |
9359713 | Kang | Jun 2016 | B2 |
9644310 | Cimetta et al. | May 2017 | B2 |
9828715 | Kwon et al. | Nov 2017 | B2 |
10006160 | Brockman et al. | Jun 2018 | B2 |
10450692 | Wu | Oct 2019 | B2 |
10544535 | Jiang et al. | Jan 2020 | B2 |
10676859 | Vitali et al. | Jun 2020 | B2 |
10876249 | Kamii | Dec 2020 | B2 |
11028527 | Vaive | Jun 2021 | B2 |
11255042 | Choung et al. | Feb 2022 | B2 |
11268234 | Jang et al. | Mar 2022 | B2 |
11692300 | Vaive | Jul 2023 | B2 |
20110289696 | Colin et al. | Dec 2011 | A1 |
20130139402 | Hong | Jun 2013 | A1 |
20140021140 | Hwang | Jan 2014 | A1 |
20140325865 | Wisherd et al. | Nov 2014 | A1 |
20180230638 | Brockman et al. | Aug 2018 | A1 |
20200115839 | Kim et al. | Apr 2020 | A1 |
20230013628 | Schaumann | Jan 2023 | A1 |
20230295863 | Vaive | Sep 2023 | A1 |
Number | Date | Country |
---|---|---|
1837453 | Sep 2006 | CN |
112575515 | Mar 2021 | CN |
115613259 | Jan 2023 | CN |
102013210129 | Dec 2014 | DE |
102021207441 | Jun 2022 | DE |
2607536 | Jun 2013 | EP |
2735637 | May 2014 | EP |
3004448 | Jul 2017 | EP |
3450608 | Jan 2020 | EP |
3798347 | Mar 2021 | EP |
1475130 | Jun 1977 | GB |
2016144794 | Sep 2016 | WO |
2017121393 | Jul 2017 | WO |
2019045446 | Mar 2019 | WO |
Entry |
---|
European Search Report for Counterpart EP20197938.2, Dated Jan. 26, 2021. |
Chinese Patent Office, Office Action re Corresponding Application No. 202010854152.3, Jul. 11, 2022, 10 pages, China. |
Number | Date | Country | |
---|---|---|---|
20230295863 A1 | Sep 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17316038 | May 2021 | US |
Child | 18200948 | US | |
Parent | 16586060 | Sep 2019 | US |
Child | 17316038 | US |