Layer-3 support in TRILL networks

Information

  • Patent Grant
  • 9270572
  • Patent Number
    9,270,572
  • Date Filed
    Tuesday, December 6, 2011
    13 years ago
  • Date Issued
    Tuesday, February 23, 2016
    8 years ago
Abstract
One embodiment of the present invention provides a switch. The switch includes an IP header processor and a forwarding mechanism. The IP header processor identifies a destination IP address in a packet encapsulated with an inner Ethernet header, a TRILL header, and an outer Ethernet header. The forwarding mechanism determines an output port and constructs a new header for the packet based on the destination IP address. The switch also includes a packet processor which determines whether (1) an inner destination media access control (MAC) address corresponds to a local MAC address assigned to the switch; (2) a destination RBridge identifier corresponds to a local RBridge identifier assigned to the switch; and (3) an outer destination MAC address corresponds to the local MAC address.
Description
BACKGROUND

1. Field


The present disclosure relates to network design. More specifically, the present disclosure relates to a method and system for constructing a scalable switching system that supports layer-3 routing while facilitating automatic configuration.


2. Related Art


The growth of the Internet has brought with it an increasing demand for bandwidth. As a result, equipment vendors race to build larger and faster switches with versatile capabilities, such as layer-3 forwarding, to move more traffic efficiently. However, the size of a switch cannot grow infinitely. It is limited by physical space, power consumption, and design complexity, to name a few factors. Furthermore, switches with higher capability are usually more complex and expensive. More importantly, because an overly large and complex system often does not provide economy of scale, simply increasing the size and capability of a switch may prove economically unviable due to the increased per-port cost.


One way to increase the throughput of a switch system is to use switch stacking. In switch stacking, multiple smaller-scale, identical switches are interconnected in a special pattern to form a larger logical switch. The amount of required manual configuration and topological limitations for switch stacking becomes prohibitively tedious when the stack reaches a certain size, which precludes switch stacking from being a practical option in building a large-scale switching system.


Meanwhile, layer-2 (e.g., Ethernet) switching technologies continue to evolve. More routing-like functionalities, which have traditionally been the characteristics of layer-3 (e.g., Internet Protocol or IP) networks, are migrating into layer-2. Notably, the recent development of the Transparent Interconnection of Lots of Links (TRILL) protocol allows Ethernet switches to function more like routing devices. TRILL overcomes the inherent inefficiency of the conventional spanning tree protocol, which forces layer-2 switches to be coupled in a logical spanning-tree topology to avoid looping. TRILL allows routing bridges (RBridges) to be coupled in an arbitrary topology without the risk of looping by implementing routing functions in switches and including a hop count in the TRILL header.


While TRILL brings many desirable features to layer-2 networks, some issues remain unsolved when layer-3 processing is desired.


SUMMARY

One embodiment of the present invention provides a switch. The switch includes an IP header processor and a forwarding mechanism. The IP header processor identifies a destination IP address in a packet encapsulated with an inner Ethernet header, a TRILL header, and an outer Ethernet header. The forwarding mechanism determines an output port and constructs a new header for the packet based on the destination IP address. The switch also includes a packet processor which determines whether (1) an inner destination media access control (MAC) address corresponds to a local MAC address assigned to the switch; (2) a destination RBridge identifier (RBridge ID) corresponds to a local RBridge identifier assigned to the switch; and (3) an outer destination MAC address corresponds to the local MAC address.


In a variation on this embodiment, the packet processor determines a first virtual local area network (VLAN) tag in the inner Ethernet header, wherein the new header includes a new inner Ethernet header which comprises a second VLAN tag.


In a variation on this embodiment, the switch includes a control mechanism which forms a virtual cluster switch in conjunction with one or more additional switches.


In a variation on this embodiment, the virtual cluster switch is an Ethernet fabric switch functioning as a logical Ethernet switch.


In a variation on this embodiment, the switch includes a switching mechanism switches the packet between VLANs based on the destination IP address.


In a variation on this embodiment, the RBridge identifier is a virtual RBridge identifier and the destination IP address is a virtual IP address assigned to a virtual IP router associated with the virtual RBridge identifier.


In a variation on this embodiment, the virtual IP router is formed by operating the switch in conjunction with at least another physical switch as a single logical router.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary TRILL network that includes a plurality of RBridges with IP processing capabilities, in accordance with an embodiment of the present invention.



FIG. 2A illustrates an exemplary configuration of end devices belonging to different VLANs and coupled to a TRILL network, wherein one RBridge is IP capable, in accordance with an embodiment of the present invention.



FIG. 2B illustrates an exemplary configuration of end devices belonging to different VLANs and coupled to a TRILL network, wherein all RBridges are IP capable, in accordance with an embodiment of the present invention.



FIG. 3A illustrates an exemplary TRILL network with multiple VLANs, in accordance with an embodiment of the present invention.



FIG. 3B illustrates an exemplary TRILL network with multiple VLANs, wherein each RBridge belongs to all VLANs, in accordance with an embodiment of the present invention.



FIG. 4A presents a flowchart illustrating the process of an RBridge transmitting a frame, in accordance with an embodiment of the present invention.



FIG. 4B presents a flowchart illustrating the process of an IP-capable RBridge transmitting a frame, in accordance with an embodiment of the present invention.



FIG. 5 illustrates an exemplary network where a virtual RBridge and an associated virtual IP router are created based on a plurality of physical gateway RBridges with IP processing capabilities, in accordance with an embodiment of the present invention.



FIG. 6A illustrates an exemplary configuration of how a virtual RBridge and an associated virtual IP router can be logically coupled to a number of gateway RBridges in a TRILL network, in accordance with an embodiment of the present invention.



FIG. 6B illustrates an exemplary configuration of how a virtual RBridge and an associated virtual IP router can be logically coupled to all RBridges in a TRILL network where each RBridge has IP processing capability, in accordance with an embodiment of the present invention.



FIG. 7A presents a flowchart illustrating the process of a gateway RBridge associated with a virtual RBridge responding to an Address Resolution Protocol (ARP) query, in accordance with an embodiment of the present invention.



FIG. 7B presents a flowchart illustrating the process of a gateway RBridge associated with a virtual RBridge forwarding a TRILL frame, in accordance with an embodiment of the present invention.



FIG. 8 illustrates a scenario where one of the RBridges associated with the virtual RBridge experiences a link failure and/or a node failure, in accordance with an embodiment of the present invention.



FIG. 9 illustrates an exemplary architecture of a switch with IP processing capabilities, in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.


Overview


In embodiments of the present invention, the problem of providing scalable and flexible layer-3 (e.g., IP) support in a TRILL network is solved by facilitating IP routing in a number of RBridges in the TRILL network. The availability of IP processing within a TRILL network allows cross-layer-2-domain traffic (e.g., traffic across different VLANs) to be forwarded within a TRILL network, which reduces forwarding overhead. Usually, the IP router portion of one of these IP-capable RBridges is assigned as a default gateway router to an end device coupled to a TRILL network. Wherever the end device sends a frame to outside of its local network (e.g., a VLAN), the frame is forwarded to and processed by the IP router portion of the RBridge. This layer-3 processing occurs within the TRILL network. Note that, in a conventional TRILL network, such layer-3 processing has to be done by an IP router residing outside the TRILL network.


In some embodiments, the end-device may be coupled to the TRILL network via an ingress RBridge without IP processing capability. Under such a scenario, the TRILL RBridge portion of an IP-capable RBridge acts as an egress RBridge and the IP router portion of the RBridge can act as the default gateway router. A frame from the end device is received at the ingress RBridge and encapsulated in a TRILL packet, wherein the TRILL packet sets the egress RBridge identifier as the destination RBridge identifier, and the MAC address of the egress RBridge as the inner destination MAC address. The packet is then forwarded though the TRILL network and reaches the egress RBridge, where the outer destination MAC address of the packet is the MAC address of the egress RBridge. The IP router portion of the egress RBridge then processes the IP header in the frame and makes the layer-3 forwarding decision based on the destination IP address of the frame.


In some embodiments, the IP router portion of an IP-capable RBridge may be associated with multiple VLANs associated with the TRILL network. If the destination end device of the frame belongs to one of the associated VLANs, the IP router can obtain the MAC address of the destination end device using ARP requests within that VLAN. The corresponding RBridge of the IP router then sets the RBridge to which the destination end device is coupled as the egress RBridge and forwards the frame to the egress RBridge over the TRILL network.


Although the present disclosure is presented using examples based on the TRILL protocol, embodiments of the present invention are not limited to TRILL networks, or networks defined in a particular Open System Interconnection Reference Model (OSI reference model) layer.


The term “RBridge” refers to routing bridges, which are bridges implementing the TRILL protocol as described in IETF Request for Comments (RFC) “Routing Bridges (RBridges): Base Protocol Specification,” available at http://tools.ietf.org/html/rfc6325, which is incorporated by reference herein. Embodiments of the present invention are not limited to applications among RBridges. Other types of switches, routers, and forwarders can also be used.


In this disclosure, the term “edge port” refers to a port which sends/receives data frames in native Ethernet format. The term “TRILL port” refers to a port which sends/receives data frames encapsulated with a TRILL header and outer MAC header.


The term “end device” refers to a network device that is typically not TRILL-capable. “End device” is a relative term with respect to the TRILL network. However, “end device” does not necessarily mean that the network device is an end host. An end device can be a host, a conventional layer-2 switch, or any other type of network device. Additionally, an end device can be coupled to other switches or hosts further away from the TRILL network. In other words, an end device can be an aggregation point for a number of network devices to enter the TRILL network.


The term “IP-capable RBridge” refers to a physical RBridge that can process and route IP packets. An IP-capable RBridge can be coupled to a layer-3 network and can forward IP packets from end devices to the layer-3 network. A number of IP-capable RBridges can form a virtual RBridge and a corresponding virtual IP router, thereby facilitating a virtual gateway router for end devices that supports redundancy and load-balancing. In this disclosure, an RBridge which forms a virtual RBridge and a virtual IP router is also referred to as a “gateway” RBridge. A gateway RBridge responds to ARP requests for the virtual IP address with a virtual MAC address. In various embodiments, any arbitrary number of gateway RBridges can form the virtual RBridge. As gateway RBridges can process both TRILL and IP packets, in this disclosure the term “gateway RBridge” can refer to a physical RBridge in a TRILL network or a physical router in an IP network.


