Laundry treating appliances, such as clothes washers, refreshers, and non-aqueous systems, can have a configuration based on a rotating drum that defines a treating chamber in which laundry items are placed for treating. Historically, residential or home-use versions of these appliances have single dose dispensers, with provided compartment or cups, typically in a drawer or under a cover, in which the user of the appliance would fill with a dose of treating chemistry that was sufficient for the cycle of operation to be selected. Recently, bulk dispensers, i.e. dispensers holding multiple doses of a treating chemistry, have become more common, yet with single dose dispensers still being dominate.
The bulk dispensers can be more convenient in that they relieve the user from having to fill the single dose dispenser for every cycle. However, the particular implementation of current bulk dispensers has created its own inconvenience. In some implementations, the bulk dispenser relies on a proprietary cartridge, which some users find inconvenient. In some implementations, the bulk dispenser was integrated with the traditional single dose dispenser, which limited the bulk dispenser to hold only a few doses of treating chemistry, which failed to fully realize the convenience and benefit that can be provided by a bulk dispenser.
Furthermore, user dosing of treating chemistry is typically inaccurate based upon load size or soil level. A user will arbitrarily add an amount of treating chemistry or a single dose of treating chemistry, which is typically more or less chemistry than what is needed to properly clean the laundry items. As such, a typical user can waste a large amount of treating chemistry in an attempt to properly dose the laundry.
According to an aspect of the invention, a laundry treating appliance for treating laundry according to a cycle of operation. The laundry treating appliance includes a chassis defining an interior and a treating chamber located within the interior defining an access opening. A fascia couples to the chassis and overlies at least a portion of the access opening. A treating chemistry station includes an actuator and a treating chemistry conduit. The actuator is located on the fascia where actuation of the actuator causes a discharge of treating chemistry from the treating chemistry conduit.
According to another aspect of the invention, a stain station for a laundry treating appliance having a treating chamber for treating laundry according to a cycle of operation includes a fascia overlying at least a portion of the treating chamber. The stain station further includes one or more nozzles for dispensing a volume of treating chemistry to the treating chamber. At least one actuator disposed on the fascia for selectively dispensing a volume of treating chemistry from one or more of the nozzles.
According to yet another aspect of the invention, a method of treating laundry in a laundry treating appliance according to a selected cycle of operation includes: (1) determining an amount of treating chemistry dispensed during a pre-treating operation to define a determined amount of pre-treating chemistry; (2) reducing a predetermined amount of treating chemistry for the selected cycle of operation based on the determined amount of pre-treating chemistry to define a reduced treating chemistry amount; and (3) dispensing the reduced treating chemistry amount during the executing of the selected cycle of operation.
In the drawings:
Embodiments of the invention relate to a laundry treating appliance having a bulk dispenser with a treating chemistry reservoir in the form of an off-the-shelf, container of treating chemistry. Using the off-the-shelf container makes the container independent of the bulk dispenser, unlike proprietary containers that are dependent on a particular dispensing system, while providing a much greater number of treating chemistry doses, which increases the time between refills of the system.
While the embodiments of this description are primarily in the environment of a horizontal axis clothes washer, embodiments of the description can be implemented in any laundry treating appliance that performs a cycle of operation to clean or otherwise treat items placed therein, non-limiting examples of which include a horizontal or vertical axis clothes washer; a combination washing machine and dryer; a tumbling or stationary refreshing/revitalizing machine; an extractor; a non-aqueous washing apparatus; and a revitalizing machine.
It should be understood that as used herein, the term “treating chemistry” can include any type of additive for dispensing into a laundry appliance to treat or otherwise affect a load of laundry during a cycle of operation. Such treating chemistry can include detergents, bleach, fabric softener, or stain treatments in non-limiting examples. It should be understood that where one treating chemistry is described, such a description is non-limiting and can include any alternative treating chemistry. In some cases it can include water alone.
The laundry holding system comprises a tub 14 supported within the cabinet 12 by a suitable suspension system and an imperforate container or drum 16 provided within the tub 14, the drum 16 defining at least a portion of a treating chamber 18. The drum 16 can include a plurality of perforations 20 such that liquid can flow between the tub 14 and the drum 16 through the perforations 20. A plurality of baffles 22 can be disposed on an inner surface of the drum 16 to lift the laundry load received in the treating chamber 18 while the drum 16 rotates. It is also within the scope of the invention for the laundry holding system to comprise only a tub with the tub defining the laundry treating chamber 18.
The laundry holding system can further include a door 24 which can be movably mounted to the cabinet 12 to selectively close both the tub 14 and the drum 16. A bellows 26 can couple an open face of the tub 14 with the cabinet 12, with the door 24 sealing against the bellows 26 when the door 24 closes the tub 14.
The washing machine 10 can further include a suspension system 28 for dynamically suspending the laundry holding system within the structural support system.
The washing machine 10 can further include a liquid supply system for supplying liquid to the washing machine 10 for use in treating laundry during a cycle of operation. The liquid supply system can include a source of water, such as a household water supply 40, which can include separate valves 42 and 44 for controlling the flow of hot and cold water, respectively. Water can be supplied through an inlet conduit 46 directly to the tub 14 by controlling first and second diverter mechanisms 48 and 50, respectively. The diverter mechanisms 48, 50 can be a diverter valve having two outlets such that the diverter mechanisms 48, 50 can selectively direct a flow of liquid to one or both of two flow paths. Water from the household water supply 40 can flow through the inlet conduit 46 to the first diverter mechanism 48 which can direct the flow of liquid to a supply conduit 52. The second diverter mechanism 50 on the supply conduit 52 can direct the flow of liquid to a tub outlet conduit 54 which can be provided with a nozzle 56 configured to spray the flow of liquid into the tub 14. In this manner, water from the household water supply 40 can be supplied directly to the tub 14.
The washing machine 10 can also be provided with a dispensing system for dispensing treating chemistry to the treating chamber 18 for use in treating the laundry according to a cycle of operation. The dispensing system can include both a bulk dispenser 60 and an optional single use dispenser 62, either of which can be configured to dispense a treating chemistry directly to the tub 14 or mixed with water from the liquid supply system through a dispensing outlet conduit 64. The dispensing outlet conduit 64 can include a dispensing nozzle 66 configured to dispense the treating chemistry into the tub 14 in a desired pattern and under a desired amount of pressure. For example, the dispensing nozzle 66 can be configured to dispense a flow or stream of treating chemistry into the tub 14 by gravity, i.e. a non-pressurized stream. Water can be supplied to the single use dispenser 62 from the supply conduit 52 by directing the diverter mechanism 50 to direct the flow of water to a dispensing supply conduit 68. While only a single nozzle 66 is illustrated, multiple nozzles 66 may be used, with each of the bulk dispenser 60 and single use dispenser 62 having a dedicated nozzle 66 or using the same nozzle 66.
The single use dispenser 62 is illustrated as a traditional drawer-type single use dispenser 110 having a drawer 112 in which are provided one or more cups or recesses 114 in which treating chemistry is added for each cycle of operation. Water from the supply conduit 52 is then used to flush the cups 114, along with the treating chemistry residing within the cup, out of the relevant cup, with the resulting mixture of water and treating chemistry flowing down the outlet conduit 64, out of the nozzle 66 and into the treating chamber 18.
The bulk dispenser 60 includes a bulk container 120, container adapter 122, a liquid interface 124, and a pump 126, which has an output fluidly coupled to the outlet conduit 64. In treating chemistry flow order, the container adapter 122 is configured to mount to the bulk container 120 and establish fluid communication with the contents of the bulk container 120. The liquid interface 124 fluidly couples the container adapter 122 and the pump 126 to establish fluid communication from the container adapter 122 to the pump 126 via the liquid interface 124.
The pump 126 can be any suitable pump. However, as illustrated, the pump 126 is a water pressure pump as described in U.S. patent application Ser. No. 14/302,529, filed Jun. 12, 2014, now U.S. Publication No. 20150360848, published Dec. 17, 2015, and issued as U.S. Pat. No. 9,790,935 on Oct. 17, 2017, and entitled “PRESSURE-DRIVEN METERED MIXING DISPENSING PUMPS AND METHODS”, whose disclosure is incorporated by reference. The water pressure pump of the '529 application is beneficial in that it does not require electricity and delivers small quantities of treating chemistry, which are pre-mixed with water prior to delivery to the outlet conduit 64 and nozzle 66. The small quantities of treating chemistry delivered by the water pressure pump enables fine control over the dispensing of the total amount of treating chemistry. The pre-mixing by the water pressure pump is also great enough that the shear forces acting on the treating chemistry during the pre-mixing are great enough to break about the bonds of the different components of the treating chemistry.
Non-limiting examples of treating chemistries that can be dispensed by the dispensing system during a cycle of operation include one or more of the following: water, enzymes, fragrances, stiffness/sizing agents, wrinkle releasers/reducers, softeners, antistatic or electrostatic agents, stain repellants, water repellants, energy reduction/extraction aids, antibacterial agents, medicinal agents, vitamins, moisturizers, shrinkage inhibitors, and color fidelity agents, and combinations thereof.
