A solid state drive (SSD) is a data storage device that utilizes solid-state memory to retain data in nonvolatile memory chips. NAND-based flash memories are widely used as the solid-state memory storage in SSDs due to their compactness, low power consumption, low cost, high data throughput and reliability. SSDs commonly employ several NAND-based flash memory chips and a flash controller to manage the flash memory and to transfer data between the flash memory and a host computer.
While NAND-based flash memories are reliable, they are not inherently error-free and often rely on error correction coding (ECC) to correct raw bit errors in the stored data. One commonly employed error correction code employed in nonvolatile memory storage modules, such as SSDs, are low-density parity-check (LDPC) codes. An LDPC code is a linear error correcting code having a parity check matrix with a small number of nonzero elements in each row and column. Various methods for decoding data encoded with LDPC error correction codes are known in the art. One commonly employed decoding method for LDPC coding is the layered min-sum algorithm (MSA). While the min-sum algorithm is an approximation of the quasi-optimal decoding method of belief propagation, the layered min-sum algorithm introduces a further hardware simplification. The layered min-sum algorithm is iterative by layer and is based on belief propagation. The layered min-sum algorithm (MSA) is less complex than other decoding methods known in the art. However, the min-sum algorithm exhibits a noticeable degradation in the decoding performance compared to the more complex decoding methods, such as belief propagation. To counteract the degradation in the decoding performance achievable with the layered min-sum algorithm, normalized layered min-sum algorithms with have been developed incorporating a normalization factor, or attenuation factor, to account for the degradation in decoding performance. However, in the prior art, normalized layered min-sum algorithms utilize the same attenuation factor for each layer of the min-sum decoding process to recover the LDPC encoded codeword. Utilization of the same attenuation factor for each layer of the min-sum decoding algorithm may not converge to the original codeword or may require a high number of iterations for convergence.
Accordingly, what is needed in the art is an improved system and method implementing normalized layered min-sum algorithms for decoding LDPC encoded data.
In various embodiments, a nonvolatile memory system includes a nonvolatile memory storage module for storing encoded data. The encoded data stored in the nonvolatile memory storage module is encoded using a low-density parity check (LDPC) error correction code. A decoder receives the LDPC encoded data stored in the nonvolatile memory storage module and attempts to decode and recover the data.
A low-density parity check (LDPC) decoder is provided for decoding low-density parity check (LDPC) encoded data wherein a layer specific attenuation factor is provided for each layer of the LDPC parity check matrix. An attenuation factor matrix comprising a plurality of coefficients specifies the specific attenuation factor for each layer, for each iteration, of the decoding process. A check node processor performs check node processing for each layer of the parity check matrix associated with the LDPC encoded codeword utilizing the layered min-sum algorithm wherein the attenuation factor of the min-sum algorithm is determined by the coefficients of the attenuation factor matrix.
In a particular embodiment, a method for decoding low-density parity check (LDPC) encoded data is provided. The method may include, receiving a plurality of log-likelihood ratios (LLRs) at a decoder, each of the plurality of LLRs representing one of a plurality of bits of an LDPC codeword encoded using a parity check matrix having a plurality of layers and decoding the LLRs utilizing a normalized layered min-sum decoding process having at least one layer specific attenuation factor to provide an estimate of the LDPC encoded codeword. The specific attenuation factors may be stored as coefficients within an attenuation factor matrix. The specific attenuation factor may also vary based upon the iteration of the decoding process.
The method of the present invention may include performing check node processing for each layer of the parity check matrix associated with the LDPC encoded codeword utilizing a normalized layered min-sum algorithm having at least one layer specific attenuation factor associated with at least one layer of the parity check matrix, performing variable node processing for each layer of the parity check matrix and performing a check of the estimate of the LDPC encoded codeword to determine if the codeword estimate is a codeword.
