A layboy is a conveyor that may be mounted at the discharge side of a rotary die cut machine for receiving one or more streams of sheets or blanks produced by the rotary die cut machine. The layboy has an upper belt section comprising a plurality of rotatable belts extending in a sheet transport direction and a lower belt section comprising a plurality of rotatable belts extending in the sheet transport direction. A sheet transport path is defined between the bottoms of the upper belts and the tops of the lower belts. Blanks output by the rotary die cut machine enter an upstream end of the layboy at a series of entry nips defined by pairs of the upper and lower belts, are transported along the sheet transport path by the moving upper and lower belts and are discharged from a discharge end of the layboy.
A conventional rotary die cut machine cuts finished blanks from sheets of material that are input to the machine. Scrap is produced during this process which consists mainly of the portion of the input material that does not become part of a finished blank. In addition, each blank may include slots or through-openings. The material cut from the input material to form these slots and through-openings also constitutes scrap.
Most scrap drops beneath or immediately downstream of the die cut machine as it operates. However scrap, especially small, lightweight pieces of scrap, may be ejected from the die cut machine in such a manner that it falls into the layboy section from above or is drawn into the intake end of the layboy section either alone or along with the blanks. Excessive scrap in the transport path from the die cut machine to the final stack of blanks may adversely affect the transport of the blanks. That is, the scrap may interfere with the alignment of the blanks or lead to jams. Alternately, if the scrap is carried all the way through the transport path and into the final stack of blanks, the blanks in the stack will have gaps therebetween where the scrap material is present thus resulting in a crooked, or oversized or non-uniform stack of blanks. It would therefore be desirable to eliminate or at least reduce the amount scrap material in the transport path of a layboy.
This problem and others are addressed by embodiments of the present disclosure, a first aspect of which comprises a layboy having an upstream end, a downstream end spaced from the upstream end in a longitudinal direction, an upper belt section and a lower belt section. The upper belt section includes a plurality of transversely spaced upper belts extending in the longitudinal direction from the upstream end to the downstream end, each of the upper belts having a bottom defining an upper boundary of a transport path through the layboy. The lower belt section includes a plurality of transversely spaced lower belts extending in the longitudinal direction from the upstream end to the downstream end, each of the lower belts having a top defining a lower boundary of the transport path. The bottom of at least one of the upper belts includes a first portion extending from the upstream end to a first diversion guide, a second portion extending from the downstream end to a second diversion guide, a diverted portion between the first diversion guide and the second diversion guide at which the bottom of the at least one of the upper belts extends from the first diversion guide to a third diversion guide offset from the transport path and from the third diversion guide to the second diversion guide such that the diverted portion of the belt is spaced from the transport path. In addition or in the alternative, the top of at least one of the lower belts includes a first portion extending from the upstream end to a first diversion guide, a second portion extending from the downstream end to a second diversion guide, a diverted portion between the first diversion guide and the second diversion guide at which the top of the at least one of the lower belts extends from the first diversion guide to a third diversion guide offset from the transport path and from the third diversion guide to the second diversion guide such that the diverted portion of the belt is spaced from the transport path.
A layboy according to another aspect of the disclosure has an upstream end, a downstream end spaced from the upstream end in a longitudinal direction, an upper belt section and a lower belt section. The upper belt section includes a plurality of transversely spaced upper belts extending in the longitudinal direction, bottom portions of the plurality of upper belts lying in a first plane defining an upper boundary of a transport path from the upstream end to the downstream end. The lower belt section includes a plurality of transversely spaced lower belts extending in the longitudinal direction, top portions of the lower belts lying in a second plane defining an upper boundary of the transport path. The bottom portion of at least one of the upper belts extends away from the first plane and away from the second plane to define one side of a gap in the upper boundary of the transport path, and/or the top portion of at least one of the lower belts extends away from the first plane and away from the second plane to define one side of a gap in the lower boundary of the transport path.
A further aspect of the disclosure comprises a layboy having an upstream end, a downstream end spaced from the upstream end in a longitudinal direction, an upper belt section and a lower belt section. The upper belt section includes a plurality of upper arms, each of the upper arms having an upstream belt support at the upstream end and a downstream belt support at the downstream end and an upper belt supported by and extending around the upstream belt support and downstream belt support, the upper belt having a bottom portion defining an upper boundary of a transport path through the layboy. The lower belt section includes a plurality of lower arms, each of the lower arms including an upstream belt support at the upstream end of the lower arm and a downstream belt support at the downstream end of the lower arm and a lower belt supported by and extending around the upstream belt support on the lower arm and the downstream belt support on the lower arm, the lower belt having a top portion defining a lower boundary of the transport path. A support member depends from one of the upper arms and includes a first diversion guide, a second diversion guide and a third diversion guide, wherein the upper belt extends from the upstream belt support to the first diversion guide, the third diversion guide, the second diversion guide and the downstream belt support, in order, and wherein the third diversion guide is offset from the transport path such that a gap in the transport path is formed between the first diversion guide and the second diversion guide.
These features will be better understood after a reading of the following detailed description in connection with the attached drawings, wherein:
Referring now to the drawings, wherein the showings are for the purpose of illustrating preferred embodiments of the disclosure only and not for the purpose of limiting same,
The layboy 10 has an upper belt section 20 that includes a plurality of upper arms 22 (eight in this embodiment) each of which includes an upstream belt support wheel 24 at the input end 12 of the layboy 10 and a downstream belt support wheel 26 (visible in
In the present embodiment, the upper belts 28 and the lower belts 38 have a substantially circular cross section, and the belt support wheels 24, 26 of the upper belt section 20 and the belt support wheels 34, 36 of the lower belt section 30 comprise flanged wheels or pulleys configured to guide these round belts. However, different belts, for example flat band-shaped belts, belts having a non-circular and/or variable cross section or V-shaped belts, could also be used on the layboy 10, and in such case the belt support wheels could be configured as, without limitation, flat rollers, sprockets or flanged wheels having a configuration adapted to the different belt shapes. All such rotatable belt supports are intended to be covered by the phase “belt support wheel” as used herein.