The bulk dispenser 60 may also include a dedicated switch 67 located adjacent the nozzle 66. The switch 67 can be used to actuate the bulk dispenser when the door 24 is opened. In this manner, the user can provide spot treatment of a laundry item by holding the portion of the laundry item desired to be treated below the nozzle 66 and then actuation the switch 67 to cause the bulk dispenser to deliver treating chemistry to the desired portion of the laundry item.
The washing machine 10 can also include a recirculation and drain system for recirculating liquid within the laundry holding system and draining liquid from the washing machine 10. Liquid supplied to the tub 14 through tub outlet conduit 54 and/or the dispensing supply conduit 68 typically enters a space between the tub 14 and the drum 16 and can flow by gravity to a sump 70 formed in part by a lower portion of the tub 14. The sump 70 can also be formed by a sump conduit 72 that can fluidly couple the lower portion of the tub 14 to a pump 74. The pump 74 can direct liquid to a drain conduit 76, which can drain the liquid from the washing machine 10, or to a recirculation conduit 78, which can terminate at a recirculation inlet 80. The recirculation inlet 80 can direct the liquid from the recirculation conduit 78 into the drum 16. The recirculation inlet 80 can introduce the liquid into the drum 16 in any suitable manner, such as by spraying, dripping, or providing a steady flow of liquid. In this manner, liquid provided to the tub 14, with or without treating chemistry can be recirculated into the treating chamber 18 for treating the laundry within.
The liquid supply and/or recirculation and drain system can be provided with a heating system which can include one or more devices for heating laundry and/or liquid supplied to the tub 14, such as a steam generator 82 and/or a sump heater 84. Liquid from the household water supply 40 can be provided to the steam generator 82 through the inlet conduit 46 by controlling the first diverter mechanism 48 to direct the flow of liquid to a steam supply conduit 86. Steam generated by the steam generator 82 can be supplied to the tub 14 through a steam outlet conduit 87. The steam generator 82 can be any suitable type of steam generator such as a flow through steam generator or a tank-type steam generator. Alternatively, the sump heater 84 can be used to generate steam in place of or in addition to the steam generator 82. In addition or alternatively to generating steam, the steam generator 82 and/or sump heater 84 can be used to heat the laundry and/or liquid within the tub 14 as part of a cycle of operation.
Additionally, the liquid supply and recirculation and drain system can differ from the configuration shown in
The washing machine 10 also includes a drive system for rotating the drum 16 within the tub 14. The drive system can include a motor 88, which can be directly coupled with the drum 16 through a drive shaft 90 to rotate the drum 16 about a rotational axis during a cycle of operation. The motor 88 can be a brushless permanent magnet (BPM) motor having a stator 92 and a rotor 94. Alternately, the motor 88 can be coupled to the drum 16 through a belt and a drive shaft to rotate the drum 16, as is known in the art. Other motors, such as an induction motor or a permanent split capacitor (PSC) motor, can also be used. The motor 88 can rotate the drum 16 at various speeds in either rotational direction. Feet 108 can be used to balance the washing machine 10 upon a surface such as the floor.
The washing machine 10 also includes a control system for controlling the operation of the washing machine 10 to implement one or more cycles of operation. The control system can include a controller 96 located within the cabinet 12 and a user interface 98 that is operably coupled with the controller 96. The user interface 98 can include one or more knobs, dials, switches, displays, touch screens and the like for communicating with the user, such as to receive input and provide output. The user can enter different types of information including, without limitation, cycle selection and cycle parameters, such as cycle options.
The controller 96 can include the machine controller and any additional controllers provided for controlling any of the components of the washing machine 10. For example, the controller 96 can include the machine controller and a motor controller. Many known types of controllers can be used for the controller 96. It is contemplated that the controller is a microprocessor-based controller that implements control software and sends/receives one or more electrical signals to/from each of the various working components to effect the control software. As an example, proportional control (P), proportional integral control (PI), and proportional derivative control (PD), or a combination thereof, a proportional integral derivative control (PID control), can be used to control the various components.
As illustrated in
The controller 96 can be operably coupled with one or more components of the washing machine 10 for communicating with and controlling the operation of the component to complete a cycle of operation. For example, the controller 96 can be operably coupled with the motor 88, the pump 74, the single use dispenser 62, the steam generator 82 and the sump heater 84 to control the operation of these and other components to implement one or more of the cycles of operation.
The controller 96 can also be coupled with one or more sensors 104 provided in one or more of the systems of the washing machine 10 to receive input from the sensors, which are known in the art and not shown for simplicity. Non-limiting examples of sensors 104 that can be communicably coupled with the controller 96 include: a treating chamber temperature sensor, a moisture sensor, a weight sensor, a chemical sensor, a position sensor and a motor torque sensor, which can be used to determine a variety of system and laundry characteristics, such as laundry load inertia or mass.
With the overview of the washing machine 10 and bulk dispenser now complete, the details of the bulk dispenser 60 will be described with respect to
The contemplated use for the bulk container 120 is to fill single dose dispensers, like single use dispenser 62. In its intended single dose implementation, the bulk container 120 is typically stood on its side with the valve 134 down and the vent 136 up. In this manner, the valve 134 can be manually actuated to release treating chemistry from the interior 140 through the valve 134 while air enters the vent 136 to replace the released treating chemistry, and prevent a vacuum lock during dispensing.
While the bulk container 120 is intended to refill single dose dispensers, embodiments of the current invention utilize the bulk container as a treating chemistry reservoir for a bulk dispenser. The illustrated bulk container 120 is just one of many possible off-the-shelf treating chemistry containers that could be used as treating chemistry reservoir for the bulk dispenser 60. As illustrated, the bulk containers 120 are standard detergent containers for well-known brands, which can be from the same or different manufactures. Exemplary brands include CHEER®, GAIN®, ERA®, TIDE®, DOWNY®, ALL®, SUN®, ULTRA®, SNUGGLE®, XTRA®, ARM & HAMMER®, PUREX®, and PERSIL®, to name a few.
One difficulty of using off-the-shelf containers is that each manufacture independently selects and controls the shape of the bulk container 120, including the size of the collar 132 and the pitch of the threads. While a subset of many of the current off-the-shelf bulk containers 120 do have a common diameter of 40.5 mm and thread pitch of 4.4 mm, the diameter and pitch thread do vary. Thus, any bulk dispensing system 60 that is based on using an off-the-shelf bulk container 120 will find it beneficial to be able to accommodate the different size collars and thread pitch of the different manufacturers.
The threaded cap 150 has threads 159 that match the threads of the threaded cap 142 of the bulk container 120 to provide for a simple mounting of the container adapter 122 to the bulk container 120. When the cap 150 is threaded onto the bulk container 120, the straw 152 is received within the bulk container 120.
The straw 152 can bend, flex, deflect and/or be made of multiple independently movable segments to enable the straw 152 to bend after insertion into the bulk container 120. The ability of the straw 152 to change configuration provides the functionality of the straw being capable of being inserted within an otherwise shorter container and still function without kinking, which might negatively impact the flow of treating chemistry.
The hose 154 can be any type of tube extending from the cap 150. The hose 154 can be press-fit within a corresponding opening in the cap, as illustrated, or the cap 150 can have a dedicated fitting for the hose 154. The hose 154 can also be integrally formed with the cap 150. The hose 154 can be of any degree of transparency, including opaque, but it is contemplated that the hose 154 will be transparent to aid in the visual and sensor inspection of the treating chemistry passing through the hose 154.
The dimensions of the hose 154 can be helpful in ensuring the proper flow of treating chemistry from the bulk container 120, especially when using the water pressure driven pump. The dimensions for a suitable hose 154 for the water pressure pump are 8 mm OD (outer diameter) and 5 mm ID (inner diameter).
The check valve 156 can be mounted to or integrated with the threaded cap 150. It is contemplated that the check valve is integrally formed with the cap 150. In this sense, the cap 150 can have a recess or fitting in which the check valve 156 is received, with the straw 152 being received within the same recess or fitting, but upstream of the check valve 156.
The details of the check valve 156 and fitting 160 are best seen in
The fitting 160 comprises an elbow 176 from which extends a nipple 178 over which the hose 154 is received. The elbow 176 includes a tip 180 that is received within the upper collar 164 and includes a seal 182, illustrated as an O-ring, which seals the tip 180 relative to the upper collar 164. The tip 180 and stepped collar 162 can have co-operating structures and be made of suitable material that permit a press-fit or snap-fit connection.
The check valve 156 comprises a spring 184 and a ball 186 located within the upper collar 164 between the elbow 176 and the step 170. The spring 184 biases the ball 186 against the step 170, which functions as a valve seat for the ball 186, to close the passage 168. A guide pin 188 can extend from the tip 180 when the spring 184 is a coil spring to aid in preventing the coil spring from buckling. Treating chemistry flowing from the straw 152 to the hose 154 is controlled by the check valve 156. Other types of check valves than a ball/spring type can be used and include, for example, umbrella check valves and flapper check valves.