An LDPC decoder for decoding low-density parity check (LDPC) encoded data in accordance with the present invention may be used to decode the LDPC encoded data. The encoded data may include a plurality of log-likelihood ratios (LLRs) obtained by reading multiple times a nonvolatile memory storage system, wherein each of the plurality of LLRs represents one of a plurality of bits of an LDPC codeword encoded using a parity check matrix having a plurality of layers. The decoder may include circuitry for decoding the LLRs utilizing a normalized layered min-sum decoding process having at least one layer specific attenuation factor to provide an estimate of the LDPC encoded codeword. The specific attenuation factors may be stored as coefficients within an attenuation factor matrix. The specific attenuation factor may also vary based upon the iteration of the decoding process.
In a specific embodiment, the LDPC decoder may include an attenuation factor matrix comprising a plurality of coefficients, each of the plurality of coefficients identifying a specific attenuation factor for each layer of the plurality of layers of the parity check matrix. The LDPC decoder may further include a check node processor coupled to the attenuation factor matrix, the check node processor having circuitry for performing check node processing for each layer of the parity check matrix associated with the LDPC encoded codeword utilizing a normalized layered min-sum algorithm having at least one layer specific attenuation factor associated with at least one layer of the parity check matrix, a variable node processor coupled to the check node processor, the variable node processor having circuitry for performing variable node processing for each layer of the parity check matrix and a codeword estimate check processor coupled to the variable node processor, the codeword estimate check processor having circuitry for performing a check of the estimate of the LDPC encoded codeword to determine if the codeword estimate is a codeword.
The present invention provides an improved system and method implementing normalized layered min-sum algorithms for decoding LDPC encoded data.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention, and together with the description, serve to explain the principles of the invention.
In the operation of a stored channel utilizing LDPC encoding, original data are stored in a non-volatile memory. Different noise sources estimated as White Gaussian Noise (AWGN) Channel corrupt the original stored message resulting in a one becoming a zero or vice versa. To improve the bit error rate, BER, the SSD write controller may comprise an LDPC encoder which multiplies an information bit vector with a generator matrix G of the LDPC code. The output of the encoder is then stored in a nonvolatile memory system. During the read operation, the nonvolatile memory system provides the stored codewords to an LDPC decoder which performs the LDPC decoding process.
The nonvolatile memory system used in the communication system may be a NAND-based flash memory system. While NAND-based flash memories are reliable, they are not inherently error-free and often rely on error correction coding (ECC) to correct raw bit errors in the stored data. Various mechanisms may lead to bit errors in flash memories, including noise at the power rails, voltage threshold disturbances during the reading and/or writing of neighboring cells, retention loss due to leakage within the cells and tunneling. Error correction codes (ECC) are commonly employed in flash memories to recover stored data that is affected by such error mechanisms. In operation, ECC supplements the user data with parity bits which store enough extra information for the data to be reconstructed if one or more of the data bits are corrupted. Generally, the number of data bit errors detectable and correctable in the data increases with an increasing number of parity bits in the ECC. In many memory devices, data is stored in a memory location of the memory device along with the ECC for the data. In this way, the data and the ECC may be written to the memory location in a single write memory operation and read from the memory location in a single read memory operation. ECC is typically implemented in the flash memory controller.
NAND flash memories are based on floating gate storage. In floating gate storage technologies, two logic states are achieved by altering the number of electrons within the floating gate. The difference between the two logic states (1 and 0) is on the order of few electrons and is decreasing as the floating gate storage technology advances. The decreasing number of electrons responsible for the difference between the two logic states results in an increased probability of errors in the flash memory cell requiring more error correction. The fraction of data bits that are known to be corrupted, and therefore contain incorrect data, before applying the ECC is referred to as the raw bit error rate (RBER). As a result of the advances in the floating gate storage technology, the RBER for a flash page of memory cells is increasing and at technologies with feature sizes in the 1× range (below 20 nm) is nearing the Shannon Limit of the communication channel. The increased probability of errors in the stored data results in an increase in the error code correction necessary to correct the bit errors in the flash memory. The error rate observed after application of the ECC is referred to as the uncorrectable bit error rate (UBER). The acceptable UBER is often dependent upon the application in which the SSD is employed. In the case of price sensitive, consumer applications, which experience a relatively low number of memory accesses during the SSD product lifetime, the SSD may tolerate a higher UBER as compared to a high-end application experiencing a relatively high number of memory accesses, such as an Enterprise application.
