Embodiments of the invention relate to semiconductor manufacturing. More particularly, embodiments of the invention relate to the transferring of a material, such as an epitaxial silicon layer, to a film, such as a silicon-dioxide film, on a silicon substrate and minimizing costs that can result from the transfer and subsequent annealing of the transferred material.
Various techniques are used in modern semiconductor processing to create an epitaxial layer on a wafer. At least one prior art transfer technique is used to create a structure having an epitaxial layer, such as an epitaxial silicon wafer, bonded to another wafer having a semiconductor substrate. Typically, the layer to be transferred originates from a donor wafer and is bonded to a recipient wafer, typically referred to as a handler wafer, and separated from the donor wafer through a thermal or mechanical operation.
Prior art techniques for performing a layer transfer from a donor wafer to a handle wafer typically require a relatively high dosage of a single type of implanted ions in order to facilitate the transfer of a layer from the donor wafer material to the handle wafer material. The implanted ions typically diffuse and react with donor wafer material, forming bonds, around which voids may form. These voids can help create a cleave plane, along which the donor and handle wafers can be thermally or mechanically separated.
In order to further facilitate separation, a high temperature annealing process can be performed, in which the bonded donor-handle pair enters a furnace where it is exposed to a high ambient temperature to strengthen the bonds between the donor and handle material, as well as to help diffuse the implanted ions and promote the reaction of the implanted ions with the silicon.
As the annealing temperature is increased, voids can form around the implanted ions that have bonded with the layer to be transferred. The voids may eventually coalesce to create a suitable cleaving plane, along which the bonded donor and handle wafers may be separated.
In another prior art example illustrated in
Embodiments of the invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Embodiments of the invention pertain to a semiconductor processing technique in which a layer of one wafer is transferred to another wafer. More particularly, at least one embodiment of the invention pertains to an improved technique for forming an epitaxial layer on a handle wafer by transferring a portion of a donor wafer to the handle wafer.
The amount of implanted ions to facilitate the separation of a layer of material from a donor wafer after it has been bonded to a handle wafer can be reduced, in at least one embodiment of the invention, by implanting positively charged hydrogen (H+) and helium (He+) ions into the donor wafer material. In embodiments of the invention in which H+ and He+ are implanted into a donor wafer, the H+ ions help to create voids in the donor material, such as silicon, by combining with the donor material to form bonds, such as Si—H bonds.
The implanted He+ ions help to expand these voids in order to create a cleave plane within the donor wafer when the bonded donor and handle wafers are annealed. The cleave plane provides a structural weakness within the donor wafer, along which the donor wafer may be separated from the layer to be transferred by using a thermal or mechanical separation technique.
In other embodiments of the invention other combination of ions may be implanted to facilitate layer transfer, such as ions of noble gases, argon (Ar), neon (Ne), and xenon (Xe), in combination with ions of active species, such as nitrogen (N2). Noble ions in combination with active species ions serve, in at least one embodiment of the invention, a similar function in the layer transfer as H+ and He+ do in other embodiments of the invention.
Embodiments of the invention are not limited to the type of donor or handle wafer material illustrated or discussed in
In other embodiments of the invention, other layer types may be transferred that differ from the material of the donor wafer substrate.
In one embodiment of the invention, approximately equal dosages of the implanted ions are used. For example, in one embodiment of the invention, 1×10 16 cm−2 of H+ ions and 1×1016 cm−2 of He+ ions are implanted into the donor silicon wafer material. In other embodiments the ratio of these two dopants can be different, but, in at least one embodiment of the invention, a sum of no more than approximately 2 to 3×1016 cm−2 of He+ ions and H+ ions is used to achieve an effective layer transfer. This sum, however, may be higher in other embodiments of the invention, depending at least in part on the donor and handle materials used, the annealing duration and temperature, and the ions to be implanted.
In one embodiment of the invention, He+ and H+ ions are chosen because they can have similar peak energy ranges and can, therefore, react with the material in which they are implanted in a uniform and consistent manner. For example, in one embodiment of the invention the H+ ions react with the donor wafer material to help form voids in the donor wafer material at an energy level of approximately 40 KeV, whereas the He+ ions react to help expand the voids within the donor wafer material at an energy level of approximately 50 KeV.
The separation of the donor and handle wafer is completed by a thermal or mechanical separation process, depending in part on the duration and in part on the temperature of the annealing process. One example in which one embodiment of the invention is used employs an annealing process of approximately 10 minutes in duration. Duration of the annealing process is application dependent, however, and embodiments of the invention do not depend upon nor are in anyway limited by the duration of the annealing process. Advantageously, embodiments of the invention enable relatively low annealing temperatures to be used in order to create a suitable cleave plane along which to separate the handle and donor wafers.
In one embodiment of the invention, complete layer transfer is achieved without the use of a mechanical cleaving operation if the embodiment uses an annealing temperature of at least approximately 440 degrees C. Such an embodiment of the invention, however, may require special or additional handling equipment to place a bonded wafer into the annealing furnace and to remove two separated wafers from the furnace.
Embodiments of the invention using an annealing temperature of no greater than approximately 430 degrees C., on the other hand, may not need special or additional handling equipment, because complete layer transfer may not be completed without a mechanical cleave operation after the wafer pair is removed from the annealing furnace.
As
While the invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications of the illustrative embodiments, as well as other embodiments, which are apparent to persons skilled in the art to which the invention pertains are deemed to lie within the spirit and scope of the invention.
This application is a divisional application of U.S. application Ser. No. 10/608,406, filed Jun. 26, 2003, currently pending.
Number | Date | Country | |
---|---|---|---|
Parent | 10608406 | Jun 2003 | US |
Child | 11509147 | Aug 2006 | US |