Layered braided aneurysm treatment device

Information

  • Patent Grant
  • 11583282
  • Patent Number
    11,583,282
  • Date Filed
    Monday, April 13, 2020
    4 years ago
  • Date Issued
    Tuesday, February 21, 2023
    a year ago
Abstract
A braided implant is provided that can secure within an aneurysm sac, occlude a majority of the aneurysm's neck, and at least partially fill the aneurysm sac. The implant can include a tubular braid that can be set into a predetermined shape, compressed for delivery through a microcatheter, and implanted in at least one implanted position. In some examples, the tubular braid can be implanted in two distinct implanted shapes, allowing for treatment of a wide range of aneurysm sizes. In some examples, the implanted braid can include a compaction resistant column spanning the height of the aneurysm.
Description
FIELD OF INVENTION

The present invention generally relates to medical instruments, and more particularly, to embolic implants for aneurysm therapy.


BACKGROUND

Cranial aneurysms can be complicated and difficult to treat due to their proximity to critical brain tissues. Prior solutions have included endovascular treatment whereby an internal volume of the aneurysm sac is removed or excluded from arterial blood pressure and flow. Current alternatives to endovascular or other surgical approaches can include intravascularly delivered treatment devices that fill the sac of the aneurysm with embolic material or block the entrance or neck of the aneurysm. Both approaches attempt to prevent blood flow into the aneurysm. When filling an aneurysm sac, the embolic material clots the blood, creating a thrombotic mass within the aneurysm. When treating the aneurysm neck, blood flow into the entrance of the aneurysm is inhibited, inducing venous stasis in the aneurysm and facilitating a natural formation of a thrombotic mass within the aneurysm.


Current intravascularly delivered devices typically utilize multiple embolic coils to either fill the sac or treat the entrance of the aneurysm. Naturally formed thrombotic masses formed by treating the entrance with embolic coils can result in improved healing compared to aneurysm masses packed with embolic coils because naturally formed thrombotic masses can reduce the likelihood of distention from arterial walls and facilitate reintegration into the original parent vessel shape along the neck plane. However, embolic coils delivered to the neck of the aneurysm can potentially have the adverse effect of impeding the flow of blood in the adjoining blood vessel, particularly if the entrance is overpacked. Conversely, if the entrance is insufficiently packed, blood flow can persist into the aneurysm. Treating certain aneurysm morphology (e.g. wide neck, bifurcation, etc.) can require ancillary devices such a stents or balloons to support the coil mass and obtain the desired packing density. Once implanted, the coils cannot easily be retracted or repositioned. Furthermore, embolic coils do not always effectively treat aneurysms as aneurysms treated with multiple coils often recanalize or compact because of poor coiling, lack of coverage across the aneurysm neck, blood flow, or large aneurysm size.


Alternatives to embolic coils are being explored, for example a tubular braided implant is disclosed in US Patent Publication Number 2018/0242979, incorporated herein by reference. Tubular braided implants have the potential to easily, accurately, and safely treat an aneurysm or other arterio-venous malformation in a parent vessel without blocking flow into perforator vessels communicating with the parent vessel. Compared to embolic coils, however, tubular braided implants are a newer technology, and there is therefore capacity for improved geometries, configurations, delivery systems, etc. for the tubular braided implants. For instance, delivery of tubular braided implants can require unique delivery systems to prevent the braid from inverting or abrading when pushed through a microcatheter, and some simple delivery systems that push embolic coils through microcatheters from their proximal end may not be effective to deliver tubular braids.


There is therefore a need for improved methods, devices, and systems for implants for aneurysm treatment.


SUMMARY

It is an object of the present invention to provide systems, devices, and methods to meet the above-stated needs. Generally, it is an object of the present invention to provide a braided implant that can secure within an aneurysm sac and occlude a majority of the aneurysm's neck. The implant can include a tubular braid that can be set into a predetermined shape, compressed for delivery through a microcatheter, and implanted in at least one implanted position that is based on the predetermined shape and the geometry of the aneurysm in which the braid is implanted.


In some examples presented herein, when compressed, the implant can be sufficiently short to mitigate friction forces produced when the implant is delivered unsheathed through the microcatheter allowing for a more simplistic delivery system compared to some other known braided embolic implant delivery systems.


In some examples presented herein, when the implant is implanted, a majority of the aneurysm sac can be free from embolic material to facilitate the formation of a thrombotic mass that is primarily naturally formed.


In some examples presented herein, the tubular braid can be implanted in two distinct implanted shapes, depending on the size of the aneurysm, allowing for treatment of a wider range of aneurysm sizes compared to some other known braided embolic implants.