To achieve an acceptable UBER for Enterprise applications employed in a flash storage controller, low-density parity-check (LDPC) error correction coding is commonly used. An LDPC code is a linear error correcting code having a parity check matrix with a small number of nonzero elements in each row and column. LDPC codes are capacity-approaching codes that allow the noise threshold to be set very close to the Shannon limit for a symmetric, memory-less channel. The noise threshold defines an upper bound for the channel noise, up to which the probability of lost information can be made as small as desired.
The power of LDPC codes resides in the ability of the decoding strategy to exploit the soft information on the stored data. In LDPC decoding, the two voltage distributions represent the two possible states: “0” and “1”, of the cells within the NAND chips. When the voltage distributions overlap 105, as shown with reference to the graph 100 of
LDPC decoding is performed based upon a parity check matrix which consists of “0”'s and “1”'s that define the parity check equations. An M×N parity check matrix (H) comprises M rows and N columns. The number of columns N corresponds to the number N of codeword bits within one encoded codeword and the codeword comprises a plurality of information bits (K) and M parity check bits. The number of rows within the parity check matrix corresponds to the number M of parity check bits in the codeword.
The decoding of the LDPC codes is an iterative process that uses as input, the LLR of the received data bits in the codeword, as in the equation:
where “x” is the read message and “y” is the original codeword. When performing decoding of the codeword, the LLRs are propagated and updated between the variable nodes and the check nodes in a Tanner graph which is representative of the parity check matrix of the LDPC code.
With reference to
In the check node processing phase of the decoding as illustrated in
A similar concept is applied to variable node processing in accordance with the parity check matrix as shown with reference to
Following every iteration of the check node processing and variable node processing steps, the resulting codeword estimate (r) is checked to verify that it is a codeword by multiplying it by the transpose of the parity check matrix (H). If the result is null, then r is a considered a codeword and the decoding is complete. If the result is not null, then the decoding is not considered complete and a new iteration is started.
The message passing computation rule procedure as described above is referred to as a belief propagation (BP) computation rule and is also commonly known as the sum-product algorithm (SPA). While the sum-product algorithm is known to achieve the best decoding performance, it is computationally complex. The formula used in check node processing following the sum-product algorithm is a very complex formula involving both the tan h and the log function which are difficult to implement in hardware necessary to compute the check node formula. The computational complexity of the SPA necessitates a decoding device having a large number of logic gates, resulting in an increased cost and decreased power efficiency of the device.
In the sum-product algorithm, the φ function produces a very large result for small values of x (read messages) and a very small result for large values of x (read messages). In general, as x approaches zero, φ(x) approaches infinity and as x increases from zero, φ(x) rapidly decreases in value.