The downstream upper belt support wheels 26 are each mounted on a first driven shaft 40 that is operably connected to and driven by a drive 42 such as an electric motor. The upstream upper belt support wheels 24 are mounted at the ends of upper extension arms 44 and are not interconnected; they may thus rotate independently of each other, at least when not connected to the downstream upper belt support wheels 26 by an upper belt 28. The downstream lower belt support wheels 36 are mounted on a second driven shaft 46 that is operably connected to the drive 42 either directly or via the first driven shaft 40. The upstream lower belt support wheels 34 are mounted at the ends of lower extension arms 48 and are not interconnected; they are thus free to rotate independently of each other, at least when not connected to the downstream lower belt support wheels 36 by the lower belts 38.
An upstream guide arm 50 supporting a first upper guide wheel 52 and a downstream guide arm 54 supporting a second upper guide wheel 56 depend from the upper arm 22. The first and second guide wheels 52, 56 guide the bottom portion 58 of the upper belt 28 along a first plane spaced from the bottom edges of the upper support wheels 24, 26. The first upper guide wheel 52 helps to create an input nip 60 at the input end 12 of the layboy 10, and the second upper guide wheel 56 creates a discharge spacing 62 at the discharge end 14 of the layboy 10. The layboy lower arms 32 include a downstream guide arm 64 that supports a downstream guide wheel 66 to maintain a top portion 68 of the lower belt 38 in a second plane, spaced from the first plane. The bottom portions 58 of the upper belts 28 and the top portions 68 of the lower belts 38 define between them a transport path 70 for sheets of material carried through the layboy 10.
A mounting plate 72 depends from at least one of the upper arms 22 at a location between the upstream guide arm 50 and the downstream guide arm 54 and includes three diversion guides for diverting the upper belt 28 away from the first plane and away from the transport path 70 and then returning the upper belt 28 to the transport path 70. These include a first diversion guide 74 at the transport path 70, a second diversion guide 76 directly above the first diversion guide 74, and a third diversion guide 78 at the transport path 70 downstream from the first diversion guide 74. In the disclosed embodiment, the diversion guides 74, 76, 78 are flanged wheels configured to guide the round upper belts 28, but different diversion guides adapted to different types of belt could be used. The bottom 58 of the upper belt 28 thus extends from the upper upstream belt support wheel 24 past the first upper guide wheel 52 to the first diversion guide 74. The portion of the bottom 58 of the upper belt 28 from the first upper guide wheel 52 to the first diversion guide 74 may be referred to as a “first portion” or “upstream portion” of the bottom 58 of the upper belt 28. The upper belt 28 then passes around the downstream side of the first diversion guide 74 and turns approximately 90 degrees away from the first plane and follows an S-shaped path around the second diversion guide 76. The upper belt 28 leaves the second diversion guide 76 and heads toward the third diversion guide 78 at an angle and returns to the first plane and to the transport path 70 at the third diversion guide 78. The portion of the bottom 58 of the upper belt 28 between the first diversion guide 74 and the third diversion guide 78 may be referred to as the “third portion” or the “diverted portion” of the bottom portion 58 of the upper belt 28. The portion of the bottom 58 of the upper belt 28 between the third diversion guide 78 and the second upper guide wheel 56 may be referred to as the “second portion” or “downstream portion” of the bottom 58 of the upper belt 28.
Diverting the portion of the bottom 58 of the upper belt 22 between the first diversion guide 74 and the third diversion guide 78 creates a gap in the transport path, that is, a region where the upper belt 28 moves away from the transport path 70, so that blanks being transported through the layboy 10 belt are not in contact with the upper belt 28 in this diverted portion of the path. This “gap” in the transport path allows scrap material that may have entered the layboy and come to be trapped between an upper belt 28 and the top of a blank to fall or be dislodged from the blank. This reduces the likelihood that the scrap will be discharged from the layboy 10 at the discharge end 14. The removal of scrap may be aided by the presence of a fan (not illustrated) at the side of the layboy for creating an airflow inside or through the layboy 10. Significantly, the gap, or the distance between the first diversion guide 74 and the third diversion guide 78, is shorter than the length of the shortest blanks that will be conveyed through the layboy 10 so that at least part of each blank is always in contact with the upper belt 28.
The diversion guides 74, 76, 78 are preferably provided on each of the upper arms 22 to form gaps in each of the upper belts 28. The gaps can be transversely aligned, as shown in the bottom plan view of the upper arms 22 in
A second embodiment of the disclosure is illustrated in
A third embodiment is illustrated in
The fourth embodiment of the disclosure illustrated in
The present invention has been described herein in terms of several embodiments. Modifications and additions to these embodiments will become apparent to persons of ordinary skill in the relevant arts upon a reading of the foregoing description. It is intended that all such modifications and additions comprise a part of the present invention to the extent they fall within the scope of the several claims appended hereto.
The present application claims the benefit of U.S. Provisional Patent Application No. 62/804,984, filed Feb. 13, 2019, the entire contents of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62804984 | Feb 2019 | US |