In operation, for the treating chemistry to pass through the straw 152 and out the hose 154, the treating chemistry must pass through the check valve 156. Thus, the suction pressure by the pump 126 must be great enough to overcome the force of the spring 184 to unseat the ball 186 and open the check valve 156. Once the suction pressure from the pump 126 is relieved, the spring 184 biases the ball 186 against the seat to close the check valve 156.
Referring to
As best seen in
The sizing caps 190 need not always have an increased diameter and be for the purpose of accommodating different size openings on the bulk containers 120. In some cases the bulk container 120 may have a different thread pitch than the cap 150. In such circumstances, the sizing cap 190 would have internal threads 196 with a pitch suitable for the bulk container 120 while the external threads 194 would match the internal threads of the cap 150. In this way, the sizing caps 190 can be used to accommodate different thread pitches.
It is also contemplated that the sizing caps 190 can be press-fit to each other and/or to the cap 150, instead of being threaded. The sizing caps 190 do not have to be threaded to each other or the cap 150. While the threaded connection of the sizing caps 190 and/or the cap 150 is often more secure than press-fit, the likely environment of a home laundry room may not need a more secure connection than what is obtainable from a press fit.
Thus, the umbrella valve 606 is shaped to deform due to the vacuum force. The umbrella valve 606 can be made of a resilient material, such as formed rubber, permitting the umbrella valve 606 to deform and then return to its natural shape. For example, the umbrella valve 606 is naturally shaped as is shown in
The output from the container adapter 122 is provided to the liquid interface 124, which is illustrated in more detail in
The hose coupling 202 can be any type of coupling suitable for connecting to the hose 154, such as press-fit, snap-fit, bayonet, quick-release, etc. The hose coupling 202 is fluidly coupled with the pump supply line 204 such that treating chemistry passing through the hose 154 flows into the pump supply line 204.
The container adapter 122 and/or sizing caps 190 can be provided with the clothes washer 10 and/or sold with the bulk container 120. In one example, a standard container adapter 122 could be provided with the clothes washer 10 and each bulk container 120 could be provided with a corresponding sizing cap 190. In this manner, the container adapter 122 could have a standardized cap 150 and threads 159, with the sizing cap 190 configured to mate to the standardized cap 150 and threads 159. Alternatively, a container adapter 122 unique to the particular bulk container 120 could be provided with the bulk container 120. The container adapter 122, when provided with the bulk container 120, can be already installed on the bulk container 122 or just packaged with the bulk container 120.
The pump supply line 204 can be any suitable conduit capable of carrying the treating chemistry to the pump 126. The pump supply line 204 can be any degree of transparency, including opaque. It is contemplated that the pump supply line 204 is transparent so that the sensor 206 can optically inspect the treating chemistry as it flows through the pump supply line.
While the pump 126 is primarily described as a water pressure-driven pump, the pump can also be a traditional electrical pump. Any suitable electric pump can be used. One such pump is a piston-type electrical pump.
The sensor 206 can be any sensor, including any of the previously described sensors 104, suitable for sensing one or more characteristics of the treating cases. It is contemplated that the sensor 206 is an optical sensor that can determine reflectance, color, etc. of the treating chemistry. The sensor 206 may also emit light, visible or non-visible, onto the treating chemistry and then sense an optical characteristic of the reflected light, such as, without limitation, intensity, color, wavelength, reflectance, etc. The received characteristic may be used to determine one or more characteristics of the treating chemistry, such as, without limitation, type of treating chemistry (detergent, softener, bleach etc.) or concentration of treating chemistry, such as concentration of surfactants in a detergent.
Specific examples of suitable sensors for determining characteristics of the treating chemistry, and methods of operation, are found in U.S. Pat. No. 8,628,024, entitled Removable Component For A Consumable With Identifying Graphic, filed Mar. 25, 2013, and issued Jan. 14, 2014, and U.S. Publication No. 20140259450, entitled “Methods and Compositions for Treating Laundry Items”, published Sep. 18, 2014, and issued as U.S. Pat. No. 9,689,101 on Jun. 27, 2017, and, both of which are incorporated by reference. Other suitable sensors, especially for detecting bubbles in tubing, include photo resistors (visible infrared and ultraviolet light), photo transistors, and ultrasonic sensors (used in intravenous lines and intravenous pumps).
The sensor 206, more specifically an infrared sensor coupled to the controller, can also be used to determine whether the pump supply line 204 and by extension, the hose 154, is full or empty of treating chemistry. As the bulk container 120 starts to empty, air bubbles are introduced into the straw 152 and ultimately work their way to the sensor 206. The detection of the air bubbles can be used to determine the empty status of the bulk container 120. As an extension, when a bulk container 120 is replaced, air bubbles will be present for a period of time until the hose 154 is full again. Also, when a container is first installed, air will be in the pump supply line 204.
The detection of air bubbles in the pump supply line 204 can be used by the controller 96 to implement several special, non-treating, cycles of operation. For example, upon the first use of the washing machine 10, the controller can presume that a bulk container 120 is being installed for the first time. A special “priming” cycle can be carried out, which includes activating the pump 126 until the sensor 206 no longer detects air bubbles or for some other standard that would typically fill the hose 154 and the pump supply line 204 with treating chemistry. The controller can store a flag indicating that the initial fill has already occurred. Thus, any subsequent determination of air bubbles can be interpreted as the present bulk container 120 being empty or that the present bulk container 120 was replaced, and a suitable pumping cycle is implemented until the air bubbles are eliminated.
In all of the above scenarios, the controller 96 can provide an alert to the user via the user interface 98. The alert can be audible, visual, or both. If the washing machine 10 is connected to either a wired or wireless network, it can provide the alert to the user's computer or wireless device. The alert can be a notification to the user or it can be a request for information to help the controller determine what special cycle to run. For example, the controller can prompt the user as to whether the bulk container was replaced or not. The controller can also alert the user that the bulk container 120 is empty or near empty.
The first and second body portions 200A, 200B have complementary spring fingers 216 and apertures 218. The spring fingers 216 are sized to be received within the apertures 218 in a snap-fit connection to connect the first and second body portions 200A, 200B.
The first body portion 200A comprises a tube opening 220 into which the tube fitting 210 can be inserted. A key 222 is located on one side of the first body portion 200A. A clip opening 224 is located on another side of the first body portion 200A and is sized to receive the clip 212. A release opening 226 is located on a face of the first body portion 200A.
The second body portion 200B includes a keyway 230 sized to receive the key 222, which collectively provide an index for aligning the first and second body portions 200A, 200B. A seal opening 232 is located within the interior of the second body portion 200B and is sized to receive the tube fitting 210 in a liquid tight seal. A collar 234 encircles the seal opening 232 and defines a recess in which the pump supply line 204 is received.
The tube fitting 210 includes a body 236 terminating at one end with a nipple 238, sized to be received within the hose 154, and at an opposing end in a seal structure 240 sized to be snap-fit within the seal opening 232. First and second shoulders 242, 244 are provided in spaced relationship on the body 236, with the spacing being great enough to receive the clip 212.
The clip 212 comprises a handle 250 with a pull 252 extending from one end of the handle 250. A pair of spaced retaining fingers 254 extend from the handle 250. A pair of spring fingers 256 extend from the handle 250 and are located between the retaining fingers 254. The retaining fingers 254 can be temporarily inwardly sprung to fit within the clip opening 224 to permit the sliding of the clip 212 by use of the pull 252 in and out of the clip opening 224, with the outer range of movement being limited by the tips of the retaining fingers 254 contacting the first body portion 200A defining the clip opening 224.
The pair of spring fingers 256 include an arcuate portion 258 that conforms to the curvature of the body 236 between the first and second shoulders 242, 244 of the tube fitting 210. The tips of the spring fingers 256 define a gap 260, which is less than the diameter of the body 236 between the first and second shoulders 242, 244 of the tube fitting 210. With this configuration, when the spring fingers 256 are slid over the body 236 between the shoulders 242, 244, the spring fingers must first deflect until the body 236 is received within the arcuate portions 258, leading to the spring fingers “snapping” around the body 236 and provide tactile feedback to the user.
To assemble and operate the liquid interface 124 into a condition ready for operation, in no particular order, the retaining fingers 254 are inserted through the clip opening 224 such that the tips of the retaining fingers lie within the body 200. The spring fingers 216 are inserted into the apertures 218 to secure together the body portions 200A, 200B. The pump supply line 204 is press-fit within the collar 234. The nipple 238 of the tube fitting 210 is inserted into the hose 154. The assembled body 200 is then mounted to the cabinet 12. With the body 200 mounted to the cabinet 12, the body 236 is inserted into the tube opening 220 until the seal structure 240 seals with respect to the seal opening 232. The user can move the clip 212 by applying a sliding force to the pull 252 to move the clip between an unlocked position and a locked position, where the spring fingers 256 snap over the body 236 between the shoulders 242, 244 to retain the tube fitting 210 within the body 200.