In some examples presented herein, when implanted, the tubular braid can have a compaction resistant column extending across a majority of the height of the aneurysm and positioned centrally within the aneurysm sac.


An example implant can include a tubular braid having an open end and a pinched end. The tubular braid can have a predetermined shape that has two inversions that divide the braid into three segments. In the predetermined shape, the braid can have an outer segment that extends between the open end and a first of the two inversions, a middle segment that extends between the two inversions and is encircled by the open end, and an inner segment that extends between the second of the two inversions and the pinched end of the tubular braid and is surrounded by the middle segment.


When in the predetermined shape, the tubular braid can have a height measured between the two inversions and a substantially radially symmetrical shape having an outermost diameter. The ratio of outermost diameter to height can be between about 2:1 and about 1:3 or, more specifically, between about 2:1 and about 1:1. In the predetermined shape the middle segment can have maximum diameter that is equal to the diameter of the open end. When compressed, the tubular braid can be extended longitudinally to a single layer of braid having a length measured from the open end to the pinched end. The ratio of the outermost diameter in the predetermined shape to length in the compressed, delivery shape can be between about 0.2 and about 0.3.


The length of the tubular braid in the delivery shape can be between about 10 mm an about 40 mm, depending on the size of the aneurysm being treated.


A collection of implants, each having a uniquely shaped tubular braid can be created to provide a catalogue of implants for treating aneurysms ranging in diameter and height. Each implant in the collection can be suitable for treating aneurysms with a sub-range of diameters and a sub range of heights.


The tubular braid can have two distinct implanted shapes based on the predetermined shape and constrained by the geometry of an aneurysm in which the tubular braid is implanted. In other words, the implant can be implanted in either a larger aneurysm or a smaller aneurysm, the smaller aneurysm having a height measuring less than the height of the larger aneurysm, and the tubular braid can take one of the two implanted shapes when implanted in the larger aneurysm and the tubular braid can take on the other of the implanted shapes when implanted in the smaller aneurysm. In either implanted shape, the first, outer segment of the predetermined shape can be positioned to form an outer layer that juxtaposes/apposes an aneurysm wall and the inversion adjacent to the outer segment in the predetermined shape can be positioned to form a proximal inversion at an aneurysm neck. When implanted in the larger aneurysm, the second, middle segment of the predetermined shape can form a sack that apposes a portion of the aneurysm wall and apposes the outer layer of the braid, the pinched end can be suspended within the sack of the braid, and the open end can encircle the sack. When implanted in the smaller aneurysm, the middle segment of the predetermined shape can be folded to form a middle layer that apposes the outer layer and an inner layer that apposes the middle layer, the open end can be positioned near the fold dividing the middle and inner layers, and the pinched end can be positioned near the proximal inversion and aneurysm neck. The tubular braid in the predetermined shape can have a bend in the middle, second segment, and when tubular braid is in the smaller aneurysm implanted shape, the middle segment can fold at the bend to separate the middle layer from the inner layer.


An example implant having the tubular braid having two distinct implanted shapes can treat aneurysms within a range of sizes including an aneurysm having a diameter of 4 mm and a height of 6 mm, an aneurysm having a diameter of 5 mm and a height of 8 mm, and an aneurysm having a diameter of 6 mm and a height of 6 mm. Additionally, or alternatively, the implant can be suitable for treating aneurysms within a continuum of aneurysm sizes, the continuum bounded by and including aneurysm diameters between 4 mm and 5 mm and heights between 6 mm and 8 mm. The implant capable of treating aneurysms having the aforementioned sizes, when compressed for delivery through a microcatheter can have a length measuring between about 22 mm and about 25 mm.


As an alternative to having two distinct implanted shapes, the implant can have an implanted shape that includes a compaction resistant post extending within an inner sack of the braid and extending between a proximal inversion near an aneurysm neck and a distal inversion near a distal portion of an aneurysm wall. In the implanted shape, the tubular braid can have an outer layer that corresponds to the outer segment in the predetermined shape, the inner sack in the implanted shape can correspond to the middle segment in the predetermined shape, the compaction resistant post can correspond to the inner, third segment in the predetermined shape, and the distal and proximal inversions can correspond to the two inversions in the predetermined shape. The compaction resistant post can serve to inhibit the implant from impacting when implanted in the aneurysm.


An example method of treating an aneurysm can include one or more of the following steps presented in no particular order, and the method can include additional steps not included here. A tubular braid having an open end and a pinched end can be selected and shaped to a predetermined shape. The predetermined shape can be formed by inverting the braid to form a distal inversion, moving the open end over some or all of the braid to form a proximal inversion, shaping a first segment that extends between the open end and the proximal inversion, shaping a second segment that extends between the two inversions, positioning the open end to encircle the second segment, shaping a third segment that extends between the distal inversion and the pinched end of the braid, and positioning the second segment to surround the third segment. Forming the predetermined shape can further include shaping the open end and second segment so that the open end has a diameter greater than or equal to the maximum diameter of the second segment.


