The present disclosure relates to a ceramic substrate, a layered body, and a SAW device.
The present application claims the priority based on Japanese Patent Application No. 2017-198778 filed on Oct. 12, 2017, the entire contents of which are incorporated herein by reference.
SAW devices (surface acoustic wave devices) are installed in communication apparatuses such as cellular phones in order to remove noises included in electrical signals. SAW devices have a structure in which electrodes are formed on a piezoelectric substrate. To radiate heat during operation, the piezoelectric substrate is disposed on a base substrate formed of a material with good heat radiation properties.
For example, a substrate formed of single-crystalline sapphire can be employed as the base substrate. However, if such a substrate formed of single-crystalline sapphire is employed as the base substrate, the production cost of SAW devices increases. To address this problem, there has been proposed a SAW device having a structure in which a ceramic substrate formed of polycrystalline spinel is employed as a base substrate, and a piezoelectric substrate and the ceramic substrate are bonded to each other through Van der Waals force (e.g., refer to PTL 1).
PTL 1: Japanese Unexamined Patent Application Publication No. 2011-66818
The ceramic substrate according to the present disclosure is a ceramic substrate formed of polycrystalline ceramic and having a supporting main surface. In this ceramic substrate, at the supporting main surface, the mean of grain sizes of the polycrystalline ceramic is 0.5 μm or more and less than 15 μm and the standard deviation of the grain sizes is less than 1.5 times the mean.
According to studies conducted by the present inventors, in the related art with a ceramic substrate, cracks are sometimes formed in the ceramic substrate in the production process of SAW devices. Formation of cracks decreases the yield in the production of SAW devices.
Accordingly, it is an object to provide a ceramic substrate in which formation of cracks in the production process of SAW devices can be suppressed, and a layered body and a SAW device including the ceramic substrate.
The ceramic substrate according to the present disclosure can provide a ceramic substrate in which formation of cracks in the production process of SAW devices can be suppressed.
First, embodiments of the present disclosure will be listed and described. A ceramic substrate according to the present disclosure is a ceramic substrate formed of polycrystalline ceramic and having a supporting main surface. At the supporting main surface of the ceramic substrate, the mean of grain sizes of the polycrystalline ceramic is 0.5 μm or more and less than 15 μm and the standard deviation of the grain sizes is less than 1.5 times the mean.
According to studies conducted by the present inventors, formation of cracks in the ceramic substrate in the production process of SAW devices occurs through the following mechanism. That is, a layered body obtained by bonding a ceramic substrate and a piezoelectric substrate to each other is subjected to, for example, a heat cycle including heating and cooling in the production process, which applies stress to the ceramic substrate. Consequently, the ceramic substrate has a strength insufficient for the stress and thus cracks are formed. Therefore, the strength of the ceramic substrate is increased by decreasing the mean of grain sizes at the supporting main surface of the ceramic substrate, specifically to less than 15 μm, and thus formation of cracks can be suppressed. However, if the mean of grain sizes is decreased to less than 0.5 μm, it is difficult to sufficiently sinter the ceramic substrate, which tends to decrease the strength. Therefore, the mean of grain sizes at the supporting main surface needs to be 0.5 μm or more and less than 15 μm. According to further studies conducted by the present inventors, even if the mean of grain sizes at the supporting main surface is 0.5 μm or more and less than 15 μm, formation of cracks in the ceramic substrate in the production process of SAW devices sometimes occurs. As a result of further studies on this cause, it is found that even if the mean of grain sizes at the supporting main surface is 0.5 μm or more and less than 15 μm, cracks are easily formed when the variation in grain size is large, more specifically, when the standard deviation of the grain sizes is more than or equal to 1.5 times the mean. Therefore, in addition to controlling the mean of grain sizes at the supporting main surface to 0.5 μm or more and less than 15 μm, the standard deviation of the grain sizes needs to be less than 1.5 times the mean to effectively suppress formation of cracks in the ceramic substrate in the production process of SAW devices.
In the ceramic substrate according to the present disclosure, the mean of grain sizes of the polycrystalline ceramic at the supporting main surface is 0.5 μm or more and less than 15 μm and the standard deviation of the grain sizes is less than 1.5 times the mean. As a result, according to the ceramic substrate of the present disclosure, a ceramic substrate in which formation of cracks in the production process of SAW devices can be suppressed can be provided.