The term “IP router” refers to the IP-capable portion of an RBridge or a stand-alone IP router. In this disclosure, the terms “IP router” and “router” are used interchangeably.


The term “frame” refers to a group of bits that can be transported together across a network. “Frame” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. “Frame” can be replaced by other terminologies referring to a group of bits, such as “packet,” “cell,” or “datagram.”


The term “RBridge identifier” refers to a group of bits that can be used to identify an RBridge. Note that the TRILL standard uses “RBridge ID” to denote a 48-bit intermediate-system-to-intermediate-system (IS-IS) System ID assigned to an RBridge, and “RBridge nickname” to denote a 16-bit value that serves as an abbreviation for the “RBridge ID.” In this disclosure, “RBridge identifier” is used as a generic term and is not limited to any bit format, and can refer to “RBridge ID” or “RBridge nickname” or any other format that can identify an RBridge.


Network Architecture



FIG. 1 illustrates an exemplary TRILL network that includes a plurality of RBridges with IP processing capabilities, in accordance with an embodiment of the present invention. As illustrated in FIG. 1, a TRILL network 100 includes RBridges, 101, 102, 103, 104, 105, 106, and 107. RBridges 101, 102, and 103 are IP capable and coupled to a layer-3 network 150 as IP routers, 111, 112, and 113, respectively. For example, RBridge 101 and IP router 111 are the same physical device (represented by dotted lines), where its TRILL RBridge portion is denoted by RBridges 101 and its IP router portion is denoted by router 111. Similarly, RBridge 102 and IP router 112, and RBridge 103 and IP router 113, are the same physical devices, respectively.


RBridges in network 100 use edge ports to communicate to end devices and TRILL ports to communicate to other RBridges. For example, RBridge 104 is coupled to end device 122 via an edge port and to RBridges 105, 101, and 102 via TRILL ports. An end host coupled to an edge port may be a host machine or an aggregation node. For example, end devices 122, 124, 126, and 128 are host machines, wherein end devices 122 and 128 are directly coupled to network 100, and end devices 124 and 126 are coupled to network 100 via their aggregation node, a layer-2 bridge 130.


In FIG. 1, end device 128 is directly coupled to RBridge 103. Hence, IP router 113 can act as the default gateway for end device 128. Consequently, all frames from end device 128 destined to IP network 150 are received at IP router 113 and forwarded to network 150. On the other hand, RBridge 104 couples end device 122 to network 100 and acts as the ingress RBridge for all frames from end device 122. One of the IP-capable RBridges (e.g., RBridge 101) acts as the egress RBridge for frames from end device 122 to network 150. Under such a scenario, the frame destined to network 150 is encapsulated in a TRILL packet with the RBridge identifier of RBridge 101 as the destination RBridge identifier, and the MAC address of RBridge 101 as the inner destination MAC address. The TRILL packet is then forwarded to RBridge 101, where the outer destination MAC address of the packet is the MAC address of RBridge 101. IP router 111 then processes the IP header in the frame and makes the layer-3 forwarding decision based on the destination IP address of the frame.


During operation that does not involve layer-3 processing in RBridges, an end device coupled to the TRILL network may select the default gateway from a layer-3 network and use the corresponding IP address as a default gateway router address. For example, in FIG. 1, end device 128 selects the default gateway router from IP network 150. Any frame destined to network 150 from end device 128 is sent to the default gateway. Under such a scenario, if end devices 122 and 128 are on different VLANs, any communication between these end devices will go through network 150. If end device 128 sends a frame to end device 122, the frame first goes to the default gateway in network 150. Consequently, the default gateway processes the IP header in the frame and makes layer-3 forwarding decision toward end device 122. As a result, routing and bandwidth management will be inefficient and the frame will incur higher latency.


In embodiments of the present invention, as illustrated in FIG. 1, each frame destined to end device 122 from end device 128, wherein the end devices are on different VLANs, is received at RBridge 103. IP router 113 processes the IP header in the frame and makes the forwarding decision toward end device 122 (which involves forwarding the frame on end device 122's VLAN through TRILL network 100). Consequently, RBridge 103 forwards the frame to a corresponding egress RBridge 104 over TRILL network 100. RBridge 104, in turn, transmits the frame to end device 122. Hence, enabling layer-3 support on RBridges in a TRILL network provides higher efficiency in routing and bandwidth management.


In some embodiments, the TRILL network may be a virtual cluster switch (VCS). In a VCS, any number of RBridges in any arbitrary topology may logically operate as a single switch. Any new RBridge may join or leave the VCS in “plug-and-play” mode without any manual configuration.


Note that TRILL is only used as a transport between the switches within network 100. This is because TRILL can readily accommodate native Ethernet frames. Also, the TRILL standards provide a ready-to-use forwarding mechanism that can be used in any routed network with arbitrary topology. Embodiments of the present invention should not be limited to using only TRILL as the transport. Other protocols (such as multi-protocol label switching (MPLS)), either public or proprietary, can also be used for the transport.


Routine Across VLANs



FIG. 2A illustrates an exemplary configuration of how end devices belonging to different VLANs and coupled to a TRILL network, wherein one RBridge is IP capable, in accordance with an embodiment of the present invention. In this example, a TRILL network 200 includes TRILL RBridges 220 and 230. End device 202 is coupled to RBridge 220 over VLAN 212, and end device 204 is coupled to RBridge 220 over VLAN 214.


In the example in FIG. 2A, RBridge 230 is IP capable and IP router 235 is the IP router portion of RBridge 230 (denoted in dotted line). IP router 235 functions as a default gateway router for end devices 202 and 204. Consequently, although RBridge 220 couples both end devices 202 and 204 to network 200, any traffic between end devices 202 and 204 will be routed via IP router 235 because end devices 202 and 204 belong to different VLANs. For example, if end device 202 sends a frame to end device 204, it first assembles an IP packet with end device 204's IP address. Based on its local forwarding table, end device 202 realizes that it does not have a direct route to end device 204, and therefore needs to send the packet to gateway router 235. Hence, end device 202 encapsulates the IP packet in an Ethernet frame, whose destination MAC address is set to be gateway router 235's MAC address. Note that, if end device 202 has no knowledge of IP router 235's MAC address, end device 202 can send out an ARP request corresponding to the IP address of router 235. Router 235 then replies to the ARP request with its MAC address. Subsequently, end device 202 forwards the frame to RBridge 230 via ingress RBridge 220. IP router 235, in turn, receives the frame and removes its layer-2 header (including the VLAN tag corresponding to VLAN 212). IP router 235 then performs a lookup in its IP forwarding table based on the packet's destination IP address, and encapsulates the packet with a new Ethernet header which includes a VLAN tag corresponding VLAN 214. RBridge 230 then encapsulates the Ethernet frame with a TRILL header and forwards it to end device 204 via egress RBridge 220.



FIG. 2B illustrates an exemplary configuration of end devices belonging to different VLANs and coupled to a TRILL network, wherein all RBridges are IP capable, in accordance with an embodiment of the present invention. In this example, a TRILL network 200 includes TRILL RBridges 220 and 230. End device 202 is coupled to RBridge 220 over VLAN 212, and end device 204 is coupled to RBridge 220 over VLAN 214.


In the example in FIG. 2B, both RBridges 220 and 230 are IP capable and IP routers 225 and 235 are the IP router portion of RBridges 220 and 230, respectively. Under such a scenario, IP router 225 can be the default gateway router for end devices 202 and 204. Consequently, any traffic between end devices 202 and 204 can be routed via IP router 225. For example, if end device 202 sends a frame to end device 204, it assembles an IP packet with end device 204's IP address, encapsulates the IP packet in an Ethernet frame with destination MAC address as router 225's MAC address, and forwards the frame to RBridge 225 via ingress RBridge 220. Note that, if end device 202 has no knowledge of IP router 225's MAC address, end device 202 obtains the IP address of router 225 using ARP. IP router 225, in turn, receives the frame, performs a lookup in its IP forwarding table, encapsulates the packet with a new Ethernet header which includes a VLAN tag corresponding VLAN 214, and forwards it to end device 204 via egress RBridge 220. As the cross-layer-2-domain frame does not need to traverse through TRILL network 200, IP-processing capability at RBridge 220 thereby reduces the bandwidth usage in network 200.


Distributed Layer-3 Processing


In some embodiments, layer-3 processing capabilities can be distributed to multiple or all TRILL RBridges. In some embodiments, layer-3 processing capabilities associated different the VLANs can be distributed selectively across multiple RBridges. FIG. 3A illustrates an exemplary TRILL network with multiple VLANs, in accordance with an embodiment of the present invention. In the example in FIG. 3A, network 300 includes RBridges 304, 305, 306, and 307. Each of these RBridges is IP capable. RBridge 304 is coupled to end devices 311 and 312; RBridge 305 is coupled to end devices 312, 313, and 314; RBridge 306 is coupled to end devices 315, 316, and 317; and RBridge 307 is coupled to end devices 317 and 318. RBridges 305 and 306 belong to VLAN 328; RBridges 304, 306, and 307, and end devices 312 and 318 belong to VLAN 326; RBridges 304, 305, and 306, and end device 311 belong to VLAN 324; and RBridges 305, 306, and 307, and end device 317 belong to VLAN 322.


In some embodiments, a layer-3 interface on an RBridge corresponding to a VLAN is a Switch Virtual Interface (SVI). For example, RBridge 304 in FIG. 3A has SVIs for VLANs 324 and 326 (although these SVIs can be on the same physical interface). Consequently, RBridge 304 and end device 318, and RBridge 304 and end device 311, are on the same VLAN segment. If end device 311 sends a frame to end device 318, the destination is outside of VLAN 324. Consequently, end device 318 sets the destination MAC address of the frame as the MAC address of the SVI on VLAN 324 at RBridge 304, which is the layer-3 gateway on VLAN 324. End device 318 then forwards the frame to RBridge 304. Upon receiving the frame, RBridge 304 recognizes that the frame's destination MAC address is a local MAC address. RBridge 304 then removes the frame's Ethernet header, performs a lookup in its IP forwarding table based on the frame's destination IP address, and encapsulates the frame with a new Ethernet header with a destination MAC address corresponding to end device 318 in VLAN 326. Finally, RBridge 304 forwards the frame to end device 318 via egress RBridge 307.