When a check node receives the extrinsic information it operates on, the majority of the information will have originated from reasonably reliable sources, because most of the variable nodes associated with the check node will have large LLR magnitudes, representing a high probability that the message read from the memory is the original codeword that was stored. When only a small amount of noise has affected the stored bits, and as such the raw bit error rate (RBER) is low, the majority of LLRs will tend to have a large magnitude, while only a few LLRs will have a small magnitude. For example, at a raw bit error rate (RBER) of 1e-3, an average of only 1 in 1000 bits is in error. As such, all the extrinsic information operated on by the check nodes will have large LLR magnitudes except for the check nodes that process bits that are in error. However, even in the case where the check node is processing bits that are in error, it is likely that only 1 of the extrinsic sources for that particular check node has a small LLR magnitude. The small LLR magnitude of that one extrinsic source will have the greatest effect on the φ function, as previously discussed. As a result of the complexity of the sum-product algorithm, and the assumption that the smallest extrinsic value approximates all extrinsic values received by a check node, approximated decoders utilizing a min-sum algorithm (MSA) have been developed where the φ function is computed as a minimum among the magnitudes of a set of values according to the formula:
However, since utilizing this formula yields an approximation to the full sum-product algorithm (SPA), an attenuation, or normalization, factor (α) is introduced into the MSA computation as:
In the normalized min-sum algorithm, the complicated computation of the tan h function and the log function are replaced with a simple minimum value finding operation at the cost of decoding performance. The loss of decoding performance is then recovered by applying a normalizing factor or attenuation factor to the check node processing outputs to improve the error performance.
For example, assuming a typical low noise situation wherein one small magnitude LLR and three larger magnitude LLRs are received as a series of four extrinsics as 0.1, 3, 3 and 3. The associated φ(x) for these received extrinsics would be 3.00, 0.01, 0.01 and 0.01, respectively, then the sum of the φ values for these extrinsics would be equal to 3.03 and the φ of the sum would be equal to about 0.1. The min-sum estimate would also result in a value of 0.1 by ignoring the last three LLRs (3, 3, 3) and considering only the first LLR (0.1). As such, in a low noise situation the assumption can be made that the smallest extrinsic value approximates all extrinsic values received by a check node and the min-sum algorithm will provide a close approximation without requiring any additional attenuation. In general, very little attenuation is required in a low noise situation.
In contrast, in a higher noise situation wherein a series of four received extrinsics are 0.1, 1, 1 and 1, the sum of the φ of the received extrinsics is 3+(3*0.77)=5.3 and φ(5.3) is equal to 0.01, the output of the check node processing utilizing SPA would be 0.01. However, utilizing the min-sum approximation, the output of the check node processing would be equal to 0.1, which is not a close approximation to the SPA result. As such, in a higher noise situation, the min-sum result will require greater attenuation to more closely approximate the SPA result. In general, attenuating the min-sum result when there is more noise tends to increase the accuracy of the approximation towards the correct check node result.
While in the case of low RBER the min-sum approximation closely approximates the sum-product algorithm (SPA), in the case of high RBER, the approximation may not resemble the sum-product algorithm because the assumption that only 1 extrinsic is small may not be accurate. As such, in the case of high RBER, the min-sum check node calculation may be a poor approximation to the real φ function result of the sum-product algorithm (SPA). In the case of high RBER, the full min-sum check node calculation will generate a result that is noticeably larger than the sum of φ result of the sum-product algorithm, which translates to a higher than optimal estimate of the likelihood of which bits are in error versus which are not in error. As such, at high RBER the min-sum calculation tends to be overly optimistic when compared to the sum-product calculation.
The error performance of the LDPC decoder can be further improved by using an iterative layered decoding technique which achieves a faster decoding convergence due to the optimized scheduling of the messages.
In non-layered scheduling for min-sum LDPC decoding, all of the check node processing is performed prior to initiating the variable node processing. Alternatively, in layered scheduling for min-sum LDPC decoding, the iterative decoding process of the normalized min-sum layered algorithm is performed layer by layer. With layered LDPC decoding, the parity-check matrix may be viewed as group of horizontal layers, each horizontal layer representing the check nodes for one layer. In layered scheduling, once the processing has been completed for all the check nodes of a first layer, the processing may immediately switch to the variable node processing. In this way, the computations for the check nodes of the second layer utilizes an input that is more likely to have larger LLRs as compared to the initial values utilized in the computations of the first layer. As such, in layered min-sum LDPC decoding, after the check nodes complete the min-sum algorithm for the variable nodes they are connected to in the first layer, these variable nodes are updated and the check nodes utilize these updated messages to complete the min-sum algorithm for the second layer. However, in standard normalized layered min-sum LDPC decoding, the attenuation factor is not subject to change during the decoding procedure and the attenuation factor remains the same, regardless of the layer of the structure upon which the min-sum calculation is being performed. Utilizing the same attenuation factor for all the layers during the decoding procedure may not yield the best decoding performance, because the calculations for the second layer already utilizes an input which is cleaner than the first layer and as such, may require an attenuation factor that is different than the first layer.