The tubular braid can be formed in the predetermined shape such that the tubular braid is implantable in two distinct implanted shapes and in either of two aneurysms having differing heights such that the braid takes on one implanted shape in the taller aneurysm and the second, different implanted shape in the shorter aneurysm. The example method can further include reshaping the tubular braid into one of the two distinct implanted shapes. When the tubular braid is reshaped for the taller aneurysm, the first segment can be reshaped to form an outer braid layer that apposes an aneurysm wall of the taller aneurysm, the proximal inversion can be positioned at the neck of the taller aneurysm, and the second segment can be reshaped to form a sack that nests within the outer layer and also apposes the aneurysm wall of the taller aneurysm. When the tubular braid is reshaped for the shorter aneurysm, the first segment can be reshaped to form an outer braid layer that apposes an aneurysm wall of the shorter aneurysm, the proximal inversion can be positioned at the neck of the shorter aneurysm, and the second segment can be folded to form a middle braid layer that apposes the outer layer and an inner braid layer that apposes the middle layer.


Forming the predetermined shape can further include forming a bend in the second segment, and when the tubular braid is reshaped for the shorter aneurysm, the second segment can be folded at the bend to form the fold that separates the middle braid layer and the inner braid layer.


When the tubular braid is reshaped for the taller aneurysm, the pinched end can be suspended within the sack. When the tubular braid is reshaped for the smaller aneurysm, the pinched end can be positioned near the proximal inversion.


When the tubular braid is reshaped for the taller aneurysm, the open end can encircle the sack. When the tubular braid is reshaped for the shorter aneurysm, the open end can be positioned near the fold separating the middle braid layer and the inner braid layer.


The method can further include shaping the tubular braid into a delivery shape to be delivered through a microcatheter. The tubular braid can have a length in the delivery shape that is measured between the open end and the pinched end. When the tubular braid is shaped to the predetermined shape, it can be shaped to have an outermost diameter. The length of the tubular braid in the delivery shape can measure between 3.5 and 5 times that of the outermost diameter of the tubular braid in the predetermined shape.


In the predetermined shape, the outermost diameter can be shaped to be between 2 and ⅓ times the height of the tubular braid.


When the tubular braid is shaped to the predetermined shape, the tubular braid can be shaped to be suitable to be implanted in an aneurysm having a diameter of 4 mm and a height of 6 mm, an aneurysm having a diameter of 5 mm and a height of 8 mm, and an aneurysm having a diameter of 6 mm and a height of 6 mm. Additionally, or alternatively, when the tubular braid is shaped to the predetermined shape, the tubular braid can be shaped to be suitable for treating a continuum of aneurysm sizes including aneurysms having diameters between 4 mm and 5 mm and heights between 6 mm and 8 mm. The tubular braid that is suitable for treating aneurysms sized as above can be extended to a single layer delivery shape having a length measuring between about 22 mm and about 25 mm, the delivery shape sized to be delivered through a microcatheter.


The method can further include positioning the proximal inversion on a proximal side of a plane defining a boundary between an aneurysm and blood vessel branches. The first segment can be reshaped to appose an aneurysm wall and the second segment can be reshaped to provide an outwardly radial force in the plane. The force can be sufficient to appose the first segment to the aneurysm neck. The force can also be sufficient to resist compaction of the implant within the aneurysm.


The method can further include collapsing the implant to fit within a microcatheter and pushing the pinched end of the unsheathed tubular braid through a majority of the length of the microcatheter to an aneurysm within a patient.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further aspects of this invention are further discussed with reference to the


following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation.



FIG. 1A is an illustration of an example implant having a tubular braid in a predetermined shape according to aspects of the present invention;



FIG. 1B is an illustration of the example implant with the tubular braid in a first implanted shape according to aspects of the present invention;



FIG. 1C is an illustration of the example implant with the tubular braid in a second implanted shape according to aspects of the present invention;



FIGS. 2A through 2H are illustrations of an implant having a tubular braid that expands to a predetermined shape similar to as illustrated in FIG. 1A as the tubular braid exits a microcatheter according to aspects of the present invention;



FIGS. 3A through 3H are illustrations of the implant showing the tubular braid expanding to a first implanted shape and a second implanted shape within an aneurysm according to aspects of the present invention;