However, when end device 311 sends a frame to end device 317, RBridge 304 cannot forward the frame to end device 317 because RBridge 304 does not have an SVI on VLAN 322, to which end device 317 belongs. As a result, upon receiving a frame destined to end device 317 from end device 311, RBridge encapsulates the frame using a TRILL header with egress RBridge identifier corresponding to RBridge 306 because it has SVIs to all VLANs. RBridge 304 then forwards the frame to RBridge 306. The frame is routed though the TRILL network and reaches RBridge 306 when the outer destination MAC addresses match the MAC address of RBridge 306. Upon receiving the frame, RBridge 306 recognizes that the frame's outer destination MAC address is a local MAC address. RBridge 306 then removes the TRILL encapsulations, encapsulates the IP packet with a new Ethernet header with a destination MAC address corresponding to end device 317 in VLAN 322, and forwards the frame accordingly.



FIG. 3B illustrates an exemplary TRILL network with multiple VLANs, wherein each RBridge belongs to all VLANs, in accordance with an embodiment of the present invention. In this example, TRILL network 300 includes RBridges 304, 305, 306, and 307. Each of these RBridges is IP capable. End device 312 is coupled to RBridges 304 and 305, end device 317 is coupled to RBridges 306 and 307, and end device 318 is coupled to RBridge 307. All RBridges in network 300 have SVIs for VLANs 322 and 326. End devices 312 and 318 belong to VLAN 322, and end device 317 belongs to VLAN 326.


In this example, if end device 317 sends a frame to end device 318, the frame can be routed on layer-3 at RBridge 307 because RBridge 307 has SVIs for VLANs 322 and 326. As the frame does not travel to any other RBridge in network 300, it incurs lower latency while saving bandwidth in network 300. Similarly, if end device 317 sends a frame to end device 312, the frame can be routed on layer-3 at the IP router portion of either RBridge 306 or 307 as both have SVIs for VLANs 322 and 326. If all RBridges in the TRILL network have SVIs for all VLANs, inter-VLAN switching is possible at each RBridge.


Frame Processing



FIG. 4A presents a flowchart illustrating the process of an RBridge transmitting a frame, in accordance with an embodiment of the present invention. During operation, an RBridge receives a frame (operation 402) and determines the type of port at which the frame was received (operation 404). If the frame is received at an edge port, then the RBridge checks whether the destination is coupled to a local edge port (operation 410). If the destination is not coupled to a local edge port, the RBridge encapsulates the frame in a TRILL packet and sets the RBridge identifier of the RBridge to which the end device is coupled as the egress RBridge identifier (operation 416). The RBridge then forwards the TRILL packet to the TRILL network (operation 418). Note that the MAC learning process allows an RBridge to learn about the port to which the end device is coupled.


If the frame is received on an edge port and the destination is coupled to a local edge port (operation 410), then the RBridge transmits the frame to the destination end device coupled to a local edge port (operation 414).


If the frame is received from a TRILL port (operation 404), the RBridge checks whether itself is the egress RBridge of the TRILL packet (operation 408). If not, then the RBridge forwards the TRILL packet to the TRILL network (operation 418). Otherwise, the RBridge transmits the frame to the destination end device coupled to a local edge port (operation 414).



FIG. 4B presents a flowchart illustrating the process of an IP-capable RBridge transmitting a frame, in accordance with an embodiment of the present invention. The exemplary process in FIG. 4B is also applicable to embodiments with distributed layer-3 processing, as described in conjunction with FIG. 3A. During operation, an RBridge receives a frame (operation 452) and determines the type of port at which the frame is received (operation 454). If the frame is received at an edge port, then the RBridge inspects the frame to determine whether the end device with the destination MAC address is coupled to a local edge port (operation 456). If so, the frame is forwarded to the destination via the TRILL network (operation 464), as described in conjunction with FIG. 4A.


If the frame's destination MAC address is not coupled to a local edge port, then the RBridge determines whether the frame's destination MAC address is the RBridge's MAC address (operation 458). If the destination MAC address is not the RBridge's MAC address, then the RBridge encapsulates the frame in a TRILL packet and sets the RBridge identifier of a gateway RBridge as the egress RBridge identifier (operation 466). The RBridge then forwards the TRILL packet to the TRILL network (operation 476). On the other hand, if the frame's destination MAC address is the RBridge's MAC address (operation 458), then the RBridge performs layer-3 processing on the frame (operation 468) and determines the outgoing port (operation 470).


The RBridge then determines the type of the outgoing port (operation 462). If the outgoing port is an edge port, which means the destination end device is coupled locally, the RBridge forwards the frame, which is Ethernet encapsulated with the end device's MAC address as the destination MAC address, to the destination end device (operation 480). In some embodiments, the end device can be a layer-3 (e.g., IP) router. If the outgoing port is a TRILL port, then the end device is connected to a remote RBridge. Hence, the RBridge obtains the RBridge identifier of the RBridge to which the destination end device is coupled to based on the MAC address of the destination end device (operation 472). The RBridge then encapsulates the frame in a TRILL packet and sets the obtained RBridge identifier as the egress RBridge identifier (operation 474). The RBridge then forwards the TRILL packet to the TRILL network (operation 476).


If the frame is received from a TRILL port (operation 454), the RBridge checks whether itself is the egress RBridge of the TRILL packet (operation 460). If not, then the RBridge forwards the TRILL packet to the TRILL network (operation 476). Otherwise, the RBridge forwards the frame to the destination end device coupled to a local edge port (operation 480). In some embodiments, the end device can be a layer-3 router, in which case the forwarding includes layer-3 processing on the frame.


Virtual Switch Formation


In some embodiments, a number of TRILL RBridges with IP processing capabilities may act as layer-3 routers for an end device. These RBridges can form a virtual RBridge, which is assigned with a virtual RBridge identifier. Furthermore, these RBridges form a virtual IP router, which is assigned with a virtual IP address and a corresponding virtual MAC address. This virtual IP router operates as a default gateway router, which can provide redundancy and load balancing.



FIG. 5 illustrates an exemplary network where a virtual RBridge and an associated virtual IP router are created based on a plurality of physical gateway RBridges with IP processing capabilities, in accordance with an embodiment of the present invention. As illustrated in FIG. 5, a TRILL network 500 includes RBridges 504, 505, 506, 507, 511, 512, and 513. RBridges 511, 512, and 513 operate as gateway RBridges and are coupled to a layer-3 network 150 as IP routers 521, 522, and 523, respectively. For example, gateway RBridge 511 and IP router 521 are same physical device (represented by dotted lines), where its TRILL RBridge portion is denoted by gateway RBridge 511 and its IP router portion is denoted by IP router 521. Similarly, gateway RBridge 512 and IP router 522, and gateway RBridge 513 and IP router 523 are the same physical devices, respectively.


Gateway RBridges 511, 512, and 513 form a virtual RBridge 530 by operating as a single logical RBridge in TRILL network 500. Similarly, the corresponding IP routers 521, 522, and 523 form a virtual IP router 540 by operating as a single logical IP router. An end device 562 coupled to network 500 through RBridge 507 can use virtual IP router 540 as the default gateway router to layer-3 network 550.


In embodiments of the present invention, as illustrated in FIG. 1, Virtual RBridge 530 is considered to be logically coupled to gateway RBridges 511, 512, and 513, optionally with zero-cost links represented by dashed lines. Furthermore, gateway RBridges 511, 512, and 513 can advertise their respective connectivity (optionally via zero-cost links) to virtual RBridge 530. As a result, other RBridges in the TRILL network can learn that virtual RBridge 530 is reachable via gateway RBridges 511, 512, and 513, and establish TRILL paths to virtual RBridge 530 using a corresponding virtual RBridge identifier through these gateway RBridges.


All the IP-layer router portions of these gateway RBridges are configured to operate as the layer-3 gateway router (i.e., virtual IP router 540) for end device 562. End device 562 uses virtual IP router 540 as the default gateway. Because virtual RBridge 530 is associated with virtual IP router 540, incoming frames from end device 562 destined to network 550 are marked with virtual RBridge 530's identifier as the egress RBridge identifier. Consequently, all frames from end device 562 to network 550 are delivered to one of the gateway RBridges 511, 512, and 513. Hence, load balancing can be achieved among gateway RBridges 511, 512, and 513 for frames sent to virtual RBridge 530.



FIG. 6A illustrates an exemplary configuration of how a virtual RBridge and an associated virtual IP router can be logically coupled to a number of gateway RBridges in a TRILL network, in accordance with an embodiment of the present invention. In this example, a TRILL network 600 includes a number of TRILL RBridges 602, 604, and 606. Network 600 also includes RBridges 616 and 618, each with a number of edge ports which can be coupled to external networks. For example, RBridges 616 and 618 are coupled with end devices 652 and 654 via 10GE edge ports. RBridges in network 600 are in communication with each other using TRILL protocol.


Also included in network 600 are RBridges 622 and 624, which are layer-3 capable and coupled to an IP network 680. Gateway RBridges 622 and 624 form virtual RBridge 640 with a virtual RBridge identifier 645. Physically co-located IP Routers 632 and 634 within gateway RBridges 622 and 624, respectively, form a virtual IP router 670 which is assigned a virtual IP address 660 and a virtual MAC address 650. Virtual IP address 660 maps to virtual MAC address 650 for ARP requests directed to virtual IP router 670. Furthermore, virtual RBridge identifier 645 is associated with virtual MAC address 650. End devices 652 and 654 can set virtual IP address 660 as their default gateway router address and use ARP to obtain virtual MAC address 650. End devices 652 and 654 send frames with virtual MAC address 650 as the destination address into network 600. The frames are encapsulated in TRILL packets and routed toward virtual RBridge 640 using the corresponding virtual RBridge identifier 645.


In some embodiments, a virtual IP address can be assigned for each VLAN associated with a TRILL network. For example, in FIG. 6A, end device 652 may belong to VLAN 692, and end device 654 may belong to VLAN 694. Different virtual IP addresses may be used for VLANs 692 and 694, respectively. End devices 652 and 654 then use the virtual IP address associated with VLAN 692 and VLAN 694 as their respective default gateway router addresses. Consequently, end devices 652 and 654 perceive virtual IP router 670 to be in VLAN 692 and VLAN 694, respectively. For ARP requests for either virtual IP address, the same virtual MAC address 650 is sent in reply. All data frames injected to TRILL network 600 with virtual MAC address 650 as the destination MAC address are routed toward virtual RBridge 640.