In the standard normalized min-sum algorithm, the attenuation factor is computed by comparing the value obtained with the belief propagation algorithm and the min-sum algorithm. In other words, the attenuation factor is computed as the ratio of the average value in check node processing computed with belief propagation and the average value in check node processing computed with the min-sum algorithm.
In the normalized layered min-sum algorithm of the present invention, the layered concept is applied to belief propagation to create a layered belief propagation decoding method. Once this method has been created, a unique attenuation factor layer per layer is computed as the ratio between the average value in check node processing belonging to each layer computed with the layered belief propagation decoding method and the average value in check node processing belonging to each layer computed with the layered min-sum algorithm decoding method. The present invention recognizes that the in normalized layered min-sum LDPC decoding, the first time a variable node is updated, i.e. first layer, is the most significant step toward a converging result. As such, the min-sum calculation for the first layer will therefore tend to have more small-valued extrinsics at the check nodes than the min-sum calculation for the second layer. Due to the larger number of small-valued extrinsics present in the min-sum calculation for the first layer, the final φ result for the min-sum calculation for the first layer will tend to be larger than the sum-product algorithm would have calculated utilizing the real φ function. Therefore, the first layer in the layered min-sum LDPC decoding should be attenuated more than the following layers. As follows, the min-sum calculation for the second layer will tend to have fewer small-valued extrinsics because the largest step to convergence was already taken in the first layer. As such, the final φ result of the second layer will tend to be closer to the real φ result of the sum-product algorithm and therefore, should be attenuated to a lesser degree. In general the attenuation factor of the layer is most critical when the convergence is taking the largest steps towards convergence, i.e. when the number of small-valued extrinsics is large. As the number of small-valued extrinsics decreases through the processing of the layers, the attenuation factor should be reduced to more closely approximate the real φ function of the sum-product algorithm.
To increase the decoding performance of the LDPC decoder, the unique attenuation factor per layer is used to correctly approximate the check node computation at each layer. Utilizing the layer specific attenuation factor, the decoding performance of a standard normalized min-sum LDPC decoder can be improved. In a particular embodiment, the layer specific attenuation factors are calculated during the design process of the decoder. The layer specific attenuation factors are stored in a lookup table or matrix. During the design process, various lookup tables are populated with layer specific attenuation factors based upon a specific bit error rate (BER). In operation, during the LDPC decoding process, the bit error rate (BER) is estimated and a pointer points to the appropriate lookup table or matrix based upon the estimated BER. The layer specific attenuation factor in accordance with the present invention may be implemented utilizing an attenuation factor matrix as illustrated with reference to
In the exemplary embodiment illustrated in
In the embodiment illustrated in
The attenuation factor matrix of the present invention may be used to improve the performance of the LDPC decoder in decoding LDPC encoded data that is stored in a nonvolatile memory system. As shown with reference to
The nonvolatile memory system 400 of
In the present invention, LDPC decoding of the codeword is performed based upon the parity check matrix and an attenuation factor matrix. The parity check matrix consists of “0”s and “1”s defining the parity check equations. For an “M” rowדN” column parity check matrix, M check nodes and N variable nodes iteratively exchange messages between each other according to the LDPC decoding algorithm. The “1”s in the parity check matrix define the connections between the variable nodes and the check nodes and the exchange of information is performed only between the nodes connected to each other as defined by the parity check matrix. The present invention employs a layered decoding technique in which message updates are performed after the completion of each layer of the parity check matrix. A layer may be defined as a single row of the parity check matrix, or as a group of rows of the parity check matrix. The values of the attenuation factor matrix define an attenuation factor to be used for the check node processing for each layer, and for each iteration, during the decoding process. The layer specific attenuation factor may be different for each layer or the layer specific attenuation factor may be different for only one layer of the parity check matrix.