FIG. 4A is an illustration of the implant showing the tubular braid expanded in the first implanted shape in a tube having a 5 mm diameter according to aspects of the present invention;



FIG. 4B is an illustration of the implant showing the tubular braid expanded in the second implanted shape in a tube having a 4 mm diameter according to aspects of the present invention;



FIGS. 5A through 5D are illustrations of the example implant as illustrated in FIGS. 1A through 1C implanted in either the first implanted shape or the second implanted shape in aneurysms ranging in size according to aspects of the present invention;



FIGS. 6A and 6B are illustrations of measurements of an example implant and an aneurysm according to aspects of the present invention;



FIG. 7A is an illustration of an example implant having a tubular braid in an alternative predetermined shape according to aspects of the present invention;



FIG. 7B is an illustration of the example implant illustrated in FIG. 7A with the tubular braid in an implanted shape according to aspects of the present invention;



FIG. 8A is an illustration of an example implant having a tubular braid in another alternative predetermined shape according to aspects of the present invention;



FIG. 8B is an illustration of the example implant illustrated in FIG. 8A with the tubular braid in an implanted shape according to aspects of the present invention;



FIG. 9A is an illustration of an example implant having a tubular braid in another alternative predetermined shape according to aspects of the present invention;



FIG. 9B is an illustration of the example implant illustrated in FIG. 9A with the tubular braid in an implanted shape according to aspects of the present invention;



FIG. 10 is an illustration of an implant having a tubular braid in a predetermined shape similar to as illustrated in FIG. 9A according to aspects of the present invention; and



FIGS. 11A through 11E are illustrations of the implant illustrated in FIG. 10 showing the tubular braid expanding to the implanted shape similar to as illustrated in FIG. 9B according to aspects of the present invention.





DETAILED DESCRIPTION

Examples presented herein generally include a braided implant that can secure within an aneurysm sac and occlude a majority of the aneurysm's neck. The implant can include a tubular braid that can be set into a predetermined shape, compressed for delivery through a microcatheter, and implanted in at least one implanted position that is based on the predetermined shape and the geometry of the aneurysm in which the braid is implanted. When compressed, the implant can be sufficiently short to mitigate friction forces produced when the implant is delivered unsheathed through the microcatheter allowing for a more simplistic delivery system compared to some other known braided embolic implant delivery systems



FIGS. 1A through 1C are illustrations of an example braided implant 100 that can have a predetermined shape as illustrated in FIG. 1A and two distinct implanted shapes as illustrated in FIGS. 1B and 1C. The implant 100 can treat a range of aneurysm sizes including a larger aneurysm 10a as illustrated in FIG. 1B and a smaller aneurysm 10b as illustrated in FIG. 1C. The implant 100 can have a first implanted shape (FIG. 1B) that can be conducive for treating larger aneurysms 10a and a second implanted shape (FIG. 1C) that can be conducive for treating smaller aneurysms 10b. The implant 100 can include a tubular braid 110 having an open end 114 and a pinched end 112. The implant 100 can include a detachment feature 150 attached to the braid 110 at the pinched end 112. The tubular braid 110 can be formed in the predetermined shape (FIG. 1A), collapsed for delivery through a microcatheter, attached to a delivery system at the detachment feature 150, and implanted in a shape similar to one or the other of the two implanted shapes (FIG. 1B or FIG. 1C).


Referring to FIG. 1A, when in the predetermined shape, the tubular braid 110 can include two inversions 122, 124, dividing the braid 110 into three segments 142, 144, 146. In the predetermined shape, the braid 110 can have an outer segment 142 extending from the open end 114 of the braid 110 to one of the inversions 122, an inner segment 146 extending from the pinched end 112 of the braid 110 to the other of the inversions 124, and a middle segment 144 extending between the two inversions 122, 124. When in the predetermined shape, the tubular braid 110 can be substantially radially symmetrical about a central vertical axis y (see FIG. 6A). FIG. 1A illustrates a profile of each segment 142, 144, 146, and the detachment feature 150 is illustrated as a flat key that can be used with a mechanical implant delivery system (not illustrated).


The tubular braid 110 can be formed into the predetermined shape by first inverting the braid outwardly to separate the inner segment 146 from the middle segment 144 with an inversion 124, then the middle segment 144 can be shaped over a form to produce the substantially “S” shaped profile illustrated, and finally, the braid 110 can be inverted outwardly again to separate the middle segment 144 from the outer segment 142 with another inversion 122. If necessary, the braid can be trimmed at the open end 114. The open end 114 can be positioned to encircle the middle segment 144. The open end 114 can positioned within the middle third section of the braid's height as illustrated.