Note that in one embodiment, the virtual MAC address is known to all RBridges in the network 600. Otherwise, both IP routers 632 and 634 receive a frame forwarded to virtual MAC address 650 and results in packet duplication. Hence, after formation of virtual RBridge 640 and virtual IP router 670, all RBridges in network 600 are provided with the knowledge about virtual MAC address 650. That is, virtual MAC address 650 is always “known” to all ingress RBridges in network 600, and frames destined to virtual MAC address 650 are routed through network 600 using TRILL unicast.


In some embodiments, only one gateway RBridge is elected to reply to ARP requests for the virtual IP address. This election can also be VLAN specific.



FIG. 6B illustrates an exemplary configuration of how a virtual RBridge and an associated virtual IP router can be logically coupled to all RBridges in a TRILL network where each RBridge has IP processing capability, in accordance with an embodiment of the present invention. In this example, all RBridges in TRILL network 600 have IP processing capabilities. Even though only RBridges 622 and 624 are connected to an IP network, IP processing capacity at all RBridges enables them to route across VLANs, as described in conjunction with FIG. 3B. For example, any traffic between VLANs 692 and 694 can be switched at RBridges 616 and 618 without requiring the traffic to travel to another RBridge in network 600.


In some embodiments, all RBridges in network 600 are associated with virtual RBridge 640 and a virtual IP router 670, and share a virtual RBridge identifier 645, a virtual IP address 660, and a virtual MAC address 650. In some embodiments, all RBridges in network 600 may be connected to IP network 680.


ARP and Frame Processing in a Virtual Switch



FIG. 7A presents a flowchart illustrating the process of a gateway RBridge associated with a virtual RBridge responding to an Address Resolution Protocol (ARP) query, in accordance with an embodiment of the present invention. Upon receiving an ARP request packet for an IP address (operation 702), the gateway RBridge checks whether the ARP request is for a virtual IP address (operation 704). If not, the gateway RBridge responds based on the IP address in the ARP request (assuming that IP address is the gateway RBridge's physical IP address) (operation 720). Otherwise, the gateway RBridge checks whether it is elected to respond to an ARP request for the virtual IP address (operation 706). If not, the ARP request is discarded. Otherwise the gateway RBridge retrieves the virtual MAC address for the virtual IP address (operation 708) and generates an ARP reply containing the virtual MAC address (operation 710). The gateway RBridge transmits the ARP reply to the TRILL network (operation 712). Note that an ARP request is disseminated in the TRILL network using multicast and each IP-capable RBridge, including the one elected to respond to ARP requests for the virtual IP address, receives the query. However, the ARP reply is sent as a unicast transmission in the TRILL network to the end device.



FIG. 7B presents a flowchart illustrating the process of a gateway RBridge associated with a virtual RBridge forwarding a TRILL frame, in accordance with an embodiment of the present invention. Upon receiving a TRILL frame (operation 752), the RBridge checks whether the egress RBridge identifier in the TRILL header of the frame corresponds to a virtual RBridge (operation 754). If the identifier does not correspond to the virtual RBridge, the RBridge inspects whether the egress RBridge identifier in the TRILL header of the frame corresponds to the local RBridge. If not, then the TRILL frame is forwarded to the next-hop RBridge based on the egress RBridge identifier (operation 762). Otherwise, the RBridge removes the TRILL encapsulation and send the frame to a local egress port (operation 764). If the RBridge identifier corresponds to the virtual RBridge, the RBridge checks whether the destination MAC address of the Ethernet frame encapsulated in the TRILL frame is the associated virtual MAC address (operation 756). If so, then the frame is destined to an IP network the gateway RBridge is coupled to. Hence, the IP packet is extracted from the Ethernet payload of the frame (operation 772). The gateway RBridge checks the IP address of the IP packet and performs layer-3 IP forwarding toward the IP network (operation 774). On the other hand, if the destination MAC address is not the virtual MAC address, then the virtual RBridge is for multi-homed layer-2 end devices. Accordingly, the RBridge removes the TRILL encapsulation and send the frame to locally connected egress port (operation 764). Operation of virtual RBridges for multi-homed end devices, such as forwarding multicast frames, is specified in the U.S. Patent Publication No. 2010/0246388, titled “Redundant Host Connection in a Routed Network,” the disclosure of which is incorporated herein in its entirety.


Failure Handling



FIG. 8 illustrates a scenario where one of the RBridges associated with the virtual RBridge experiences a link failure and/or a node failure, in accordance with an embodiment of the present invention. In this example, in a TRILL network 800, RBridges 811, 812, and 813 form a virtual RBridge 840, and their respective IP-router portions denoted as IP routers 821, 822, and 823 form a virtual IP router 850. Also included are four RBridges 804, 805, 806, and 807. An end device 870 is connected to network 800 using RBridge 804 as the ingress RBridge. Virtual IP router 850 is set as a default gateway router for end device 870. Hence, all frames destined to network 880 from end device 870 have the virtual MAC address assigned to virtual IP router 850 as the destination MAC address. Note that these frames can be forwarded by gateway RBridges 811, 812, and 813 for load balancing. Gateway RBridges 811, 812, and 813 also provide redundancy among each other to handle failures.


Suppose that a failure 864 occurs to link 831 adjacent to gateway RBridge 811. As a result, link 831 is removed from routing decisions in network 800. All frames from end device 870 are still using the virtual MAC address as the destination address, and thus are still forwarded to any of the gateway RBridges via alternative links (e.g., links 832, 833, and 834).


Suppose that a failure 862 occurs during operation that fails link 836 adjacent to IP router 821. Consequently, IP router 821 is disconnected from network 880 and is incapable of forwarding frames to network 880. Under such a scenario, IP router 821 is removed from virtual IP router 850. As a result, IP router 821 stops operating as a layer-3 gateway router for end device 870. However, gateway RBridge 811 still remains connected to network 800 and continues to operate as a regular TRILL RBridge. As virtual IP router 850 still operates as a default gateway for end device 870, IP routers 822 and 823 can continue to operate as layer-3 gateway routers (as virtual IP router 850) for end device 870. Hence, all frames from end device 870 to network 880 are then distributed among gateway RBridges 812 and 813.


In some embodiments, with failure 862, an elected gateway RBridge stops responding to ARP requests for the virtual IP address and notifies other gateway RBridges. Consequently, the other gateway RBridges then elect among themselves another gateway RBridge to respond to ARP requests.


In some embodiments, with failure 862, IP router 821 might not immediately remove its membership from virtual IP router 850 and might continue to receive layer-3 traffic from end devices. Under such circumstances, gateway RBridge 811, the TRILL counterpart of IP router 821, forwards the layer-3 traffic with TRILL encapsulation to other gateway RBridges (e.g., gateway RBridge 812) which, in turn, forward the traffic to network 880. However, if all similar IP routers suffer link failures and lose their connection to network 880, IP router 821 along with the other gateway RBridges with link failures are removed from virtual IP router 850. However, all gateway RBridges continue operating as TRILL RBridges.


Suppose that a node failure 866 occurs at gateway RBridge 811 (and essentially IP router 821 as they are the same physical device). As a result, links 831, 833, 835, and 836 fail as well. Consequently, gateway RBridge 811 and IP router 821 are disconnected from both network 800 and network 880, and are incapable of transmitting to or receiving from either network. Under such a scenario, IP router 821 is removed from virtual IP router 850 and gateway RBridge 811 is removed from virtual RBridge 840. As a result, IP router 821 stops operating as a layer-3 gateway node. Furthermore, gateway RBridge 811 is disconnected from network 800 and removed from all TRILL routes in network 800.


With failure 866, as virtual IP router 850 still operates as a default gateway for end device 870, routers 822 and 823 continue operating as layer-3 gateway nodes for end device 870. Hence, all frames from end device 870 to network 880 are distributed between gateway RBridges 812 and 813. Furthermore, if IP router 821 had been an elected router, it stops responding to ARP requests for the virtual IP address. Other RBridges coupled to the failed gateway RBridge can detect the failure and notify all RBridges, including other active gateway RBridges. Consequently, the active gateway RBridges can elect another gateway RBridge to respond to ARP requests.


Exemplary Switch System



FIG. 9 illustrates an exemplary architecture of a switch with IP processing capabilities, in accordance with an embodiment of the present invention. In this example, an RBridge 900 includes a number of TRILL ports 904, a TRILL management and forwarding module 920, an IP management module 930, an Ethernet frame processor 910, and a storage 950. TRILL management and forwarding module 920 further includes a TRILL header processing module 922. IP management module 930 further includes an ARP module 934 and an IP header processing module 936.


TRILL ports 904 include inter-switch communication channels for communication with one or more RBridges. This inter-switch communication channel can be implemented via a regular communication port and based on any open or proprietary format. Furthermore, the inter-switch communication between RBridges is not required to be direct port-to-port communication.


During operation, TRILL ports 904 receive TRILL frames from (and transmit frames to) other RBridges. TRILL header processing module 922 processes TRILL header information of the received frames and performs routing on the received frames based on their TRILL headers, as described in conjunction with FIG. 4B. TRILL management and forwarding module 920 forwards frames in the TRILL network toward other RBridges and frames destined to a layer-3 node toward the IP management module 930. IP header processing module 936 forwards frames across VLANs.


In some embodiments, RBridge 900 may form a virtual RBridge and a virtual IP address, wherein TRILL management and forwarding module 920 further includes a virtual RBridge configuration module 924, and IP management module 930 further includes a virtual IP router configuration module 938. TRILL header processing module 922 generates the TRILL header and outer Ethernet header for ingress frames corresponding to the virtual RBridge. Virtual RBridge configuration module 924 manages the communication with gateway RBridges and handles various inter-switch communications, such as link and node failure notifications. Virtual RBridge configuration module 924 allows a user to configure and assign the identifier for the virtual RBridges, and decides whether a frame has to be promoted to layer-3, as described in conjunction with FIG. 7B.


Furthermore, virtual IP router configuration module 938 handles various inter-switch communications, such as layer-3 link failure notifications. Virtual IP router configuration module 938 allows a user to configure and assign virtual IP addresses and a virtual MAC address.