In the above ceramic substrate, the residual stress at the supporting main surface may be −300 MPa or more and 300 MPa or less. When the absolute value of the residual stress at the supporting main surface is 300 MPa or less, formation of cracks in the production process of SAW devices can be suppressed with more certainty. For the residual stress, a negative value indicates compressive stress and a positive value indicates tensile stress. The residual stress can be measured with, for example, an X-ray diffractometer.
The above ceramic substrate may be formed of at least one material selected from the group consisting of spinel (MgAl2O4), alumina (Al2O3), magnesia (MgO), silica (SiO2), mullite (3Al2O3.2SiO2), cordierite (2MgO.2Al2O3.5SiO2), calcia (CaO), titanic (TiO2), silicon nitride (Si3N4), aluminum nitride (AlN), and silicon carbide (SiC). These materials are suitable as materials for the ceramic substrate according to the present disclosure. Among these materials, spinel is preferred.
A layered body according to the present disclosure includes the above ceramic substrate according to the present disclosure and a piezoelectric substrate formed of a piezoelectric material and having a bonding main surface. The supporting main surface of the ceramic substrate and the bonding main surface of the piezoelectric substrate are bonded to each other through Van der Waals force. The layered body according to the present disclosure includes the ceramic substrate according to the present disclosure. Therefore, according to the layered body of the present disclosure, formation of cracks in the ceramic substrate in the production process of SAW devices can be suppressed.
In the above layered body, the piezoelectric substrate may be formed of lithium tantalate (LiTaO3) or lithium niobate (LiNbO3). These materials are suitable as materials for the piezoelectric substrate in the layered body according to the present disclosure.
A SAW device according to the present disclosure includes the layered body according to the present disclosure and an electrode formed on a main surface of the piezoelectric substrate, the main surface being located opposite to the ceramic substrate. The SAW device according to the present disclosure includes the ceramic substrate according to the present disclosure. Therefore, according to the SAW device of the present disclosure, formation of cracks in the ceramic substrate in the production process of SAW devices can be suppressed.
Next, a ceramic substrate and a layered body according to embodiments of the present disclosure will be described with reference to the attached drawings. In the drawings, the same or corresponding parts are designated by the same reference numerals, and the description thereof is omitted.
Referring to
Referring to
The piezoelectric substrate 20 has an exposed main surface 21 that is one main surface and a bonding main surface 22 that is a main surface opposite to the exposed main surface 21. The piezoelectric substrate 20 is disposed on the supporting main surface 11 of the ceramic substrate 10 so that the bonding main surface 22 is in contact with the supporting main surface 11. The ceramic substrate 10 and the piezoelectric substrate 20 are bonded to each other through Van der Waals force.
For the ceramic substrate 10, the mean of grain sizes of the polycrystalline ceramic at the supporting main surface 11 is 0.5 μm or more and less than 15 μm, and the standard deviation of the grain sizes is less than 1.5 times the mean. Therefore, the ceramic substrate 10 is a ceramic substrate in which formation of cracks in the production process of SAW devices can be suppressed. The layered body 1 includes the ceramic substrate 10. Therefore, the layered body 1 is a layered body in which formation of cracks in the ceramic substrate 10 in the production process of SAW devices is suppressed.
For the ceramic substrate 10, the residual stress at the supporting main surface 11 is preferably −300 MPa or more and 300 MPa or less. When the absolute value of the residual stress at the supporting main surface 11 is 300 MPa or less, formation of cracks in the production process of SAW devices can be suppressed with more certainty. The residual stress at the supporting main surface 11 is more preferably −200 MPa or more and 200 MPa or less and further preferably −100 MPa or more and 100 MPa or less.
At the supporting main surface 11 of the ceramic substrate 10, the standard deviation of the grain sizes is more preferably less than 1 time the mean. Thus, formation of cracks in the production process of SAW devices can be suppressed with more certainty.
Next, a method for producing a ceramic substrate 10, a layered body 1, and a SAW device 100 according to this embodiment will be described. Referring to
Subsequently, a sintering process is performed on the molded body. The sintering process can be performed by a method such as vacuum sintering or HIP (hot isostatic pressing). Thus, a sintered body is obtained. The sintered body is then sliced to obtain a ceramic substrate 10 having a desired shape (thickness) (refer to
Subsequently, a rough polishing step is performed as a step (S20). In the step (S20), referring to
Subsequently, an annealing step is performed as a step (S30). In the step (S30), annealing is performed on the ceramic substrate 10. Specifically, for example, the ceramic substrate polished in the step (S20) is heated to a temperature range of 1000° C. or higher and 1500° C. or lower and held for 2 hours or longer and 10 hours or shorter. This decreases the residual stress introduced to the ceramic substrate 10 in the steps (S10) and (S20). As a result, the residual stress at the supporting main surface 11 is easily controlled to −300 MPa or more and 300 MPa or less.