It can be advantageous to minimize a neck opening 126 defined by the lower extension of the “S” shape of the middle segment 144 to maximize occlusion of an aneurysm neck when the implant 100 is implanted. The middle segment 144 can have one or more bends 132, 134. The bends 132, 134 can be positioned facilitate the movement of the braid 110 into the second implanted shape illustrated in FIG. 1C and the bends 132, 134 can be positioned to stabilize the braid 110 in the first and/or second implanted shape.


The tubular braid 110 can include memory shape material that can be heat set to a predetermined shape, can be deformed for delivery through a catheter, and can self-expand to an implanted shape that is based on the predetermined shape and confined by the anatomy of the aneurysm in which it is implanted.


As illustrated in FIG. 1B, when in the first implanted shape, the braid 110 can have an outer layer 142a contacting the aneurysm's wall 14a, a sack 144a nested within the outer layer 142a, a proximal inversion 122a positioned at the aneurysm's neck 16a, and a distal inversion 124a positioned near a distal portion 15a of the aneurysm wall 14a. In the first implanted shape, the detachment feature 150 and pinched end 112 of the braid 110 can be suspended within the sack 144a.


As illustrated in FIGS. 1A and 1B, the tubular braid 110 in the first implanted shape can be radially compressed and vertically extended compared to the predetermined shape. The outer layer 142a in the first implanted shape can correspond to the outer layer 142 in the predetermined shape, the proximal inversion 122a in the first implanted shape can correspond to the inversion 122 adjacent to the outer layer 142 in the predetermined shape, the sack 144a in the first implanted shape can correspond to the middle segment 144 in the predetermined shape, the distal inversion 124a in the first implanted shape can correspond to the inversion 124 adjacent to the inner segment 146 in the predetermined shape, and an inner braid segment 146a suspending the detachment feature 150 in the first implanted shape can correspond to the inner segment 146 in the predetermined shape. In the first implanted shape, the sack 144a can have a neck opening 126a corresponding to the neck opening 126 in the predetermined shape.


As illustrated in FIG. 1C, when in the second implanted shape, the braid 110 can have an outer layer 142b contacting the aneurysm's wall 14b, a proximal inversion 122b positioned at the aneurysm's neck 16b, a middle layer 144b extending within the outer layer 142b and pressing against the outer layer 142b, a distal inversion 124b positioned near the open end 114 of the braid 110, and an inner layer 146b extending within the middle layer 144b and pressing against the middle layer 144b. In the second implanted shape, the detachment feature 150 and pinched end 112 of the braid 110 can be positioned at the aneurysm neck 16b, near the proximal inversion 122b.


As illustrated in FIGS. 1A and 1C, the tubular braid 110 in the second implanted shape can be radially compressed compared to the predetermined shape, and the middle segment 144 of the predetermined shape can be folded so that the height of the tubular braid 110 is compressed in the second implanted shape compared to the predetermined shape. Alternatively, when implanted in the second implanted shape in aneurysms having a diameter that is significantly smaller than the aneurysm's height, the second implanted shape can be radially compressed compared to the predetermined shape and the height of the braid in the second implanted shape can be greater than the height of the braid in the predetermined shape.


The outer layer 142b in the second implanted shape can correspond to the outer layer 142 in the predetermined shape, the proximal inversion 122b in the second implanted shape can correspond to the inversion 122 adjacent to the outer layer 142 in the predetermined shape, the middle layer 144b and inner layer 146b in the second implanted shape can correspond to the middle segment 144 in the predetermined shape, the distal inversion 124b in the second implanted shape can correspond to a bend 134 in the middle segment 144 in the predetermined shape, and a portion of the braid 110 near the detachment feature 150 forming the inner layer 146b in the second implanted shape can correspond to the inner segment 146 in the predetermined shape.



FIGS. 2A through 2H are illustrations of an example implant 100 having a braid 110 expanding to a predetermined shape as the braid 110 exits a microcatheter 600. The implant 100 has a predetermined shape similar to as illustrated in FIG. 1A. As illustrated in FIG. 2A, the braid 110 can be shaped to a delivery shape that is extended to a single layer of tubular braid having a compressed circumference/diameter sized to be delivered through the microcatheter 600 and a length L. The illustrated implant 100 has a length L of between about 22 mm and about 25 mm. As will be appreciated and understood by a person of ordinary skill in the art, the length L of a specific braid 110 can be tailored based on the size and shape of the aneurysm being treated.


During delivery through the microcatheter 600, the detachment feature 150 can be attached to a delivery system at a proximal end of the implant 100, the pinched end 112 can be positioned near the proximal end of the implant 100, and the open end 114 can define the distal end of the implant 100. Collapsing the braid 110 to a single layer tube can result in a braid 110 that has a sufficiently small diameter and a sufficiently short length L to mitigate effects of friction force on the braid 110 when it is delivered through the microcatheter, allowing the braid 110 to be delivered unsheathed in some applications.