ARP module 934 is responsible for ARP request replies, as described in conjunction with FIG. 4B. ARP module 934 also maintains mappings between a virtual MAC address and a virtual IP address and stores the mappings in Storage 950. Storage 950 also includes TRILL and IP routing information.


In some embodiments, gateway RBridge 900 may include a number of edge ports 902, as described in conjunction with FIG. 1. Edge ports 902 receive frames from (and transmit frames to) end devices. Ethernet frame processor 910 extracts and processes header information from the received frames. Ethernet frame processor 910 forwards the frames to IP management module 930 if there is no other intermediate RBridge between the end device and RBridge 900.


In some embodiments, gateway RBridge 900 may include a VCS configuration module 944 that includes a virtual switch management module 940 and a logical switch 942 as described in conjunction with FIG. 1. VCS configuration module 944 maintains a configuration database in storage 950 that maintains the configuration state of every switch within the VCS. Virtual switch management module 940 maintains the state of logical switch 942, which is used to join other VCS switches. In some embodiments, logical switch 942 can be configured to operate in conjunction with Ethernet frame processor 910 as a logical Ethernet switch.


Note that the above-mentioned modules can be implemented in hardware as well as in software. In one embodiment, these modules can be embodied in computer-executable instructions stored in a memory which is coupled to one or more processors in gateway RBridge 900. When executed, these instructions cause the processor(s) to perform the aforementioned functions.


In summary, embodiments of the present invention provide a switch, a method and a system for providing layer-3 support in a TRILL network. In one embodiment, the switch includes an IP header processor and a forwarding mechanism. The IP header processor identifies a destination IP address in a packet encapsulated with an inner Ethernet header, a TRILL header, and an outer Ethernet header. The forwarding mechanism determines an output port and constructs a new header for the packet based on the destination IP address. The switch also includes a packet processor which determines whether (1) an inner destination media access control (MAC) address corresponds to a local MAC address assigned to the switch; (2) a destination RBridge identifier corresponds to a local RBridge identifier assigned to the switch; and (3) an outer destination MAC address corresponds to the local MAC address. Such configuration provides a scalable and flexible solution to enable layer-3 processing in the switch.


The methods and processes described herein can be embodied as code and/or data, which can be stored in a computer-readable non-transitory storage medium. When a computer system reads and executes the code and/or data stored on the computer-readable non-transitory storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the medium.


The methods and processes described herein can be executed by and/or included in hardware modules or apparatus. These modules or apparatus may include, but are not limited to, an application-specific integrated circuit (ASIC) chip, a field-programmable gate array (FPGA), a dedicated or shared processor that executes a particular software module or a piece of code at a particular time, and/or other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.


The foregoing descriptions of embodiments of the present invention have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit this disclosure. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A switch, comprising: layer-2 processing circuitry configured to determine that: outer and inner destination media access control (MAC) addresses of a packet correspond to a MAC address assigned to the switch, wherein the packet is encapsulated with an inner Ethernet header, a routable header, and an outer Ethernet header;encapsulation circuitry configured to determine that: a destination switch identifier of the routable header corresponds to a switch identifier assigned to the switch, wherein the routable header is placed between the outer and inner Ethernet headers;Internet Protocol (IP) processing circuitry configured to lookup a destination IP address of a layer-3 header of the packet in a local layer-3 forwarding table in the switch, wherein the layer-3 header is distinct from the routable header, and wherein the destination IP address is a virtual IP address assigned to a virtual IP router, which is formed based on the switch in conjunction with at least another physical switch to operate as a single router; andforwarding circuitry configured to determine an output port and construct a new header for the packet based on looking up the destination IP address in the local layer-3 forwarding table.
  • 2. The switch of claim 1, wherein the layer-2 processing circuitry is further configured to determine a first virtual local area network (VLAN) tag in the inner Ethernet header; and wherein the new header includes a new inner Ethernet header comprising a second VLAN tag.
  • 3. The switch of claim 1, wherein the switch is a member of a network of interconnected switches, wherein the network of interconnected switches is controlled as a single logical switch.
  • 4. The switch of claim 1, further comprising switching circuitry configured to switch the packet between VLANs based on the destination IP address.
  • 5. The switch of claim 1, wherein the destination switch identifier is a virtual switch identifier; and wherein the virtual IP router is associated with the virtual switch identifier.
  • 6. The switch of claim 1, wherein the IP processing circuitry is further configured to map the virtual IP address to a virtual media access control (MAC) address.
  • 7. The switch of claim 1, further comprising Address Resolution Protocol (ARP) circuitry configured to generate an ARP response for an IP address assigned to the switch, wherein the ARP response comprises a MAC address assigned to the switch.
  • 8. A method, comprising: determining that: outer and inner destination media access control (MAC) addresses of a packet correspond to a MAC address assigned to a switch, wherein the packet is encapsulated with an inner Ethernet header, a routable header, and an outer Ethernet header; anda destination switch identifier of the routable header corresponds to a switch identifier assigned to the switch, wherein the routable header is placed between the outer and inner Ethernet headers;looking up a destination Internet Protocol (IP) address of a layer-3 header of the packet in a local layer-3 forwarding table in the switch, wherein the layer-3 header is distinct from the routable header, and wherein the destination IP address is a virtual IP address assigned to a virtual IP router, which is formed based on the switch in conjunction with at least another physical switch to operate as a single router; anddetermining an output port and constructing a new header for the packet based on looking up the destination IP address in the local layer-3 forwarding table.
  • 9. The method of claim 8, further comprising: determining a first virtual local area network (VLAN) tag in the inner Ethernet header; andincluding in the new header a new inner Ethernet header comprising a second VLAN tag.
  • 10. The method of claim 8, wherein the switch is a member of a network of interconnected switches wherein the network of interconnected switches is controlled as a single logical switch.
  • 11. The method of claim 8, further comprising switching the packet between VLANs based on the destination IP address.
  • 12. The method of claim 8, wherein the destination switch identifier is a virtual switch identifier; and wherein the virtual IP router is associated with the virtual switch identifier.
  • 13. The method of claim 8, further comprising mapping the virtual IP address to a virtual media access control (MAC) address.
  • 14. The method of claim 8, further comprising generating an Address Resolution Protocol (ARP) response for an IP address assigned to the switch, wherein the ARP response comprises a MAC address assigned to the switch.
  • 15. A computing system, comprising: a processor; anda non-transitory computer-readable storage medium storing instructions which when executed by the processor causes the processor to perform a method, the method comprising: determining that: outer and inner destination media access control (MAC) addresses of a packet correspond to a MAC address assigned to the computing system, wherein the packet is encapsulated with an inner Ethernet header, a routable header, and an outer Ethernet header; anda destination switch identifier of the routable header corresponds to a switch identifier is assigned to the computing system;looking up a destination Internet Protocol (IP) address of a layer-3 header of the packet in a local layer-3 forwarding table in the computing system, wherein the layer-3 header is distinct from the routable header and wherein the destination IP address is a virtual IP address assigned to a virtual IP router, which is formed based on the switch in conjunction with at least another physical switch to operate as a single router; anddetermining an output port and constructing a new header for the packet based on looking up the destination IP address in the local-layer-3 forwarding table.
  • 16. The computing system of claim 15, within the method further comprises: determining a first virtual local area network (VLAN) tag in the inner Ethernet header; andincluding in the new header a new inner Ethernet header comprising a second VLAN tag.
  • 17. The computing system of claim 15, wherein the computing system is a member of a network of interconnected switches, wherein the network of interconnected switches is controlled as a single logical switch.
  • 18. The computing system of claim 15, wherein the destination switch identifier is a virtual switch identifier; andwherein the virtual IP router is associated with the virtual switch identifier.
  • 19. The computing system of claim 15, wherein the method further comprises generating an Address Resolution Protocol (ARP) response for an IP address assigned to the computing system, wherein the ARP response comprises a MAC address assigned to the computing system.
  • 20. The computing system of claim 15, whether the method further comprises switching the packet between VLANs based on the destination IP address.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/481,643, titled “Layer-3 Support in Virtual Cluster Switching,” by inventors Phanidhar Koganti, Anoop Ghanwani, Suresh Vobbilisetty, Rajiv Krishnamurthy, Nagarajan Venkatesan, and Shunjia Yu, filed 2 May 2011, and U.S. Provisional Application No. 61/503,265, titled “IP Routing in VCS,” by inventors Phanidhar Koganti, Anoop Ghanwani, Suresh Vobbilisetty, Rajiv Krishnamurthy, Nagarajan Venkatesan, and Shunjia Yu, filed 30 Jun. 2011, which are incorporated by reference herein. The present disclosure is related to U.S. patent application Ser. No. 13/087,239, titled “Virtual Cluster Switching,” by inventors Suresh Vobbilisetty and Dilip Chatwani, filed 14 Apr. 2011, and U.S. patent application Ser. No. 12/725,249, titled “Redundant Host Connection in a Routed Network,” by inventors Somesh Gupta, Anoop Ghawani, Phanidhar Koganti, and Shunjia Yu, filed 16 Mar. 2010, the disclosures of which are incorporated by reference herein.