In operation of the present invention, during a read operation of the nonvolatile memory system 400, multiple reads of the stored codewords are executed to provide soft information represented by LLRs 570 as previously described. The LLRs 570 are used as input to the LDPC decoder 540 to decode the user message data 560 and encoded by, the encoder 535, utilizing LDPC coding following a parity check matrix (H). The received LLR values for each variable node are taken as the initial variable node messages. The check node processor 545 updates the check nodes of a first layer with the variable node messages they are connected to, using the normalized layered min-sum algorithm modified by the layer specific attenuation factor from the attenuation matrix for the first layer and the first iteration. The resulting messages of the check node processor 545 are then passed to the variable node processor 550 and the variable node processor 550 then updates each variable node with the check node messages to which they are connected. The decoding process continues at the second layer, using the normalized layered min-sum algorithm modified by the layer specific attenuation factor from the attenuation factor matrix for the second layer and the first iteration. The decoding process continues in this way, utilizing the layer specific attenuation factor from the attenuation factor matrix for each of the layers, resulting in a codeword estimate. The codeword estimate is checked by a codeword estimate check processor 555, to verify whether or not the codeword estimate is a codeword. In a particular embodiment, the codeword estimate may be multiplied by the parity check matrix to determine the syndrome and if the syndrome is zero, it may be determined that the codeword estimate is a codeword. If the codeword estimate is a codeword, the decoding is complete and the estimated codeword is provided as output 575 from the decoder 540. If it is determined by the codeword estimate check processor 555 that the codeword estimate is not a codeword, a second iteration of the decoding begins. In the second iteration, the attenuation factors from the attenuation factor matrix for the second iteration for each of the layers are used. The iteration counter 580 may be used to track the number of iterations of the decoding process and may cause the decoding to terminate if a maximum number of iterations is reached.
With reference to
In various embodiments, the system of the present invention may be implemented in a Field Programmable Gate Array (FPGA) or Application Specific Integrated Circuit (ASIC) suitable for the design of encoders/decoders for LDPC codes.
Although the invention has been described with reference to particular embodiments thereof, it will be apparent to one of ordinary skill in the art that modifications to the described embodiment may be made without departing from the spirit of the invention. Accordingly, the scope of the invention will be defined by the attached claims not by the above detailed description.