Subsequently, a finishing polishing step is performed as a step (S40). In the step (S40), referring to
Subsequently, a bonding step is performed as a step (S50). In the step (S50), the ceramic substrate 10 subjected to finishing polishing in the step (S40) and a separately provided piezoelectric substrate 20 formed of lithium tantalate or lithium niobate are bonded to each other. Specifically, for example, the ceramic substrate 10 and the piezoelectric substrate 20 are washed, dried, and then inserted into a chamber, and the pressure in the chamber is reduced. As indicated by arrows in
Next, a method for producing a SAW device including the layered body 1 including the ceramic substrate 10 will be described. Referring to
Subsequently, an electrode forming step is performed as a step (S70). In the step (S70), referring to
Subsequently, a chip forming step is performed as a step (S80). In the step (S80), the layered body 1 on which a plurality of pairs of input-side electrodes 30 and output-side electrodes 40 have been formed is cut in a thickness direction into a plurality of chips each including a pair of input-side electrode 30 and output-side electrode 40.
Referring to
In the production process of the SAW device 100, the layered body 1 is subjected to a heat cycle including heating and cooling. As a result, stress is applied to the ceramic substrate 10. In the ceramic substrate 10 according to this embodiment, however, the mean of grain sizes of the polycrystalline ceramic at the supporting main surface 11 is 0.5 μm or more and less than 15 μm and the standard deviation of the grain sizes is less than 1.5 times the mean. Therefore, formation of cracks in the ceramic substrate 10 in the production process of SAW devices is suppressed. Note that another annealing step may be performed again after the step (S40) from the viewpoint of further decreasing the absolute value of the residual stress at the supporting main surface 11.
Referring to
The input-side electrode 30 includes a first portion 31 and a second portion 32. The first portion 31 includes a linear base portion 31A and a plurality of linear protrusions 31B that protrude from the base portion 31A in a direction perpendicular to the direction in which the base portion 31A extends. The second portion 32 includes a linear base portion 32A that extends in parallel with the base portion 31A and a plurality of linear protrusions 32B that protrude from the base portion 32A in a direction perpendicular to the direction in which the base portion 32A extends and that fit into gaps between adjacent protrusions 31B. The protrusions 31B and the protrusions 32B are disposed at predetermined evenly spaced intervals.
The output-side electrode 40 includes a first portion 41 and a second portion 42. The first portion 41 includes a linear base portion 41A and a plurality of linear protrusions 41B that protrude from the base portion 41A in a direction perpendicular to the direction in which the base portion 41A extends. The second portion 42 includes a linear base portion 42A that extends in parallel with the base portion 41A and a plurality of linear protrusions 42B that protrude from the base portion 42A in a direction perpendicular to the direction in which the base portion 42A extends and that fit into gaps between adjacent protrusions 41B. The protrusions 41B and the protrusions 42B are disposed at predetermined evenly spaced intervals.
When an AC voltage serving as an input signal is applied to the input-side electrode 30 through the input-side wiring line 51, a surface acoustic wave is generated on the exposed main surface 21 (surface) of the piezoelectric substrate 20 because of a piezoelectric effect, and the surface acoustic wave propagates to the output-side electrode 40. Herein, the input-side electrode 30 and the output-side electrode 40 have a comb shape as illustrated in
In the above operation, the temperature of the piezoelectric substrate 20 increases. In the SAW device 100 according to this embodiment, the ceramic substrate 10 made of a material having good heat radiation properties is disposed so as to be in contact with the piezoelectric substrate 20. Therefore, the SAW device 100 has high reliability. Furthermore, since the SAW device 100 includes the ceramic substrate 10 according to this embodiment, formation of cracks in the ceramic substrate in the production process is suppressed. Consequently, the SAW device 100 can be produced while a high yield is maintained.
Samples of 17 ceramic substrates (spinel substrates) having different means and standard deviations of grain sizes at a supporting main surface and different residual stresses at the supporting main surface were provided (sample Nos. 1 to 17). The steps (S10) to (S70) according to the above embodiment were performed using the samples, and formation of cracks in the ceramic substrates was checked.