US Referenced Citations (376)
Number Name Date Kind
5390173 Spinney Feb 1995 A
5802278 Isfeld Sep 1998 A
5878232 Marimuthu Mar 1999 A
5959968 Chin Sep 1999 A
5973278 Wehrill, III Oct 1999 A
5983278 Chong Nov 1999 A
6041042 Bussiere Mar 2000 A
6064671 Killian May 2000 A
6085238 Yuasa Jul 2000 A
6104696 Kadambi Aug 2000 A
6185214 Schwartz Feb 2001 B1
6185241 Sun Feb 2001 B1
6438106 Pillar Aug 2002 B1
6498781 Bass Dec 2002 B1
6542266 Phillips Apr 2003 B1
6633761 Singhal Oct 2003 B1
6771610 Seaman Aug 2004 B1
6873602 Ambe Mar 2005 B1
6937576 DiBenedetto Aug 2005 B1
6956824 Mark Oct 2005 B2
6957269 Williams Oct 2005 B2
6975581 Medina Dec 2005 B1
6975864 Singhal Dec 2005 B2
7016352 Chow Mar 2006 B1
7061877 Gummalla Jun 2006 B1
7173934 Lapuh Feb 2007 B2
7197308 Singhal Mar 2007 B2
7206288 Cometto Apr 2007 B2
7310664 Merchant Dec 2007 B1
7313637 Tanaka Dec 2007 B2
7315545 Chowdhury et al. Jan 2008 B1
7316031 Griffith Jan 2008 B2
7330897 Baldwin Feb 2008 B2
7380025 Riggins May 2008 B1
7397794 Lacroute Jul 2008 B1
7430164 Bare Sep 2008 B2
7453888 Zabihi Nov 2008 B2
7477894 Sinha Jan 2009 B1
7480258 Shuen Jan 2009 B1
7508757 Ge Mar 2009 B2
7558195 Kuo Jul 2009 B1
7558273 Grosser, Jr. Jul 2009 B1
7571447 Ally Aug 2009 B2
7599901 Mital Oct 2009 B2
7688736 Walsh Mar 2010 B1
7688960 Aubuchon Mar 2010 B1
7690040 Frattura Mar 2010 B2
7706255 Kondrat et al. Apr 2010 B1
7716370 Devarapalli May 2010 B1
7720076 Dobbins May 2010 B2
7729296 Choudhary Jun 2010 B1
7787480 Mehta Aug 2010 B1
7792920 Istvan Sep 2010 B2
7796593 Ghosh Sep 2010 B1
7808992 Homchaudhuri Oct 2010 B2
7836332 Hara Nov 2010 B2
7843906 Chidambaram et al. Nov 2010 B1
7843907 Abou-Emara Nov 2010 B1
7860097 Lovett Dec 2010 B1
7898959 Arad Mar 2011 B1
7924837 Shabtay Apr 2011 B1
7937756 Kay May 2011 B2
7945941 Sinha May 2011 B2
7949638 Goodson May 2011 B1
7957386 Aggarwal Jun 2011 B1
8018938 Fromm Sep 2011 B1
8027354 Portolani Sep 2011 B1
8054832 Shukia Nov 2011 B1
8068442 Kompella Nov 2011 B1
8078704 Lee Dec 2011 B2
8102781 Smith Jan 2012 B2
8102791 Tang Jan 2012 B2
8116307 Thesayi Feb 2012 B1
8125928 Mehta Feb 2012 B2
8134922 Elangovan Mar 2012 B2
8155150 Chung Apr 2012 B1
8160063 Maltz Apr 2012 B2
8160080 Arad Apr 2012 B1
8170038 Belanger May 2012 B2
8194674 Pagel Jun 2012 B1
8195774 Lambeth Jun 2012 B2
8204061 Sane Jun 2012 B1
8213313 Doiron Jul 2012 B1
8213336 Smith Jul 2012 B2
8230069 Korupolu Jul 2012 B2
8239960 Frattura Aug 2012 B2
8249069 Raman Aug 2012 B2
8270401 Barnes Sep 2012 B1
8295291 Ramanathan Oct 2012 B1
8295921 Wang Oct 2012 B2
8301686 Appajodu Oct 2012 B1
8339994 Gnanasekaran Dec 2012 B2
8351352 Eastlake, III Jan 2013 B1
8369335 Jha Feb 2013 B2
8369347 Xiong Feb 2013 B2
8392496 Linden Mar 2013 B2
8462774 Page Jun 2013 B2
8465774 Page Jun 2013 B2
8467375 Blair Jun 2013 B2
8520595 Yadav Aug 2013 B2
8599850 Jha Dec 2013 B2
8599864 Chung Dec 2013 B2
8615008 Natarajan Dec 2013 B2
8706905 McGlaughlin Apr 2014 B1
8724456 Hong May 2014 B1
8806031 Kondur Aug 2014 B1
8826385 Congdon Sep 2014 B2
8937865 Kumar Jan 2015 B1
20010005527 Vaeth Jun 2001 A1
20010055274 Hegge Dec 2001 A1
20020019904 Katz Feb 2002 A1
20020021701 Lavian Feb 2002 A1
20020039350 Wang Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020091795 Yip Jul 2002 A1
20030041085 Sato Feb 2003 A1
20030123393 Feuerstraeter Jul 2003 A1
20030174706 Shankar Sep 2003 A1
20030189905 Lee Oct 2003 A1
20030216143 Roese Nov 2003 A1
20040001433 Gram Jan 2004 A1
20040003094 See Jan 2004 A1
20040010600 Baldwin Jan 2004 A1
20040049699 Griffith Mar 2004 A1
20040057430 Paavolainen Mar 2004 A1
20040117508 Shimizu Jun 2004 A1
20040120326 Yoon Jun 2004 A1
20040156313 Hofmeister et al. Aug 2004 A1
20040165595 Holmgren Aug 2004 A1
20040165596 Garcia Aug 2004 A1
20040213232 Regan Oct 2004 A1
20050007951 Lapuh Jan 2005 A1
20050044199 Shiga Feb 2005 A1
20050074001 Mattes Apr 2005 A1
20050094568 Judd May 2005 A1
20050094630 Valdevit May 2005 A1
20050122979 Gross Jun 2005 A1
20050157645 Rabie et al. Jul 2005 A1
20050157751 Rabie Jul 2005 A1
20050169188 Cometto Aug 2005 A1
20050195813 Ambe Sep 2005 A1
20050207423 Herbst Sep 2005 A1
20050213561 Yao Sep 2005 A1
20050220096 Friskney Oct 2005 A1
20050265356 Kawarai Dec 2005 A1
20050278565 Frattura Dec 2005 A1
20060007869 Hirota Jan 2006 A1
20060018302 Ivaldi Jan 2006 A1
20060023707 Makishima et al. Feb 2006 A1
20060034292 Wakayama Feb 2006 A1
20060059163 Frattura Mar 2006 A1
20060062187 Rune Mar 2006 A1
20060072550 Davis Apr 2006 A1
20060083254 Ge Apr 2006 A1
20060098589 Kreeger May 2006 A1
20060140130 Kalkunte Jun 2006 A1
20060168109 Warmenhoven Jul 2006 A1
20060184937 Abels Aug 2006 A1
20060221960 Borgione Oct 2006 A1
20060235995 Bhatia Oct 2006 A1
20060242311 Mai Oct 2006 A1
20060245439 Sajassi Nov 2006 A1
20060251067 Desanti Nov 2006 A1
20060256767 Suzuki Nov 2006 A1
20060265515 Shiga Nov 2006 A1
20060285499 Tzeng Dec 2006 A1
20060291388 Amdahl Dec 2006 A1
20070036178 Hares Feb 2007 A1
20070083625 Chamdani Apr 2007 A1
20070086362 Kato Apr 2007 A1
20070094464 Sharma Apr 2007 A1
20070097968 Du May 2007 A1
20070098006 Parry May 2007 A1
20070116224 Burke May 2007 A1
20070116422 Burke May 2007 A1
20070156659 Lim Jul 2007 A1
20070177525 Wijnands Aug 2007 A1
20070177597 Ju Aug 2007 A1
20070183313 Narayanan Aug 2007 A1
20070211712 Fitch Sep 2007 A1
20070258449 Bennett Nov 2007 A1
20070274234 Kubota Nov 2007 A1
20070289017 Copeland, III Dec 2007 A1
20080052487 Akahane Feb 2008 A1
20080065760 Damm Mar 2008 A1
20080080517 Roy Apr 2008 A1
20080095160 Yadav Apr 2008 A1
20080101386 Gray May 2008 A1
20080112400 Dunbar et al. May 2008 A1
20080133760 Berkvens et al. Jun 2008 A1
20080159277 Vobbilisetty Jul 2008 A1
20080172492 Raghunath Jul 2008 A1
20080181196 Regan Jul 2008 A1
20080181243 Vobbilisetty Jul 2008 A1
20080186981 Seto Aug 2008 A1
20080205377 Chao Aug 2008 A1
20080219172 Mohan Sep 2008 A1
20080225852 Raszuk Sep 2008 A1
20080225853 Melman Sep 2008 A1
20080228897 Ko Sep 2008 A1
20080240129 Elmeleegy Oct 2008 A1
20080267179 Lavinge Oct 2008 A1
20080285458 Lysne Nov 2008 A1
20080285555 Ogasahara Nov 2008 A1
20080298248 Roeck Dec 2008 A1
20080304498 Jorgensen Dec 2008 A1
20080310342 Kruys Dec 2008 A1
20090022069 Khan Jan 2009 A1
20090037607 Farinacci Feb 2009 A1
20090042270 Dolly Feb 2009 A1
20090044270 Shelly Feb 2009 A1
20090067422 Poppe Mar 2009 A1
20090067442 Killian Mar 2009 A1
20090079560 Fries Mar 2009 A1
20090080345 Gray Mar 2009 A1
20090083445 Ganga Mar 2009 A1
20090092042 Yuhura Apr 2009 A1
20090092043 Lapuh Apr 2009 A1
20090106405 Mazarick Apr 2009 A1
20090116381 Kanda May 2009 A1
20090129384 Regan May 2009 A1
20090138577 Casado May 2009 A1
20090138752 Graham May 2009 A1
20090161584 Guan Jun 2009 A1
20090161670 Shepherd Jun 2009 A1
20090168647 Holness Jul 2009 A1
20090199177 Edwards Aug 2009 A1
20090204965 Tanaka Aug 2009 A1
20090213783 Moreton Aug 2009 A1
20090222879 Kostal Sep 2009 A1
20090232031 Vasseur Sep 2009 A1
20090245137 Hares Oct 2009 A1
20090245242 Carlson Oct 2009 A1
20090246137 Hadida Oct 2009 A1
20090252049 Ludwig Oct 2009 A1
20090252061 Small Oct 2009 A1
20090260083 Szeto Oct 2009 A1
20090279558 Davis Nov 2009 A1
20090292858 Lambeth Nov 2009 A1
20090316721 Kanda Dec 2009 A1
20090323708 Ihle Dec 2009 A1
20090327392 Tripathi Dec 2009 A1
20090327462 Adams Dec 2009 A1
20100027420 Smith Feb 2010 A1
20100046471 Hattori Feb 2010 A1
20100054260 Pandey Mar 2010 A1
20100061269 Banerjee Mar 2010 A1
20100074175 Banks Mar 2010 A1
20100097941 Carlson Apr 2010 A1
20100103813 Allan Apr 2010 A1
20100103939 Carlson Apr 2010 A1
20100131636 Suri May 2010 A1
20100158024 Sajassi Jun 2010 A1
20100165877 Shukia Jul 2010 A1
20100165995 Mehta Jul 2010 A1
20100168467 Johnston Jul 2010 A1
20100169467 Shukia Jul 2010 A1
20100169948 Budko Jul 2010 A1
20100182920 Matsuoka Jul 2010 A1
20100215049 Raza Aug 2010 A1
20100220724 Rabie Sep 2010 A1
20100226368 Mack-Crane Sep 2010 A1
20100226381 Mehta Sep 2010 A1
20100246388 Gupta Sep 2010 A1
20100257263 Casado Oct 2010 A1
20100271960 Krygowski Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281106 Ashwood-Smith Nov 2010 A1
20100284414 Agarwal Nov 2010 A1
20100284418 Gray Nov 2010 A1
20100287262 Elzur Nov 2010 A1
20100287548 Zhou Nov 2010 A1
20100290473 Enduri Nov 2010 A1
20100299527 Arunan Nov 2010 A1
20100303071 Kotalwar Dec 2010 A1
20100303075 Tripathi Dec 2010 A1
20100303083 Belanger Dec 2010 A1
20100309820 Rajagopalan Dec 2010 A1
20100309912 Mehta Dec 2010 A1
20100329110 Rose Dec 2010 A1
20110019678 Mehta Jan 2011 A1
20110032945 Mullooly Feb 2011 A1
20110035489 McDaniel Feb 2011 A1
20110035498 Shah Feb 2011 A1
20110044339 Kotalwar Feb 2011 A1
20110044352 Chaitou Feb 2011 A1
20110064086 Xiong Mar 2011 A1
20110064089 Hidaka Mar 2011 A1
20110072208 Gulati Mar 2011 A1
20110085560 Chawla Apr 2011 A1
20110085563 Kotha Apr 2011 A1
20110110266 Li May 2011 A1
20110134802 Rajagopalan Jun 2011 A1
20110134803 Dalvi Jun 2011 A1
20110134925 Safrai Jun 2011 A1
20110142053 Van Der Merwe Jun 2011 A1
20110142062 Wang Jun 2011 A1
20110161494 McDysan Jun 2011 A1
20110161695 Okita Jun 2011 A1
20110188373 Saito Aug 2011 A1
20110194403 Sajassi Aug 2011 A1