As illustrated in FIG. 2B, the open end 114 can be positioned to exit the microcatheter 600 before any other portion of the braid 110 exits the microcatheter. The open end 114 can expand as it exits the microcatheter 600. If the open end 114 is unconstrained by an aneurysm as illustrated, the open end can expand to its circumference in the predetermined shape.


As illustrated in FIG. 2C, the distal portion of the braid 110 can continue to expand radially as it exits the microcatheter 600.


As illustrated in FIG. 2D, the braid 110 can form the inversion 122 defining the outer segment 142 as the braid 110 is further pushed out of the microcatheter 600.


As illustrated in FIGS. 2E through 2G, the “S” shape of the middle segment 144 can begin to form as the braid 110 is further pushed from the microcatheter 600.


As illustrated in FIG. 2H, when all, or nearly all of the braid 110 exits the microcatheter 600, the braid 110, not confined by an aneurysm, can expand to a predetermined shape similar to the shape illustrated in FIG. 1A. In the predetermined shape, the braid 110 of the illustrated implant has a diameter between about 6 mm and about 6.5 mm and a height between about 5 mm and about 5.5 mm.


The ratio of the outermost diameter of the braid 110 in the predetermined shape illustrated in FIG. 2H to the length of the braid 110 in the delivery shape illustrated in FIG. 2A is between about 0.3 and about 0.24.



FIGS. 3A through 3H are illustrations of the implant 100 illustrated in FIGS. 2A through 2H expanding within an aneurysm 10 in two different implanted shapes. The aneurysm 10 has a height of about 6 mm, a diameter of about 6 mm, and a neck diameter of about 4 mm. Comparing the dimensions of the aneurysm 10 to the braid 110 in the predetermined shape illustrated in FIG. 2H, the braid 110 has a slightly larger diameter and a slightly smaller height, and the interior of the aneurysm 10 is substantially spherical while the outer dimensions of the braid 110 are more cylindrical (see FIGS. 6A and 6B for measurement orientation). When the braid 110 of the implant 100 is confined by the aneurysm 10, the braid 110 is therefore be radially constrained.


As illustrated in FIG. 3A, the implant 100 can be delivered to the aneurysm 10 through the microcatheter 600, as described in relation to FIG. 2A. The open end 114 of the tubular braid 110 can expand within the aneurysm 10 as it exits the microcatheter 600. The illustrated aneurysm 10 is positioned at a bifurcation including a stem blood vessel 20 and two branch vessels 22a, 22b, and the microcatheter 600 is illustrated being delivered through the stem blood vessel 20. It is contemplated that the implant could be delivered to an aneurysm on a sidewall of a blood vessel through a curved microcatheter, and such a procedure is intended to be embraced by the scope of the present disclosure.


As illustrated in FIG. 3B, as the braid 110 is further pushed distally from the microcatheter 600, the braid 110 can expand to appose the aneurysm wall 14 and conform to the aneurysm neck 16. The aneurysm 10 being treated can have a diameter that is less than the outer diameter of the tubular braid 110 in the predetermined shape so that the braid 110 tends to expand outwardly, providing a force against the aneurysm wall 14, and sealing around the perimeter of the aneurysm neck 16. The implant 100 can be particularly suitable for treating a wide neck aneurysm such as commonly occur at bifurcations because the radial force provided by the braid 110 against the aneurysm wall 14 and perimeter of the neck 16 can be sufficient to both anchor the implant 100 in a wide neck aneurysm and seal the neck 16 of the aneurysm 10.


As illustrated in FIG. 3C, as the braid 110 is further pushed distally from the microcatheter 600, the proximal inversion 122a can be formed.


As illustrated in FIG. 3D, the microcatheter 600 can be manipulated to place the proximal inversion 122a at the aneurysm neck 16. The proximal inversion 122a can be placed on a proximal side of a plane defining a boundary 18 (See FIG. 6B) between the aneurysm 10 and the branch vessels 22a, 22b. In some applications it can be advantageous to place the proximal inversion 122a far enough in the proximal direction from the plane 18 so that the outer layer 142a of the braid 110 seals around the outer perimeter of the aneurysm neck 16, but not so far proximally that the implant 100 becomes an obstruction to the blood vessels 22a, 22b, 20.


As illustrated in FIG. 3E, the braid 110 can expand within the aneurysm sac 12 and extend to appose an inner surface of the outer layer 142a of the braid 110. The apposition to the outer layer 142a can provide additional force to anchor the outer layer 142a to the aneurysm wall 14.