Another implementation of the liquid interface 124 is illustrated in
Another implementation of the liquid interface 124 is illustrated in
The pump 126, as previously stated, can be any suitable pump capable of drawing treating chemistry from the bulk container 120. As illustrated, the pump is a water pressure driven mixing pump 126 having a first inlet 300 fluidly coupled to the pump supply line 204, a second inlet 302 fluidly coupled to the supply conduit 52, and an outlet 304 fluidly coupled to the dispensing outlet conduit 64, via line 308, which emits through the nozzle 66. This configuration enables the pump 126 to drawing in treating chemistry from the bulk container 120 via the container adapter 122 and liquid interface 124 along with water from the household water supply via supply conduit 52, mix the treating chemistry and water within the pump 126, and dispense the mixture to the treating chamber 18 via the dispensing outlet conduit 64 and the nozzle 66.
The pump 126 is beneficial in that it pumps in response to water pressure from the household water supply 40 and does not require electricity. Not only does this reduce costs and complexity, but it also provides substantial design freedom on where the pump 126 may be located.
That the pump 126 pre-mixes the treating chemistry and the water prior to dispensing to the treating chamber 18 is further beneficial in that the pre-mixing tends to yield a more evenly distributed concentration of treating chemistry, which avoids treating chemistry “hot spots” of high concentrations. The more evenly distributed concentration makes it safer to directly introduce the mixture into the treating chamber 18 without concern for concentration effects on the laundry within the treating chamber. The pre-mixing is further beneficial in that the mixing from the pump 126 is sufficiently great enough to break up the vesicle of amalgamated treating chemistry. The mixing within the pump 126 produces sufficient shear forces to break of the vesicles into the individual molecules, which promotes a more even distribution of the treating chemistry within the mixture.
The pump 126 is further beneficial in that it outputs small doses of treating chemistry, on the order of a few milliliters per discharge. Thus, it is possible to dispense very accurate and well controlled volumes of treating chemistry at very accurate and well controlled concentrations. In one implementation, a dedicated switch 305 (
If the concentration of the mixture provided by the pump is too high for the selected cycle of operation, the mixture can be diluted by adding water directly to the treating chamber 18 from the household water supply 40. One method of implementing the dilution is to dispense the mixture from the pump 126 into the tub 14, and then supply water to the tub from the household water supply 40 to create the diluted mixture, which can then be recirculated into the treating chamber 18 using the recirculation and drain system.
The pump 638, as a water pressure pump, utilizes a flow of water from the water conduit 636 to draw a volume of treating chemistry from the chemistry conduit 640. The drawn treating chemistry is mixed with the flow of water to provide a mixture of treating chemistry and water into the mixed conduit 642, which can be provided to the washing machine 628 during a cycle of operation.
The washing machine 628 can be any suitable washing machine 628, such as a vertical or horizontal axis washing machine. As shown, the washing machine 628 is a vertical axis washing machine 628 having a housing 644 to define an interior 646. A tub 648 and a basket 650 are disposed in the interior 646. A treating chamber 652 is defined within the basket 650 for treating a load of laundry. An outlet 654 can fluidly couple the mixed conduit 642 to the treating chamber 652.
The pump system 630 can further include a controller 660. The controller 660, for example, can be the controller of
A valve 669 can be disposed in the water conduit 636. The valve 669 can be communicatively coupled with the controller 660. The controller 660 can selectively open and close the valve 669. As such, opening and closing the valve 669 can selectively draw a desired volume or rate of treating chemistry provided from the chemistry conduit 640 by controlling the flow of water provided to the pump 638.
The sensors provide different ways for measuring a volume of water over a period of time or a water pressure. The sensors provide such information to the controller 660. The controller 660 can communicatively couple to the pump 638 over a communication conduit 672. The controller 660 controls the pump 638 based upon information relating to the water flow rates or pressures from the sensors. Based upon a signal from the controller 660, the pump 638 can control the volume, rate, or combination thereof of treating chemistry provided by the pump 638 to the mixed conduit 642. Thus, the pump 638 can provide the appropriate amount of treating chemistry to the water being provided to the treating chamber 652. The appropriate amount can be representative of a dilution, such as a ratio of treating chemistry to water to effectively treat a load.
The pump 638, in one example, can provide treating chemistry by toggling the pump 638 on for a set period time and off for a set period time, representing a duty cycle for the pump 638. Such toggling of the pump 638 can be accomplished by opening and closing the valve 669. One dose of treating chemistry can be represented as a number of duty cycles. The dose can be altered by varying the number or rate of the duty cycles in order to provide the appropriate amount of treating chemistry. Such an amount can be determinative of sensor information provided to the controller 660, which, in turn, controls the pump 638 or the valve 669. The duty cycle can vary between 7-20 actuations of the pump 638, for example, representing a volume of treating chemistry for the particular cycle of operation. Such a volume of treating chemistry can be based upon, for example, measurements from the sensors, a user selected cycle of operation, load size, load type, wash temperature, or multiple other factors dependent upon the particular load or cycle of operation.
Additionally, the volume, rate, ratio, or other value of treating chemistry can be injected by the pump according to a Dose Algorithm. A Dose Algorithm can be a set of instructions for operating the pump 638. Such instructions can be based upon measurements by the sensors 662, 664, 666, 668, as well as other input communicated to the controller 660, such as a cycle of operation entered at a user interface by a user, in one non-limiting example. The Dose Algorithm can be used to control the duty cycle of the pump 638 to provide a preferred amount of treating chemistry into the water at a preferred rate in order to minimize overall chemistry usage, while improving wash quality.
The controller 660 can particularly utilize the information related to the flow rate or water pressure from the sensors to optimize the duty cycle for the pump 638 or valve 669. The pumps shown in
In operation, the cam 682 can be driven by a flow of water or by an electric signal from the controller representative of the flow of water, or a rate or pressure thereof. The cam 682 drives the arm 684 to reciprocate the piston 686. As the piston 686 reciprocates outwardly, a volume of treating chemistry is drawn through the inlet valve 690 and into the interior 694. As the piston 686 reciprocates inwardly, the volume of treating chemistry 698 is pushed through the outlet valve 692 where the treating chemistry 698 can combine with water 700 to create a mixture 702 of water 700 and treating chemistry 698 in the mixed conduit 642.
The rate of reciprocation of the piston 686 by the cam 682 can control the volume and rate at which the treating chemistry 698 is provided to the water conduit 636. Such a rate can also be determined by the size of the interior 694 and the distance the piston 686 travels.
Such rates and volumes can be utilized by the controller 660 based upon the flow rate or pressure of the water conduit 636 to determine a pump duty cycle and apply the appropriate amount of treating chemistry 698 to the water flow 700. For example, the valve 669 of
In another example, such information can be utilized as a Dose Algorithm operating as a program within the controller. The Dose Algorithm can be representative of the flow rates and volumes of the water supply and the treating chemistry. The Dose Algorithm can utilize the flow rates or pressures to minimize pump actuation, thus minimizing the duty cycle of the pump 638 and improving cycle times while minimizing treating chemistry usage. In a specific example, the Dose Algorithm can take the measure flow rates or pressures to selectively control the valve 669 to control the duty cycle of the water pressure pump providing an optimized amount of treating chemistry to the washing machine.
The coil 722 is a solenoid that drives the spring 724 to actuate the armature 720 to operate the bellows pump 710. A contact arm 732 can be in communication with a controller, such as the controller 660 of
In one example, operation of the bellows pump 710 can be based upon the Dose Algorithm. The rate at which treating chemistry is provided by the bellows pump 710 can minimize the duty cycle of the strokes and the operation of the pump 710, as well as improving cycle time and optimizing treating chemistry usage. The controller 660 can utilize water pressure or flow rate information to optimize the operation of the bellows pump 710 input into the Dose Algorithm.
As illustrated in
To implement the different spray scenarios in
The detergent nozzle 760 can spray a detergent mixture 770 toward one side of the basket 751. The detergent mixture 770 can be a mixture of water and detergent treating chemistry. The mixture 770 is sprayed in a fanned pattern 768 in order to extend between the basket 751 and the clothes mover 754. During spraying of the mixture 770, the basket 751 can be rotated at an initial speed. Such a rotation, for example, can be about 20 revolutions per minute (rpm). By rotating the basket 751 and spraying the detergent mixture 770 at the fanned pattern 768, a flat spray is provided to the load and the detergent mixture 770 can be evenly applied to a load of clothing within the treating chamber 752. The fanned pattern 768 can provide a thin, flat curtain of the detergent mixture 770 across the load. The fanned pattern 768 can be designed to apply more detergent mixture to the area of the load that has the most laundry. For example, if the majority of the load is disposed in the radially outer two-thirds of the drum, the fanned pattern 768 can provide the majority of the detergent to that area. Twenty rpms is well below a “spin” speed, which is the rotational speed at which the centrifugal force on the inner surface of the drum is 1 g or greater. A spin speed for the wash of
Typical washing machines can dispense detergent into the sump or into the load in a concentrated dose. Such dispensing results in uneven distribution of detergent. Utilizing the detergent nozzle 760 to spray the detergent mixture 770 at the fanned pattern 768 while rotating provides even distribution of the detergent across the load to provide a consistent cleaning to the load.