20110194563 Shen Aug 2011 A1
20110228780 Ashwood-Smith Sep 2011 A1
20110231570 Altekar Sep 2011 A1
20110231574 Saunderson Sep 2011 A1
20110235523 Jha Sep 2011 A1
20110243133 Villait Oct 2011 A9
20110243136 Raman Oct 2011 A1
20110246669 Kanada Oct 2011 A1
20110255538 Srinivasan Oct 2011 A1
20110255540 Mizrahi Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110268120 Vobbilisetty Nov 2011 A1
20110268125 Vobbilisetty Nov 2011 A1
20110273988 Tourrilhes Nov 2011 A1
20110274114 Dhar Nov 2011 A1
20110280572 Vobbilisetty Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110296052 Guo Dec 2011 A1
20110299391 Vobbilisetty Dec 2011 A1
20110299413 Chatwani Dec 2011 A1
20110299414 Yu Dec 2011 A1
20110299527 Yu Dec 2011 A1
20110299528 Yu Dec 2011 A1
20110299531 Yu Dec 2011 A1
20110299532 Yu Dec 2011 A1
20110299533 Yu Dec 2011 A1
20110299534 Koganti Dec 2011 A1
20110299535 Vobbilisetty et al. Dec 2011 A1
20110299536 Cheng et al. Dec 2011 A1
20110317559 Kern Dec 2011 A1
20110317703 Dunbar et al. Dec 2011 A1
20120011240 Hara Jan 2012 A1
20120014261 Salam Jan 2012 A1
20120014387 Dunbar Jan 2012 A1
20120020220 Sugita Jan 2012 A1
20120027017 Rai Feb 2012 A1
20120033663 Guichard Feb 2012 A1
20120033665 Jacob Da Silva Feb 2012 A1
20120033669 Mohandas Feb 2012 A1
20120075991 Sugita Mar 2012 A1
20120099567 Hart Apr 2012 A1
20120099602 Nagapudi Apr 2012 A1
20120106339 Mishra May 2012 A1
20120131097 Baykal May 2012 A1
20120131289 Taguchi May 2012 A1
20120147740 Nakash Jun 2012 A1
20120158997 Hsu Jun 2012 A1
20120163164 Terry Jun 2012 A1
20120177039 Berman Jul 2012 A1
20120243359 Keesara Sep 2012 A1
20120243539 Keesara Sep 2012 A1
20120275347 Banerjee Nov 2012 A1
20120294192 Masood Nov 2012 A1
20120294194 Balasubramanian Nov 2012 A1
20120320800 Kamble Dec 2012 A1
20120320926 Kamath et al. Dec 2012 A1
20120327766 Tsai et al. Dec 2012 A1
20120327937 Melman et al. Dec 2012 A1
20130003535 Sarwar Jan 2013 A1
20130003737 Sinicrope Jan 2013 A1
20130003738 Koganti Jan 2013 A1
20130028072 Addanki Jan 2013 A1
20130034015 Jaiswal Feb 2013 A1
20130067466 Combs Mar 2013 A1
20130070762 Adams Mar 2013 A1
20130114595 Mack-Crane et al. May 2013 A1
20130127848 Joshi May 2013 A1
20130194914 Agarwal Aug 2013 A1
20130219473 Schaefer Aug 2013 A1
20130250951 Koganti Sep 2013 A1
20130259037 Natarajan Oct 2013 A1
20130272135 Leong Oct 2013 A1
20130301642 Radhakrishnan Nov 2013 A1
20140044126 Sabhanatarajan Feb 2014 A1
20140105034 Sun Apr 2014 A1
Foreign Referenced Citations (9)
Number Date Country
102801599 Nov 2012 CN
0579567 May 1993 EP
1398920 Mar 2004 EP
1916807 Apr 2008 EP
2001167 Dec 2008 EP
2008056838 May 2008 WO
2009042919 Apr 2009 WO
2010111142 Sep 2010 WO
2014031781 Feb 2014 WO
Non-Patent Literature Citations (203)
Entry
U.S. Appl. No. 12/312,903 Office Action dated Jun. 13, 2013.
U.S. Appl. No. 13/365,808 Office Action dated Jul. 18, 2013.
U.S. Appl. No. 13/365,993 Office Action dated Jul. 23, 2013.
U.S. Appl. No. 13/092,873 Office Action dated Jun. 19, 2013.
U.S. Appl. No. 13/184,526 Office Action dated May 22, 2013.
U.S. Appl. No. 13/184,526 Office Action dated Jan. 28, 2013.
U.S. Appl. No. 13/050,102 Office Action dated May 16, 2013.
U.S. Appl. No. 13/050,102 Office Action dated Oct. 26, 2012.
U.S. Appl. No. 13/044,301 Office Action dated Feb. 22, 2013.
U.S. Appl. No. 13/044,301 Office Action dated Jun. 11, 2013.
U.S. Appl. No. 13/030,688 Office Action dated Apr. 25, 2013.
U.S. Appl. No. 13/030,806 Office Action dated Dec. 3, 2012.
U.S. Appl. No. 13/030,806 Office Action dated Jun. 11, 2013.
U.S. Appl. No. 13/098,360 Office Action dated May 31, 2013.
U.S. Appl. No. 13/092,864 Office Action dated Sep. 19, 2012.
U.S. Appl. No. 12/950,968 Office Action dated Jun. 7, 2012.
U.S. Appl. No. 12/950,968 Office Action dated Jan. 4, 2013.
U.S. Appl. No. 13/092,877 Office Action dated Mar. 4, 2013.
U.S. Appl. No. 12/950,974 Office Action dated Dec. 20, 2012.
U.S. Appl. No. 12/950,974 Office Action dated May 24, 2012.
U.S. Appl. No. 13/092,752 Office Action dated Feb. 5, 2013.
U.S. Appl. No. 13/092,752 Office Action dated Jul. 18, 2013.
U.S. Appl. No. 13/092,701 Office Action dated Jan. 28, 2013.
U.S. Appl. No. 13/092,701 Office Action dated Jul. 3, 2013.
U.S. Appl. No. 13/092,460 Office Action dated Jun. 21, 2013.
U.S. Appl. No. 13/042,259 Office Action dated Mar. 18, 2013.
U.S. Appl. No. 13/042,259 Office Action dated Jul. 31, 2013.
U.S. Appl. No. 13/092,580 Office Action dated Jun. 10, 2013.
U.S. Appl. No. 13/092,724 Office Action dated Jul. 16, 2013.
U.S. Appl. No. 13/092,724 Office Action dated Feb. 5, 2013.
U.S. Appl. No. 13/098,490 Office Action dated Dec. 21, 2012.
U.S. Appl. No. 13/098,490 Office Action dated Jul. 9, 2013.
U.S. Appl. No. 13/087,239 Office Action dated May 22, 2013.
U.S. Appl. No. 13/087,239 Office Action dated Dec. 5, 2012.
U.S. Appl. No. 12/725,249 Office Action dated Apr. 26, 2013.
U.S. Appl. No. 12/725,249 Office Action dated Sep. 12, 2012.
Brocade Unveils “The Effortless Network”, http://newsroom.brocade.com/press-releases/brocade-unveils-the-effortless-network--nasdaq-brcd-0859535, 2012.
Foundry FastIron Configuration Guide, Software Release FSX 04.2.00b, Software Release FWS 04.3.00, Software Release FGS 05.0.00a, Sep. 26, 2008.
FastIron and TurboIron 24X Configuration Guide Supporting FSX 05.1.00 for FESX, FWSX, and FSX; FGS 04.3.03 for FGS, FLS and FWS; FGS 05.0.02 for FGS-STK and FLS-STK, FCX 06.0.00 for FCX; and TIX 04.1.00 for TI24X, Feb. 16, 2010.
FastIron Configuration Guide Supporting Ironware Software Release 07.0.00, Dec. 18, 2009.
“The Effortless Network: HyperEdge Technology for the Campus LAN”, 2012.
Narten, T. et al. “Problem Statement: Overlays for Network Virtualization”, draft-narten-nvo3-overlay-problem-statement-01, Oct. 31, 2011.
Knight, Paul et al., “Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standardization Efforts”, IEEE Communications Magazine, Jun. 2004.
“An Introduction to Brocade VCS Fabric Technology”, Brocade white paper, http://community.brocade.com/docs/DOC-2954, Dec. 3, 2012.
Kreeger, L. et al., “Network Virtualization Overlay Control Protocol Requirements”, Draft-kreeger-nvo3-overlay-cp-00, Jan. 30, 2012.
Knight, Paul et al., “Network based IP VPN Architecture using Virtual Routers”, May 2003.
Louati, Wajdi et al., “Network-based virtual personal overlay networks using programmable virtual routers”, IEEE Communications Magazine, Jul. 2005.
U.S. Appl. No. 13/092,877 Office Action dated Sep. 5, 2013.
U.S. Appl. No. 13/044,326 Office Action dated Oct. 2, 2013.
Abawajy J. “An Approach to Support a Single Service Provider Address Image for Wide Area Networks Environment” Centre for Parallel and Distributed Computing, School of Computer Science Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 13/786,328, filed Mar. 5, 2013, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 14/577,785, filed Dec. 19, 2014, dated Apr. 13, 2015.
Mahalingam “VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks” Oct. 17, 2013 pp. 1-22, Sections 1, 4 and 4.1.
Office action dated Apr. 30, 2015, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated Apr. 1, 2015, U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated May 21, 2015, U.S. Appl. No. 13/288,822, filed Nov. 3, 2011.
Siamak Azodolmolky et al. “Cloud computing networking: Challenges and opportunities for innovations”, IEEE Communications Magazine, vol. 51, No. 7, Jul. 1, 2013.
Office Action dated Apr. 1, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office action dated Jun. 8, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office Action Dated Jun. 10, 2015, U.S. Appl. No. 13/890,150, filed May 8, 2013.
“Switched Virtual Internetworking moved beyond bridges and routers”, 8178 Data Communications Sep. 23, 1994, No. 12, New York.
S. Night et al., “Virtual Router Redundancy Protocol”, Network Working Group, XP-002135272, Apr. 1998.
Eastlake 3rd., Donald et al., “RBridges: TRILL Header Options”, Draft-ietf-trill-rbridge-options-00.txt Dec. 24, 2009.
J. Touch, et al., “Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement”, May 2009.
Perlman, Radia et al., “RBridge VLAN Mapping”, Draft-ietf-trill-rbridge-vlan-mapping-01.txt Dec. 4, 2009.
Brocade Fabric OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions.
Perlman, Radia “Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology”, XP-002649647, 2009.
Nadas, S. et al., “Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6”, Mar. 2010.
Perlman, Radia et al., “RBridges: Base Protocol Specification”, draft-ietf-trill-rbridge-protocol-16.txt, Mar. 3, 2010.
Christensen, M. et al., “Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches”, May 2006.
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT)”, Oct. 2002.
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT) draft-lapuh-network-smlt-08”, 2008.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Feb. 28, 2014.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Feb. 20, 2014.