As illustrated in FIG. 3F, the aneurysm 10 has a height that can accommodate the tubular braid 110 in the first implanted shape similar to that illustrated in FIG. 1B. Because the braid 110 is radially constrained and has a more cylindrical shape compared to the substantially spherical shape of the aneurysm, the braid 110 can extend beyond the height of the predetermined shape to accommodate aneurysms taller than the predetermined shape. In the illustration, the tubular braid 110 of the implant 100 in the predetermined shape has a height between about 0.5 mm and 1 mm less than the height of the aneurysm, or in other words, the implant has extended between about 10% and about 20% in height in the first implanted shape compared to the predetermined shape.


The braid can be pulled proximally as illustrated in FIG. 3G to form a second implanted shape as illustrated in FIG. 3H that is similar to the second implanted shape illustrated in FIG. 1C, but different in that the aneurysm 10b illustrated in FIG. 1C is smaller (proportionally compared to the braid 110) than the mock aneurysm 10 illustrated in FIG. 3H. Before the implant 100 is released from the delivery system, the implant 100 can be partially or fully retracted into the microcatheter 600 and repositioned in either of the first implanted shape or the second implanted shape. Additionally, or alternatively, the microcatheter 600 can be moved distally to move the braid 110 from the second implanted shape illustrated in FIG. 3H to the first implanted shape illustrated in FIG. 3F. In some applications, while positioning the implant 100, a physician can choose whether the first implanted shape or the second implanted shape is more suitable for the anatomy of the aneurysm and treatment site. For treatments involving aneurysms and implants shaped similar to the aneurysm 10 and implant 100 illustrated in FIGS. 3A through 3H, it can be more advantageous to shape the braid 110 in the first implanted shape as illustrated in FIG. 3F (rather than the second implanted shape illustrated in FIG. 3G) because the first implanted shape in this example implementation provides a larger surface area of the braid 110 in contact with the aneurysm wall 14.



FIGS. 4A and 4B are illustrations of the braid 110 of the example implant illustrated in FIGS. 2A through 2H and 3A through 3H showing the tubular braid 110 expanded within tubes to determine a range of aneurysm diameters and aneurysm heights that an implant 100 having the dimensions of the example implant 100 would be suitable for treating. FIG. 4A illustrates the braid 110 in a tube having a 5 mm diameter. The braid 110 is in the first implanted shape and has a height of about 8 mm. The braid 110 is therefore radially constrained from its predetermined shape by between about 1 mm and 1.5 mm in diameter, or between about 17% and 23%, and expanded vertically in height by between about 2.5 mm and 3 mm, or between about 45% and 60%.



FIG. 4B illustrates the braid 110 in a tube having a 4 mm diameter. The braid 110 is in the second implanted shape and has a height of about 6 mm. The braid is therefore radially constrained from its predetermined shape by between about 2 mm and 2.5 mm in diameter, or between about 33% and 38%, and expanded vertically between about 0.5 mm and 1 mm, or between about 10% and 20%.


Implants having a predetermined shape and dimensions as illustrated and described in relation to FIG. 2H can therefore be suitable for treating aneurysms having a diameter between and including about 4 mm and about 5 mm and a height between and including about 6 mm and about 8 mm. As illustrated in FIG. 3F, the implant can also be suitable for treating an aneurysm having a diameter of 6 mm and a height of 6 mm. As will be appreciated and understood by a person of ordinary skill in the art, the dimensions of the tubular braid in the predetermined shape can be tailored to treat aneurysms within a range of sizes not specifically outlined herein according to the principles described herein. It is contemplated that a collection of implants so shaped can be made available to physicians, and a physician can choose a suitable implant from the collection based on aneurysm height, diameter, neck diameter, and/or other anatomical features.


A collection of implants, each having a uniquely shaped tubular braid can be created to provide a catalogue of implants for treating aneurysms ranging in diameter and height. The catalogue can include implants suitable for treating aneurysms ranging from 3 mm to 15 mm in diameter and ranging from 3 mm to 15 mm in height, or in another example, ranging from 3 to 11 mm in diameter and 3 to 7 mm in height. As will be apricated and understood by a person of ordinary skill in the art, some aneurysm dimensions are extremely rare, and the catalog need not include implants for treating aneurysms having a large height:diameter ratio or a large diameter:height ratio.


Each implant in the collection can be suitable for treating aneurysms with a sub range of diameters and a sub-range of heights. An example catalogue can include a listing of implants for treating aneurysms of one or more of, but not limited to, the following size sub ranges (diameter range in mm, height range in mm): (3-5, 3-5), (6-8, 4-5), and (9-11, 5-7).