The softener nozzle 762 can spray a softener mixture 772 at a cone-shaped pattern 774, which is narrower than the fanned pattern 768, having a somewhat circular splash pattern. The softener mixture 772 can be a mixture of fabric softener treating chemistry and water. The softener mixture 772 can be sprayed at the cone-shaped pattern 774 at the clothes mover 754 after the basket has been rotated closer to or greater than a spin speed to form the laundry into an annulus about the clothes move, and when there is liquid at a level in the basket. Thus the cone-shaped pattern 774 will be directed into the liquid within the annulus of the laundry and will not directly contact the laundry. This provides for a uniform distribution of the softener, which is able to disperser through the water first before coming into contact with the load, which also prevents “hot spots” of softener on the load, which is not desirable with fabric softener. It should be understood that the cone-shaped pattern 774 is exemplary, and any shaped pattern can be used to spray the softener into the basket without contacting the laundry. However, since a spin cycle typically moves the clothes radially outward along the basket, it is preferable to spray the softener mixture 772 in a cone-shaped pattern 774 toward the clothes mover 754 to avoid direct application to the laundry.
The water nozzle 764 can spray water 776 at another streamed pattern 778 onto the load across the basket 751. The streamed pattern 778 can be a thick, flat flow of liquid extending across a portion of the load between the basket 751 and the clothes mover 754. The streamed pattern 778 can be designed to provide a majority of the liquid where the load will be during the high speed spin portion of the cycle. The extended distance of the water 776 in the streamed pattern 778 results in an even distribution of water among the load rather than soaking a portion of the load and relying on the water to pass among the rest of the load. During such a spray of water 776, the basket 751 can be rotated, such as at least 1 g, where g=gravitational acceleration, or above 65 rpm for typical basket diameters. The rpm can be higher and heightened rotational speed can help to reduce the amount of water needed to rinse the load, however, such a rotational speed needs to be balanced between improved cleaning and reduce water requirements with the tendency of the spray water 776 to splash out at a higher rpm. Additionally, spraying the water at the basket 751 can wash away any remaining detergent to clean the basket 751 during the cycle of operation. As such, proper detergent removal from the load during rinse is facilitated while maintaining a clean basket 751.
It should be appreciated that the organization of the nozzles and the resultant spray pattern can evenly distribute treating chemistries, a mixture of treating chemistries and water, water, or any other treatment or combination in treatments in an effective manner to provide even distribution among a wash load.
The first nozzle 794 can be similar to the water nozzle 764 of
The second nozzle 796 can be disposed between the tub 790 and the basket 751. The second nozzle 796 can spray a low concentration dose of detergent or fabric softener 802 at a second pattern 804. The low concentration dose can be a mixture of water and detergent or fabric softener to dilute the detergent or fabric softener as initially provided by the user to the washing machine. Spraying the low concentration detergent or fabric softener 802 between the basket 751 and the tub 790 can indirectly provide the detergent, fabric softener 802 or other treating chemistry to the load, where direct application can be detrimental to cleaning effectiveness, or non-uniform among the entire load.
The second nozzle 796 can alternatively be a recirculation nozzle 796. The recirculation nozzle 796 can provide recirculation of liquid from the sump back into the basket. For example, a detergent mixture that has drained from the load and the basket to the tub, can pass to the sump where it can be recirculated and reapplied to the load. As such, the load can receive increased interaction with the treating chemistry or detergent, requiring a lesser amount of treating chemistry per cycle. Additionally, the second nozzle 796 as a recirculation nozzle can be sprayed at the load while the basket is spinning to provide a more uniform coverage of the recirculated mixture.
In another example, where the second nozzle 796 is a recirculation nozzle during a rinse cycle, the water can be recirculated from the sump to the load to remove a greater portion of detergent or treating chemistry form the load. As such, a lesser volume of water is required during the rinse cycle. Such a lesser water volume can make the washing machine 786 more economical as well as advantageous in areas where water availability is diminished.
Additionally, the washing machine 786 can include a top wall 806 having the access opening 750 to provide access to the treating chamber 752. The top wall 806 can include an aperture 808. A conduit 810 can couple the aperture to the treating chamber 752. The aperture 808 can be used for adding additional treating chemistry to the treating chamber 752. For example, bleach can be added via the aperture 808, without intermixing the bleach with the nozzles for the other treating chemistry. Additionally, a supply of water can be provided to the aperture 808 or conduit 810 to dilute the treating chemistry provided through the aperture 808. Furthermore, a cap or cover can be provided to close the aperture 808 when not in use. Providing the bleach to the aperture 808 prevents direct disposal onto the load, facilitating even distribution of the bleach or other treating chemistry. It should be appreciated that other treating chemistries beyond bleach are contemplated, such as stain treatments in one non-limiting example. Additionally, a cap or cover can be provided to close the aperture 808 when not in use.
Additionally, the nozzles as described in
Typical nozzles in the industry are made of rubber or flexible material to prevent breaking. The nozzles extend at least partially into the treating chamber, exposing them to the user where loading laundry can damage the nozzles.
The pump 906 can be any pump described herein, such as the pump of
An aperture 920 can be disposed in the washing machine 901. The ring 904 can be sized to be received in the aperture 920. The ring 904 can align with the pump 906 to guide insertion of the spigot 902 at the ring 904 to couple the spigot 902 to the pump 906 by coupling the outlet 910 to the female receptacle 918. The ring 904 and spigot 902 can be colored similar to one another to identify the appropriate spigot 902 to be connected to the complementary pump 906. For example, the washing machine 901 can have a pump 906 for supplying a volume of detergent. The ring 904 and spigot 902, for example, can both be colored blue. When a user is attaching a bulk dispenser 60 to the connection system 900, they can properly identify which treating chemistry is provided to the proper pump 906 by attaching the colored spigot 902 to the similar pump 906 at the similar colored ring 904. As such, if a washing machine 901 includes pumps for multiple treating chemistries, a user can properly provide the treating chemistries to the washing machine 901 such that the loads are properly treated.
Referring to
Additionally, it is contemplated that the ring 904 or the pump 906 can be communicatively coupled to the controller 96. Upon interconnection of the connection system 900, the washing machine 901 can signal the user that the connection is proper or improper. Examples of such signals can include but are not limited to a light on the user interface or display, an audible sound, or the similar sensor signals. In another example, if the connection is improper, the washing machine 901 may prevent starting of a requested cycle of operation until a proper connection is made.
Such improper or proper connections can be measured in multiple ways. In one example, an electrical connection can be made upon connecting the spigot 902 to the pump 906. Upon making the electrical connection, a circuit can be completed. Such completion can be communicated to the controller identifying the proper or improper connection of the system 900.
Referring to
The manifold 956 can include a hot water inlet 966 and a cold water inlet 968. The manifold 956 can provide a supply of water to the nozzle 962 through a conduit 964 for providing water to the treating chamber. Similarly, the manifold 956 can supply water to the pumps 952, 954. The pumps 952, 954 can utilize the water along with a volume of treating chemistry from the spigots 958 to create a mixture. Such a mixture can be provided from the pumps 952, 954 to a nozzle 962 for dispensing into the treating chamber for treating a load.
The housing 950 can be utilized to create a modular design for providing a supply of water and treating chemistry to a washing machine 10 while incorporating a bulk dispensing system.
The system of channels 992 includes three water channels 1002 and two mixed channels 1004. The water channels 1002 fluidly couple the receptacles 990 to three outlets 998. Two of the outlets 998 can couple to pumps 996, while the third outlet 998 can provide a flow of water directly to the treating chamber of the washing machine 10. The two mixed channels 1004 fluidly couple two inlets 1000 to two outlets 998.
In operation, the upper portion 982 can fasten to the lower portion 984 to seat the seals 988 at the channels 992, fluidly sealing the channels 992. A flow of water is provided to the spouts 986, such as from the manifold of
The housing can have at least one water supply connector or bulk chemistry connector for fluidly coupling to a water supply or a bulk treating chemistry supply. Additionally, the housing can include on or more nozzles for dispensing the liquids into the treating chamber. The nozzle, for example, can couple to the wash liquid output, and can be a spray nozzle. The nozzle can couple to a nozzle fitting on the housing, and be releasable mounted to the nozzle fitting. Additionally, the pump mount can be releasable to have the pump removably mounted to the housing.
The appliance can further include a valve assembly, such as any suitable combination of valves, carried by the housing for introducing a supply of water, treating chemistry, bulk treating chemistry, or other fluids. The valve assembly, for example, can include at least one of a water supply valve or a treating chemistry supply valve. Furthermore, the housing can include two separate halves, such as that shown in
While the different embodiments are illustrated using a single bulk container 120, it is contemplated that multiple bulk containers 120 can be used, with the controller selecting the bulk container 120 for the particular phase of the cycle of operation. For example, one bulk container 120 could hold detergent, another could hold bleach, and another could hold fabric softener, and yet another could hold special detergent, such as for babies clothing. The multiple bulk container 120 implementation can be accomplished by providing a liquid interface 124 and pump 126 for each of the different bulk containers 120. A sensor 206 can be provided for each of the bulk containers 120 and can be used to also identify the type of treating chemistry in the corresponding bulk container 120 and provide that data to the controller for subsequent use.