The grain size was measured by observing a polished supporting main surface with a microscope ECLIPSE LV100 manufactured by Nikon Corp. The mean and standard deviation of grain sizes were calculated using image processing software included with the microscope. The residual stress at the supporting main surface was measured by X-ray diffraction stress measurement. The X-ray used was Cu-Kα line focus. The excitation conditions were 45 kV and 40 mA. The scanning method was a sin 2Ψ method (ISO-inclination method). The measurement range was 2θ=93° to 95.5°. The step size was 0.03°. The Ψ conditions were 13 levels (6 levels on positive side, one level at zero, 6 levels on negative side) {0≤sin 2Ψ≤0.5}. The integration time was 1 or 3 seconds. The measurement plane was an MgAl2O4 (731) plane. Table 1 shows the experimental results.
In Table 1, the formation of cracks in the ceramic substrate in the production process of the SAW device was evaluated with grades of A: no formation of cracks was observed, B: formation of cracks was slightly observed, and C: formation of cracks was clearly observed.
Table 1 shows that the samples 1 and 17 in which the mean of grain sizes at the supporting main surface is outside the range of 0.5 μm or more and less than 15 μm have an evaluation result of C in terms of formation of cracks. This supports that the mean of grain sizes at the supporting main surface needs to be in the range of 0.5 μm or more and less than 15 μm. Even if the mean of grain sizes is within the range of 0.5 μm or more and less than 15 μm, the samples (samples 2, 5, 8, 11, and 14) in which the ratio (σ/μ) of the standard deviation of grain sizes to the mean of grain sizes is 1.5 or more have an evaluation result of C in terms of formation of cracks. This shows that to suppress formation of cracks, the standard deviation of grain sizes needs to be less than 1.5 times the mean in addition to the above mean condition.
Furthermore, even if the above-described mean and standard deviation conditions are satisfied, the samples (samples 3, 6, 9, 12, and 15) in which the residual stress at the supporting main surface is outside the range of −300 MPa or more and 300 MPa or less have an evaluation result of B in terms of formation of cracks whereas the samples in which the residual stress is within the range of −300 MPa or more and 300 MPa or less have an evaluation result of A in terms of formation of cracks. This supports that when the absolute value of the residual stress at the supporting main surface is 300 MPa or less, the formation of cracks in the production process of SAW devices can be suppressed with more certainty.
The embodiments and Examples disclosed herein are mere examples in all respects and should be understood as being non-limitative in any perspective. The scope of the present invention is defined not by the above description but by Claims. The scope of the present invention is intended to embrace all the modifications within the meaning and range of equivalency of the Claims.
Number | Date | Country | Kind |
---|---|---|---|
2017-198778 | Oct 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/034960 | 9/21/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/073781 | 4/18/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5446330 | Eda | Aug 1995 | A |
5807626 | Naba | Sep 1998 | A |
5998907 | Taguchi et al. | Dec 1999 | A |
20020102441 | Shinosawa et al. | Aug 2002 | A1 |
20040104978 | Iwashita | Jun 2004 | A1 |
20070127140 | Reichel et al. | Jun 2007 | A1 |
20160049469 | Yoshikawa | Feb 2016 | A1 |
20160280604 | Nobori et al. | Sep 2016 | A1 |
20160293831 | Fukuoka | Oct 2016 | A1 |
20170279435 | Geshi et al. | Sep 2017 | A1 |
20190103550 | Kobayashi | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
1152371 | Jun 1997 | CN |
103492345 | Jan 2014 | CN |
103503130 | Jan 2014 | CN |
3315476 | May 2018 | EP |
H10-316466 | Dec 1998 | JP |
H11-55070 | Feb 1999 | JP |
2001-220227 | Aug 2001 | JP |
2007-108734 | Apr 2007 | JP |
2009-23908 | Feb 2009 | JP |
2011-66818 | Mar 2011 | JP |
2016-100729 | May 2016 | JP |
2017-95333 | Jun 2017 | JP |
2017-152870 | Aug 2017 | JP |
2017-175618 | Sep 2017 | JP |
WO-2014192597 | Dec 2014 | WO |
WO-2016208766 | Dec 2016 | WO |
Entry |
---|
Geshi, Keiichirou, et al., “Layered Body, and Saw Device,” U.S. Appl. No. 16/754,779, filed Apr. 9, 2020, including as-filed specification, claims, abstract and drawings, 23 pages. |
U.S. Office Action dated Sep. 27, 2022 in U.S. Appl. No. 16/754,779. |
U.S. Notice of Allowance dated Feb. 27, 2023 in U.S. Appl. No. 16/754,779. |
Number | Date | Country | |
---|---|---|---|
20210104999 A1 | Apr 2021 | US |