Number | Name | Date | Kind |
---|---|---|---|
5732092 | Shinohara | Mar 1998 | A |
6115788 | Thowe | Sep 2000 | A |
6539515 | Gong | Mar 2003 | B1 |
6633856 | Richardson et al. | Oct 2003 | B2 |
6895547 | Eleftheriou et al. | May 2005 | B2 |
6934804 | Hashemi | Aug 2005 | B2 |
6976194 | Cypher | Dec 2005 | B2 |
6976197 | Faust et al. | Dec 2005 | B2 |
7206992 | Xin | Apr 2007 | B2 |
7209527 | Smith et al. | Apr 2007 | B2 |
7237183 | Xin | Jun 2007 | B2 |
7484158 | Sharon et al. | Jan 2009 | B2 |
7529215 | Osterling | May 2009 | B2 |
7937641 | Amidi | May 2011 | B2 |
7958430 | Kolokowsky et al. | Jun 2011 | B1 |
7975193 | Johnson | Jul 2011 | B2 |
8140930 | Mauro | Mar 2012 | B1 |
8176367 | Dreifus et al. | May 2012 | B2 |
8219894 | Au et al. | Jul 2012 | B2 |
8245112 | Hicken et al. | Aug 2012 | B2 |
8245117 | Wu | Aug 2012 | B1 |
8255770 | Park et al. | Aug 2012 | B2 |
8261136 | D'Abreu et al. | Sep 2012 | B2 |
8281217 | Kim et al. | Oct 2012 | B2 |
8281227 | Thatcher et al. | Oct 2012 | B2 |
8286004 | Williams | Oct 2012 | B2 |
8307258 | Flynn et al. | Nov 2012 | B2 |
8327220 | Borchers et al. | Dec 2012 | B2 |
8335977 | Weingarten et al. | Dec 2012 | B2 |
8359522 | Gunnam et al. | Jan 2013 | B2 |
8392789 | Biscondi et al. | Mar 2013 | B2 |
8402201 | Flynn et al. | Mar 2013 | B2 |
8418023 | Gunnam et al. | Apr 2013 | B2 |
8429497 | Tu et al. | Apr 2013 | B2 |
8473812 | Ramamoorthy et al. | Jun 2013 | B2 |
8504887 | Varnica et al. | Aug 2013 | B1 |
8555140 | Gunnam et al. | Oct 2013 | B2 |
8621318 | Micheloni et al. | Dec 2013 | B1 |
8656257 | Micheloni et al. | Feb 2014 | B1 |
8694849 | Micheloni et al. | Apr 2014 | B1 |
8694855 | Micheloni et al. | Apr 2014 | B1 |
8707122 | Micheloni et al. | Apr 2014 | B1 |
8769374 | Franceschini et al. | Jul 2014 | B2 |
8787428 | Dai et al. | Jul 2014 | B2 |
8856622 | Ramamoorthy et al. | Oct 2014 | B2 |
20030033567 | Tamura et al. | Feb 2003 | A1 |
20030104788 | Kim | Jun 2003 | A1 |
20040088636 | Cypher | May 2004 | A1 |
20040123230 | Lee et al. | Jun 2004 | A1 |
20040252791 | Shen et al. | Dec 2004 | A1 |
20050248999 | Tamura et al. | Nov 2005 | A1 |
20070050688 | Thayer | Mar 2007 | A1 |
20070089031 | Huffman et al. | Apr 2007 | A1 |
20080005382 | Mimatsu | Jan 2008 | A1 |
20080016425 | Khan et al. | Jan 2008 | A1 |
20080229079 | Flynn et al. | Sep 2008 | A1 |
20080229164 | Tamura et al. | Sep 2008 | A1 |
20080256292 | Flynn et al. | Oct 2008 | A1 |
20080276156 | Gunnam et al. | Nov 2008 | A1 |
20090327802 | Fukutomi | Dec 2009 | A1 |
20100162075 | Brannstrom et al. | Jun 2010 | A1 |
20100199149 | Weingarten | Aug 2010 | A1 |
20100211737 | Flynn et al. | Aug 2010 | A1 |
20100211852 | Lee et al. | Aug 2010 | A1 |
20100246664 | Citta et al. | Sep 2010 | A1 |
20100293440 | Thatcher | Nov 2010 | A1 |
20110072331 | Sakaue et al. | Mar 2011 | A1 |
20110246853 | Kim et al. | Oct 2011 | A1 |
20110296084 | Nango | Dec 2011 | A1 |
20120051144 | Weingarten et al. | Mar 2012 | A1 |
20120054413 | Brandt | Mar 2012 | A1 |
20120311402 | Tseng et al. | Dec 2012 | A1 |
20130013983 | Livshitz et al. | Jan 2013 | A1 |
20130145235 | Aussien et al. | Jun 2013 | A1 |
20130163328 | Karakulak et al. | Jun 2013 | A1 |
20140053037 | Wang et al. | Feb 2014 | A1 |
20140072056 | Fay | Mar 2014 | A1 |