It is possible to fluidly couple all of the bulk containers 120 to a single pump 126 by locating a multiplexing valve or multi-spigot tube between the multiple liquid interfaces and the pump 126, for example. However, given that many of the contemplated treating chemistries are deleterious to each other's functionality when mixed, a special flushing cycle for the pump 126 would need to be executed prior to switching chemistries to avoid contamination.
While a bubble detection sensor was described for determining when the bulk container 120 is empty or nearing empty, an alternative would be to use one of the weight sensors 104, such as a plate, on which the bulk container 120 is placed. Such a weight sensor could be located at a predetermined portion of the cabinet top, in the shelf 310, or in the drawer 316 of the pedestal 314.
Alternatively, the bulk container 380 can be disposed on the rear wall 391 of the washing machine 378.
The bulk container 380 further includes a channel 406 extending longitudinally along the bulk container 380. The channel 406 provides room for the first and second outlet conduits 396, 398 to extend from the bottom of the bulk container 380 to the top of the washing machine 10. Additionally, the channel 406 can effectively separate the bulk container 380 into the first and second halves 402, 404.
Indicia 408 can be disposed on the caps 390 disposed on the top wall 384. Such indicia 408 can identify the proper treating chemistry to be supplied to the proper section of the bulk container 380.
The bulk container 380 provides for storage of a large volume of treating chemistry, while requiring a minimal amount of space external of the washing machine 10, as well as being hidden from view of the consumer.
It should be appreciated that while
Alternatively, as shown in
It should be appreciated that the washing machine 418 having the tip out panel 422 disposed above the toe kick panel 426 provides a geometry that is beneficial to locating the treating chamber higher off of the ground than traditional treating chambers. Such a position provides an ergonomic position for the door facilitating loading and unloading of the washing machine 418 by a user. Similarly, the heightened position of the tip out panel 422 facilitates loading of treating chemistry into the washing machine 418, rather than requiring a user to remove a bulk dispenser or bend or stoop to fill or install a new bulk container or dispenser. A typical horizontal axis washing machine has a door position that requires a user to bend over or stoop to load. The heightened treating chamber allows a user to load and unload the washing machine 418 without bending or stooping. While the tip out panel is well suited for a configuration where the treating chamber is higher off the ground than normal, the tip out panel can be used with a traditional height treating chamber. In another example, it is contemplated that the washing machine 418 does not include a toe kick panel 426 and that the tip out panel 422 is disposed at the bottom of the washing machine 418 adjacent the floor or other resting surface.
In use, the bulk container 482 can be filled with a volume of one or more treating chemistries. The bulk container 482 can be removed from the slot 480 for filling. Upon removal of the bulk container 482, the lid 484 is opened providing access to the chambers 488. The different treating chemistries can be poured or otherwise placed in the chambers 488 to keep them separate, such as from the bulk dispenser 60 (
The bulk container 482 can include a valve (not shown). Such a valve can be similar to the valve 362 of
Alternatively, the bulk container 482 can operate as a storage unit within the washing machine 468. When a user requires a volume of treating chemistry, the bulk container 482 can be removed from the slot 480 where a user can collect a volume of treating chemistry from the bulk container 482 and dispense it to the washing machine 468 for a cycle of operation. For example, the bulk container 482 can hold a large volume of detergent where a user can selectively provide the detergent to the washing machine 468. In another example, the bulk container 482 can hold stain treating chemistry, where a user can selectively provide the stain treating chemistry to an article for pre-treatment as may be desired.
In operation, the door 24 can be opened to provide access to the bulk receptacle 500. The user can pour treating chemistry into the inlets 508. The treating chemistry passes into the reservoirs 514 through the conduits 512. The inlets 508 can be labelled with indicia (not shown) to instruct a user to input the proper treating chemistry into the proper reservoir 514. Additionally, it is contemplated that a fill-level for the reservoirs 514 can be communicated to the user, such as through visual or audible communication at the user interface, in one non-limiting example.
The second door 524 can selectively open and close the access opening 520 at a seat 540. One or more inlets (not shown) can be disposed at the seat 540 complementary to the chambers 528. The inlets can fluidly couple the chambers 528 of the bulk receptacle 500 to the washing machine 518 for providing a volume to treating chemistry to the washing machine 518 during a cycle of operation.
The second door 524 closes the access opening 520 to the washing machine 518. The first door 522 is selectively opened to access the bulk container 526. In operation, a user opens the first door 522 and can fill the bulk container 526 with a volume of treating chemistry. The second door 524, in combination with the first door 522, can be closed to enclose the access opening 520. In the closed position, the treating chemistry from the individual chambers 528 can be drawn by the washing machine 10 for use during a cycle of operation.
Alternatively, the bulk container 526 can be separated by chamber 528 into individual bulk containers 542. Each individual bulk container 542 can include a handle 544 for removal for filling and replacing. As such, the washing machine 10 can draw a volume of treating chemistry directly from the bulk containers 542 without requiring an internal reservoir for holding the treating chemistry.
A user can fill the bulk container 550 with a volume of treating chemistry, storing the treating chemistry in the door 551. During operation, the door 551 is closed, sealing the access opening 562. The outlets 558 align with the receptacles 564 for drawing a volume of treating chemistry from the bulk container 550 for use during a cycle of operation. Drawing of the treating chemistry can be performed by a pump, such as the pumps of
Referring to
For example, a user may have an article of laundry for treatment which requires additional stain treatment. The user can place the article underneath the fascia 880 and press one of the buttons 884. The controller 96, being in communication with the button 884, can provide a portion of treating chemistry from the nozzles 882 related to the particular button 884 to treat the particular article. Additionally, the controller 96 can record the amount of treating chemistry applied to the article and subtract that from the total amount of treating chemistry applied to the load during a cycle of operation. As such, excessive use of the treating chemistry is prevented, minimizing sudsing or overtreating of the laundry. It should be understood that as used herein, sudsing is the phenomenon where excessive soap bubbling occurs, which can spill out from the washing machine making a mess. Additionally, it is contemplated that nozzles can be utilized to dispense stain treatment chemistry, as opposed to utilizing detergent to treat the articles, permitting a full dosage of detergent during the cycle of operation.
The pump 1076 as well as the stain station 1060 can communicatively couple to a user inter face 1072 where a user can selectively control the stain station 1060 from a human machine interface (HMI) 1074.
Additionally, it is contemplated that a sensor can be included with the stain station 1060. For example, a sensor could detect the number of actuations of the actuator or could include a flow meter disposed on the conduits. As such, the sensor can make a measurement of the treating chemistry provided from the stain station 1060 to determine a sensor output representative of the treating chemistry dispensed.
In operation, the stain station 1060 can be used to dispense a volume of treating chemistry form the pumps 1068 into the treating chamber 1066 or onto an article of clothing that a user holds underneath the fascia 1062. The nozzles 1068 can be multiple nozzles 1068 coupled to multiple conduits for running multiple different fluids, such as hot or cold water, or different treating chemistries such as detergent, stain treatment, or fabric softener in non-limiting examples.
A method of operation can include a user selecting a cycle of operation at the HMI 1074. According to the selected cycle of operation, the laundry treating appliance 1028 can determine an amount of treating chemistry dispensed from the stain station 1060 during a pre-treating operation to define a determined amount of pre-treating chemistry. The machine 1028, such as a controller disposed therein, can reduce a predetermined amount of treating chemistry for the selected cycle of operation based on the determine amount of pre-treating chemistry to define a reduced treating chemistry amount. Then, dispensing the reduced treating chemistry amount during the execution of the selected cycle of operation. As such, the user can selectively pre-treat the clothing as is desirable, while the washing machine 1028 accurately records the amount used in order to prevent over treating of the laundry by excessive pre-treatment by the user. Thus, cleaning efficiency can be improved and clothing degradation through wash, minimized.
A nozzle 1092 can be disposed at the treating chamber 1079 for providing a volume of fluid to the treating chamber 1079. The nozzle 1092 can fluidly couple to the pump 1086 and the valve 1084 for receiving a volume of fluid, such as water and treating chemistry, for providing to the treating chamber 1079. One or more fluid conduits 1088 can fluidly couple the pump 1086 and the valve 1084 to the treating chamber 1079 or the nozzle 1092. The nozzle 1092 can mix the supply of water and treating chemistry for a mixed application to the treating chamber 1079 or a load disposed therein. Alternatively, the valve 1084 can fluidly couple to the pump 1086. The water and detergent can mix at the pump 1086, with the pump 1086 providing the mixture to the treating chamber 1079 via the nozzle 1092.
The washing machine 1078 can further include a stain station such as a stain panel 1094 including at least one button 1096. The stain panel 1094 can communicatively couple to the controller 1080 with a conduit 1088, similar to the valve 1084 and the pump 1086. The buttons 1096 can generate and provide a signal to the controller 1080 to selectively control the pump 1086, valve 1084, or combination thereof to dispense a volume of water and treating chemistry from the nozzle 1092. While only two buttons 1096 are shown, the panel 1094 can include any number of buttons 1096, being one or more, with each button relating to a different fluid, such as water, detergent, stain chemistry, or any other chemistry desirable for use in a washing machine 1078.