Office Action for U.S. Appl. No. 13/533,843, filed Jun. 26, 2012, dated Oct. 21, 2013.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Nov. 12, 2013.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 29, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Dec. 2, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Jan. 16, 2014.
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, dated Jan. 10, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Jan. 6, 2014.
Zhai F. Hu et al. “RBridge: Pseudo-Nickname; draft-hu-trill-pseudonode-nickname-02.txt”, May 15, 2012.
Huang, Nen-Fu et al., “An Effective Spanning Tree Algorithm for a Bridged LAN”, Mar. 16, 1992.
Office Action dated Jun. 6, 2014, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012.
Office Action dated Feb. 20, 2014, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012.
Office Action dated May 14, 2014, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012.
Office Action dated May 9, 2014, U.S. Appl. No. 13/484,072, filed May 30, 2012.
Office Action dated Feb. 28, 2014, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated Jun. 18, 2014, U.S. Appl. No. 13/440,861, filed Apr. 5, 2012.
Office Action dated Mar. 6, 2014, U.S. Appl. No. 13/425,238, filed Mar. 20, 2012.
Office Action dated Apr. 22, 2014, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office Action dated Jun. 20, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office Action dated Mar. 26, 2014, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office Action dated Mar. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Brocade ‘An Introduction to Brocade VCS Fabric Technology’, Dec. 3, 2012.
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT) draft-lapuh-network-smlt-08’, Jan. 2009.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Jul. 17, 2014.
Office Action for U.S. Appl. No. 13/365,993, filed Feb. 3, 2012, from Cho, Hong Sol., dated Jul. 23, 2013.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Dec. 3, 2012.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Jun. 13, 2013.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated Dec. 5, 2012.
Office action dated Apr. 26, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Sep. 12, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Dec. 21, 2012, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Mar. 27, 2014, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Jul. 9, 2013, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated May 22, 2013, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated Dec. 5, 2012, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated Feb. 5, 2013, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office action dated Jan. 10, 2014, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Jun. 10, 2013, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Jan. 16, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Mar. 18, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Jun. 21, 2013, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office action dated Jul. 3, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Dec. 20, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated May 24, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated Jan. 6, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Sep. 5, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Mar. 4, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Jan. 4, 2013, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010.
Office action dated Jun. 7, 2012, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010.
Office action dated Sep. 19, 2012, U.S. Appl. No. 13/092,864, filed Apr. 22, 2011.
Office action dated May 31, 2013, U.S. Appl. No. 13/098,360, filed Apr. 29, 2011.
Office action dated Oct. 2, 2013, U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office action dated Dec. 3, 2012, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Apr. 25, 2013, U.S. Appl. No. 13/030,688, filed Feb. 18, 2011.
Office action dated Feb. 22, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Oct. 26, 2012, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated May 16, 2013, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Aug. 4, 2014, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated Dec. 2, 2013, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office action dated May 22, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated Nov. 29, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office action dated Jun. 19, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/365,808, filed Feb. 3, 2012.
Office action dated Nov. 12, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office action dated Jun. 13, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office Action for U.S. Appl. No. 13/092,887, dated Jan. 6, 2014.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Mar. 27, 2014.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Jul. 7, 2014.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Apr. 9, 2014.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jul. 25, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Jun. 20, 2014.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Aug. 7, 2014.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Jul. 24, 2014.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 6, 2014.
Office Action for U.S. Appl. No. 13/556,061, filed Jul. 23, 2012, dated Jun. 6, 2014.
Office Action for U.S. Appl. No. 13/742,207 dated Jul. 24, 2014, filed Jan. 15, 2013.
Office Action for U.S. Appl. No. 13/950,974, filed Nov. 19, 2010, from Haile, Awet A., dated Dec. 2, 2012.
Perlman R: ‘Challenges and opportunities in the design of TRILL: a routed layer 2 technology’, 2009 IEEE GLOBECOM Workshops, Honolulu, HI, USA, Piscataway, NJ, USA, Nov. 30, 2009, pp. 1-6, XP002649647, DOI: 10.1109/GLOBECOM.2009.5360776 ISBN: 1-4244-5626-0 [retrieved on Jul. 19, 2011].
TRILL Working Group Internet-Draft Intended status: Proposed Standard RBridges: Base Protocol Specificaiton Mar. 3, 2010.
Office action dated Aug. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jul. 7, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office Action dated Dec. 19, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 7, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Nov. 10, 2014.
Office Action for U.S. Appl. No. 13/157,942, filed Jun. 10, 2011.
Mckeown, Nick et al. “OpenFlow: Enabling Innovation in Campus Networks”, Mar. 14, 2008, www.openflow.org/documents/openflow-wp-latest.pdf.
Office Action for U.S. Appl. No. 13/044,301, dated Mar. 9, 2011.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/669,357, filed Nov. 5, 2012, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 13/851,026, filed Mar. 26, 2013, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 13/425,238, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 27, 2015.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Feb. 23, 2015.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jan. 29, 2015.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Jan. 26, 2015.
Office action dated Oct. 2, 2014, for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Kompella, Ed K. et al., ‘Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling’ Jan. 2007.
Rosen, E. et al., “BGP/MPLS VPNs”, Mar. 1999.
“Switched Virtual Internetworking moves beyond bridges and routers”, Sep. 23, 1994, No. 12, New York, US.
Knight, S. et al. “Virtual Router Redundancy Protocol”, Apr. 1998, XP-002135272.
Eastlake, Donald et al., “RBridges: TRILL Header Options”, Dec. 2009.
Touch, J. et al., “Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement”, May 2009.
Perlman, Radia et al., “RBridge VLAN Mapping”, Dec. 2009.
“Brocade Fabric OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions”.
Perlman, Radia et al., “RBridges: Base Protocol Specification”, Mar. 2010.
Office Action dated Jun. 18, 215, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office Action dated Jun. 16, 2015, U.S. Appl. No. 13/048,817, filed Mar. 15, 2011.
Touch, J. et al., ‘Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement’, May 2009, Network Working Group, pp. 1-17.
Zhai F. Hu et al. ‘RBridge: Pseudo-Nickname; draft-hu-trill-pseudonode-nickname-02.txt’, May 15, 2012.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 13/598,204, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014.
Office Action dated Aug. 21, 2015, U.S. Appl. No. 13/776,217, filed Feb. 25, 2013.
Office Action dated Aug. 19, 2015, U.S. Appl. No. 14/156,374, filed Jan. 15, 2014.
Office Action dated Sep. 2, 2015, U.S. Appl. No. 14/151,693, filed Jan. 9, 2014.
Office Action dated Sep. 17, 2015, U.S. Appl. No. 14/577,785, filed Dec. 19, 2014.
Office Action dated Sep. 22, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Nov. 5, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office Action dated Oct. 19, 2015, U.S. Appl. No. 14/215,996, filed Mar. 17, 2014.
Office Action dated Sep. 18, 2015, U.S. Appl. No. 13/345,566, filed Jan. 6, 2012.
Related Publications (1)
Number Date Country
20120281700 A1 Nov 2012 US
Provisional Applications (2)
Number Date Country
61481643 May 2011 US
61503265 Jun 2011 US