In operation, a user can operate the buttons 1096 to provide a signal to the controller 1080. The controller 1080 can operate the valve 1084 and the pump 1086 to provide a fluid to the treating chamber 1079 at the nozzle 1092. A user can place an article under or adjacent the nozzle 1092 to receive the fluid from the nozzle 1092 to treat, pretreat, or otherwise dispense the fluid to the article as is desirable.
Additionally, in operation, the mixture of detergent and water can be directly applied to the load form the nozzle, upon mixing the water and detergent, for immediate application of the mixture upon activation of the detergent in the water directly and evenly to the load. Such an application can be accomplished through slowly rotating the treating chamber. As such, application is improved through contact during initial activation of the detergent and even application among the load.
It should be further appreciated that the blend of water and detergent can be delivered directly to the article in a more concentrated form, yielding a detergent-rich prewash with the washing machine 1078 of
During dispensing of the treating chemistry, water, or mixture 1040, a volume of treating chemistry can be provided from a bulk dispenser 60 or a bulk container 120, such as those of
In another example, the speaker 1034 or other audible indicator, can indicate when the treating chemistry 1040 is properly or improperly being dispensed. For example, the treating chemistry 1040 is being improperly dispensed, a beeping or buzzing noise can alert the user that the bulk dispenser may need to be refilled. Additionally, the audible indicator can be a short phrase, such as “Please Refill Detergent.” Such a phrase can be tailored to a particular status of the dispensing of the treating chemistry. For example, the audible indicator can direct the user to refill a bulk dispenser or container, or check the connection of the bulk dispenser to the washing machine.
In yet another example, the wireless module 1036 can inform the user of the status of dispensing of the treating chemistry 1040. The wireless module 1036 can be in communication with, for example, a mobile device 1044, remote enabled computing device 1046 such as a desktop computer, network device 1048, or another appliance 1050 in non-limiting examples. Such devices can be connected over a network 1054, such as a local area network (LAN), home area network (HAN), wireless area network (WAN), or the internet in non-limiting examples. Additionally, a wired connection is contemplated.
Connection of the washing machine 10 to these devices can provide information related to proper or improper dispensing of the treating chemistry 1040 over a wireless signal 1052. For example, the washing machine 10 can send the wireless signal 1052 to the mobile device 1044 indicating the status of the dispensing of the treating chemistry 1040. In one particular example, the signal 1052 can include cycle status, informing the user of the current stage in the cycle and that the detergent has been properly dispensed. In another particular example, the signal 1052 can include that the detergent has been improperly dispensed, such that the detergent may need to be replaced or refilled. The signal 1052 can be transmitted over the network 1054 to the mobile device 1044, the remote enabled computing device 1046, the appliance 1050, or any other device connected to the network 1054 where the signal can be received and communicated to the user representative of the status of the dispensing of the treating chemistry 1040.
Additionally, such a communication can be representative of the bulk system being properly interconnected prior to the beginning of a cycle of operation. For example, if the spigot (
The retro-fit unit 1108 can be a single unit mountable to a wall or building structure, for example, or can be placed on a shelf. The retro-fit unit 1108 provides for receiving a flow of water from the household water supply 1106 and receiving a volume of one or more treating chemistries from the bulk dispensers 1104. The retro-fit unit 1108 can selectively intermix the treating chemistries from the bulk dispensers 1104 with the water supplies 1112, 1114 and provide such a mixture to the washing machine 1102 for use in a cycle of operation. Additionally, the retro-fit unit 1108 can provide a supply of water 1112, 1114 to the washing machine 1102 without integrating any treating chemistry into the supply. Thus, a washing machine 1102 without bulk dispensing capabilities can be retrofitted to have bulk dispensing capabilities.
The bulk dispenser 1104 defines a reservoir 1136 for storing treating chemistry. In an example using a bulk dispenser 1104 as an off-the-shelf consumer product, a reservoir cap 1138 can be applied to the bulk dispenser 1104 having a reservoir hose 1140. At a chemistry inlet 1142 on the retro-fit unit 1108, the reservoir hose 1140 can couple the bulk dispenser 1104 to the retro-fit unit 1108 for providing a volume of treating chemistry from the reservoir 1136.
The retro-fit unit 1108 contains a water check valve 1144, a flow meter 1146, an appliance control unit (ACU) 1148, a chemistry pump 1150, a chemistry check valve 1152, a chemistry injector 1154, a mixed outlet 1156. The water check valve 1144 provides for permitting a one-directional flow of water from the water inlet 1132, preventing any back flow of water. The flow meter 1146 can measure the flow rate or water pressure provided from the water supply 1106. The ACU 1148 is in communication with the flow meter 1146 to determine a rate, volume, duty cycle, or similar measured value of treating chemistry to be provided from the bulk dispenser 1104 based upon the measurements of the flow meter 1146. The chemistry pump 1150 selectively provides a volume of treating chemistry from the chemistry inlet 1142. The chemistry pump 1150 can be a water pressure pump, such as the pumps of
A washer inlet 1158 can be any inlet on the washing machine 1102 for receiving a supply of liquid. An outlet hose 1160 can couple the mixed outlet 1156 to the washer inlet 1158.
Optionally, the retro-fit unit 1108 can have a user interface 1162. The user interface 1162 can be communicatively coupled to the ACU 1148. A user can interact with the retro-fit unit 1108 at the user interface to provide information to the retro-fit unit 1108 regarding the particular washing machine 1102 or a cycle of operation to be performed by the washing machine 1102. As such, operation of the retro-fit unit 1108 can be tailored to the particular washing machine 1102 or the particular cycle of operation to be performed by the washing machine 1102. Such tailoring can improve performance of both the retro-fit unit 1108 and the washing machine 1102, while minimizing consumption of treating chemistry.
In order to set up the system 1100, the water hose 1134 can couple the faucet 1130 to the inlet 1132, such as by threaded connections. The reservoir cap 1138 can be screwed onto the bulk dispenser 1104, having the reservoir hose 1140 coupled to the reservoir cap 1138. The remaining end of the reservoir hose 1140 can couple to the chemistry inlet 1142, such as by a threaded connection. The outlet hose 1160 couples the retro-fit unit 1108 to the washing machine 1102, such as with similar threaded connections.
In operation, a cycle of operation is selected on the washing machine 1102 by a user. Optionally, such information can be provided to the retro-fit unit 1108 at the user interface 1162. The washing machine draws a volume of liquid from the retro-fit unit 1108 for performing the cycle of operation. A volume of water is drawn from the water supply 1106 into the retro-fit unit 1108. If the current phase of the cycle of operation only requires water, such as a rinse phase, the water flows through the water check valve 1144, the flow meter 1146, the chemistry injector 1154, and out the mixed outlet 1156 to the washing machine 1102 at the washer inlet 1158. The washing machine 1102 dispenses the water into the treating chamber of the washing machine 1102.
If the current phase of the cycle of operation requires treating chemistry, such as a wash phase or fabric softener phase in non-limiting examples, the water is drawn from the water supply 1106 into the retro-fit unit 1108. The water flow rate or pressure is measured by the flow meter 1146 and such measurements are provided to the ACU 1148. The ACU 1148 instructs the chemistry pump 1150 to provide a volume of treating chemistry to the chemistry injector 1154 through the chemistry check valve 1152. The rate at which the treating chemistry is provided to the chemistry injector can be determined by the ACU 1148 based upon the measurements of the flow meter 1146. As such, the chemistry pump 1150 can provide a volume of treating chemistry to the injector 1154 to mix the water and treating chemistry in order to maximize efficiency of the system 1100. Additionally, the volume of treating chemistry can be accurately dispensed, rather than providing too much or too little treating chemistry, typical to user dispensed treating chemistry or single dose dispensing.
The chemistry injector 1154 mixes the treating chemistry with the water and provide the mixture to the washing machine 1102 form the mixed outlet 1156, through the outlet hose 1160 and into the washer inlet 1158.
As such, a user can easily interconnect the bulk dispenser 1104, washing machine 1102, and household water supply 1106 with the retro-fit unit 1108. Such interconnection can be easily accomplished by fastening threaded connections interconnecting the system of conduits 1110. The retro-fit unit 1108 provides for incorporating a bulk dispensing system into the washing machine 1102. Such a washing machine can be a new washing machine equipped to receive the liquid supply from the retro-fit unit 1108, or can be an existing washing machine being retrofitted to receive treating chemistry and water from a bulk dispenser 1104.
It should be appreciated that while
The reservoir hose 1140 couples to the retro-fit unit 1108 at the chemistry inlet 1142. A first chemistry conduit 1174 couples the chemistry inlet 1142 to the chemistry pump 1150. Optionally, an air intake 1176 can be in communication with the pump 1150 via an air conduit 1178 for providing a supply of air in the case where the pump 1150 is a venturi-type pump. A second chemistry conduit 1180 contains the chemistry check valve 1152 and couples the chemistry pump 1150 to the chemistry injector 1154.
The chemistry injector 1154 can selectively integration a volume of treating chemistry into the water supply. A mixed conduit 1182 couples the chemistry injector 1154 to the mixed outlet 1156. A mixer 1184 can be included in the mixed conduit 1182 for intermixing the chemistry and the water downstream of the chemistry injector 1154. The mixed outlet 1156 couples to the outlet hose 1160 for providing liquid from the retro-fit unit 1108 to the washing machine.
Optionally, the chemistry pump 1150 can couple directly to the mixed conduit 1182 with a third chemistry conduit 1186. A valve 1189 can couple at the junction between the mixed conduit 1182 and the third chemistry conduit 1186. As such, chemistry can be directly provided to the washing machine without intermixing with the water supply. Alternatively, the third chemistry conduit 1186 can couple to a dedicated chemistry outlet (not shown) for providing a volume of un-mixed treating chemistry to the washing machine.
A plurality of communication conduits 1188 can communicatively couple the ACU 1148 to the chemistry pump 1150, the flow meter 1146, and the chemistry injector 1154. The ACU 1148 can be a printed circuit board, in one example, and can include a CPU 1192 and a memory 1194. The memory 1194 can include stored software or data relating to providing liquid to the washing machine and the CPU 1192 can operate such software. Optionally, a communication conduit can communicatively couple the user interface (not shown) where the retro-fit unit 1108 includes the user interface. Such a user interface can couple to the CPU to particularly control the retro-fit unit 1108.
It should be appreciated that the retro-fit unit 1108 operates as a stand-alone unit for integrating a water supply and a bulk dispenser external of a washing machine. Such a unit can be utilized to save internal space of the washing machine, permitting increased capacity. As such, the retro-fit unit 1108 can be tailored to the particular washing machine. Additionally, the retro-fit unit 1108 can be used to retrofit current washing machines. The retro-fit unit 1108 can allow of utilizing bulk dispensing with current washing machines. The retro-fit unit 1108 not only makes using the washing machine easier, but can accurately dispense a volume of treating chemistry for optimally treating a load of laundry without over-treating or under-treating the load.
It should be appreciated that the concepts described herein relate to utilizing bulk dispensing of treating chemistry. One or more of the concepts described can be utilized with one another within a single washing machine. As such, it is contemplated that such concepts can be integrated into a washing machine with one another as may be possible.
One such example is illustrated in
A dedicated cap 1206 can be used to couple the bulk dispenser 1204 to the washing machine 1202. The cap 1206 can be the cap of
The nozzles 1220 can be the nozzles of
Alternatively, the washing machine 1202 can be connected with a universal bulk dispensing system 1236. The bulk dispensing system 1236 can utilize the retro-fit unit of
Thus, it should be appreciated that the concepts as described herein can be individually incorporated into a washing machine or laundry unit, or can be combined utilizing two or more of the concepts to integrate a bulk dispensing system into a laundry machine, such as the washing machine as described herein.
To the extent not already described, the different features and structures of the various embodiments can be used in combination with each other as desired. That one feature is not illustrated in all of the embodiments is not meant to be construed that it cannot be, but is done for brevity of description. Thus, the various features of the different embodiments can be mixed and matched as desired to form new embodiments, whether or not the new embodiments are expressly described. All combinations or permutations of features described herein are covered by this disclosure.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and can include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application claims the benefit of U.S. Provisional Patent Application No. 62/200,706, filed Aug. 4, 2015 and U.S. Provisional Patent Application No. 62/345,072, filed Jun. 3, 2016, both of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2789510 | Meynig | Apr 1957 | A |
3085715 | Douglas | Apr 1963 | A |
3176883 | Davis, Jr. | Apr 1965 | A |
3372846 | Berkus | Mar 1968 | A |
3547560 | Miller | Dec 1970 | A |
4087024 | Martin et al. | May 1978 | A |
4141467 | Augustijn et al. | Feb 1979 | A |
4424829 | Millington et al. | Jan 1984 | A |
4651907 | Thomas | Mar 1987 | A |
4809524 | Sickert et al. | Mar 1989 | A |
4967936 | Bingler | Nov 1990 | A |
5110013 | Clark et al. | May 1992 | A |
5435157 | Laughlin | Jul 1995 | A |
5582039 | Mueller et al. | Dec 1996 | A |
5628430 | Barbe | May 1997 | A |
5743432 | Barbe | Apr 1998 | A |
5743442 | Barbe | Apr 1998 | A |
5870906 | Denisar | Feb 1999 | A |
6058743 | Fujii et al. | May 2000 | A |
6109480 | Monsrud et al. | Aug 2000 | A |
6149034 | Amberg | Nov 2000 | A |
6185774 | Tubman | Feb 2001 | B1 |
6206058 | Nagel et al. | Mar 2001 | B1 |
6241378 | Amberg | Jun 2001 | B1 |
6269666 | Whah et al. | Aug 2001 | B1 |
6874656 | Rohr et al. | Apr 2005 | B2 |
6877626 | Sherrod | Apr 2005 | B2 |
7111762 | Saunders et al. | Sep 2006 | B2 |
7313932 | Ryohke et al. | Jan 2008 | B2 |
7493781 | Ooe | Feb 2009 | B2 |
7921578 | McAllister et al. | Apr 2011 | B2 |
7934403 | Cho et al. | May 2011 | B2 |
8083055 | Simonian et al. | Dec 2011 | B2 |
8141700 | Simonian et al. | Mar 2012 | B2 |
8166781 | Lee et al. | May 2012 | B2 |
8196441 | Hendrickson et al. | Jun 2012 | B2 |
8388695 | Hendrickson et al. | Mar 2013 | B2 |
8397328 | Hendrickson et al. | Mar 2013 | B2 |
8397544 | Hendrickson | Mar 2013 | B2 |
8438881 | Ihne et al. | May 2013 | B2 |
8549887 | Reid et al. | Oct 2013 | B2 |
8555678 | Lee et al. | Oct 2013 | B2 |
8733136 | Chung et al. | May 2014 | B2 |
8950608 | Dejong et al. | Feb 2015 | B2 |
8985360 | Chen | Mar 2015 | B2 |
9085844 | Hill et al. | Jul 2015 | B2 |
9121123 | Song | Sep 2015 | B2 |
9133576 | Lee et al. | Sep 2015 | B2 |
9200399 | Kim et al. | Dec 2015 | B2 |
9273424 | Lee et al. | Mar 2016 | B2 |
20020134800 | Johnson et al. | Sep 2002 | A1 |
20060117811 | Kinnetz | Jun 2006 | A1 |
20060186076 | Shiloni | Aug 2006 | A1 |
20070261177 | Risen | Nov 2007 | A1 |
20080028802 | Jordan et al. | Feb 2008 | A1 |
20080229517 | Amarillas et al. | Sep 2008 | A1 |
20090126123 | Kim et al. | May 2009 | A1 |
20090288453 | Lee et al. | Nov 2009 | A1 |
20100000264 | Luckman et al. | Jan 2010 | A1 |
20100000581 | Doyle et al. | Jan 2010 | A1 |
20100139328 | Favaro | Jun 2010 | A1 |
20120006077 | Mun et al. | Jan 2012 | A1 |
20120060302 | Hanau | Mar 2012 | A1 |
20120096901 | Zattin | Apr 2012 | A1 |
20120159997 | Del Pos | Jun 2012 | A1 |
20120266389 | Ihne et al. | Oct 2012 | A1 |
20130092704 | Tincher | Apr 2013 | A1 |
20130180293 | Huerth et al. | Jul 2013 | A1 |
20140158708 | Freudenberg et al. | Jun 2014 | A1 |
20140158709 | Freudenberg et al. | Jun 2014 | A1 |
20140158716 | Freudenberg et al. | Jun 2014 | A1 |
20140259441 | Fulmer et al. | Sep 2014 | A1 |
20140298867 | Rodrigues et al. | Oct 2014 | A1 |
20150114046 | Jeong et al. | Apr 2015 | A1 |
20150360848 | Parsons et al. | Dec 2015 | A1 |
20170167068 | Bao | Jun 2017 | A1 |
20170268151 | Leibman | Sep 2017 | A1 |
20170298560 | Leibman | Oct 2017 | A1 |
20170306552 | Leibman | Oct 2017 | A1 |
20170327991 | Leibman | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
202629196 | Dec 2012 | CN |
2611493 | Sep 1977 | DE |
2808898 | Sep 1979 | DE |
1444394 | Jul 2007 | EP |
1939347 | Jul 2008 | EP |
2070462 | Jun 2009 | EP |
2295624 | Mar 2011 | EP |
2405052 | Jan 2012 | EP |
2441373 | Apr 2012 | EP |
2037880 | Jul 1980 | GB |
2468342 | Sep 2010 | GB |
7227495 | Aug 1995 | JP |
2002282587 | Oct 2002 | JP |
20120004208 | Jan 2012 | KR |
2011149501 | Dec 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20170037558 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
62345072 | Jun 2016 | US | |
62200706 | Aug 2015 | US |