In some examples, each size sub range can be treated by a single implant having a tubular braid uniquely sized and shaped to be suitable for treating aneurysms within that sub range. In some examples, the sub ranges in the catalogue can be represented by implants each having a tubular braid with a delivery length (length when the braid is collapsed for delivery through a microcatheter) that is about 10 mm, about 40 mm, and/or including a length in between.


As will be appreciated and understood by a person of ordinary skill in the art, aneurysm height and diameter are measured with some margin of error. To that end, the size sub range included in the catalogue for a given implant can represent a portion of aneurysm sizes that can be treated with the implant and the implant can treat aneurysms outside of the listed sub range. For instance, an implant listed for treating aneurysms having heights between height a and height b and diameter range between diameter x and diameter y can be suitable for treating aneurysms slightly taller than the maximum listed height b if the diameter of the aneurysm is near the lower limit of the range (about diameter x), the implant can be suitable for treating diameters slightly larger than diameter y if the height of the aneurysm is near the lower limit of the height range (about height a).



FIGS. 5A through 5D are illustrations of the example implant 100 as illustrated in FIGS. 1A through 1C implanted in either the first implanted shape or the second implanted shape in aneurysms ranging in size. FIG. 5A illustrates a large aneurysm 10a, FIGS. 5B and 5C illustrate a medium aneurysm 10c, and FIG. 5D illustrates a small aneurysm 10b. The implant 100 is advantageously implanted in an aneurysm 10a, 10b, 10c having a diameter about equal to or smaller than the diameter of the braid 110 in the predetermined shape so that the braid 110 provides an outward force F against the aneurysm wall 14 when implanted. The braid 110 can have inner layers that press against one or more outer layers, contributing to the force F.


As illustrated in FIG. 5A, the maximum size of an aneurysm 10a that the implant 100 can be suitable for treating can be determined by the dimensions that the braid 110 can take in the first implanted shape. The pinched end 112 and detachment feature 150 can be positioned near a distal portion 15a of the aneurysm wall 14a as similarly illustrated in FIG. 1B.


As illustrated in FIG. 5B, the implant 100 can also be suitable for treating a medium sized aneurysm 10c that is smaller than the aneurysm 10a illustrated in FIG. 5A in the first implanted shape. To fit within the medium aneurysm 10c in the first implanted shape, the pinched end 112 and detachment feature 150 can be positioned away from the distal portion 15c of the aneurysm wall compared to the position of the pinched end 112 and detachment feature 150 in the large aneurysm 10a. In the predetermined shape (see FIG. 1A), the middle segment 144 can include a bend 134 to stabilize the tubular braid 110 in the first implanted shape in the medium aneurysm 10c as illustrated in FIG. 5B.


As illustrated in FIG. 5C, the implant 100 can also be suitable for treating the medium sized aneurysm 10c in the second implanted shape. The middle segment 144 of the braid in the predetermined shape (see FIG. 1A) can be folded to form a middle layer 144b and an inner layer 146b similar to as described in relation to FIG. 1C. In some applications, either implanted shape could be effective for treating the aneurysm 10c, and a physician can select a preferred shape during treatment. For instance, a physician can decide to use the first implanted shape (FIG. 5B) to elongate the implant so that the proximal fold 122a can be placed proximally outside of the aneurysm neck, or the physician can decide to use the second implanted shape (FIG. 5C) to provide more layers of braid at the aneurysm neck to occlude the neck opening 16c.


As illustrated in FIG. 5D, the minimum size of aneurysm 10b that the implant 100 can be suitable for treating can be determined by the dimensions that the braid 110 can take in the second implanted shape. The open end 114 and/or the distal fold 124b can be collapsed near a distal portion 15b of the aneurysm wall in the second implanted shape.



FIG. 6A is an illustration of height HI and diameter D1, D2 measurements of an example implant 100 in a predetermined shape. In the predetermined shape, the braid 110 of the example implant 100 can be substantially radially symmetrical about vertical axis y, and therefore can have substantially circular concentric cross-sections each describable by its diameter. FIG. 6A highlights the height HI of the implant 100 in a predetermined shape measured between the inversions 122, 124, the outer diameter D1 of the outer segment 142, which corresponds to the diameter of the open end 114, and the outer diameter D2 of the middle segment D2. Although FIG. 6A illustrates only one example predetermined shape, it should be understood that the height and diameter of example implants described herein 100, 200, 300, 400 and portions thereof can be measured similarly to as illustrated in FIG. 6A.



FIG. 6B is an illustration of height HA, sac diameter DA, and neck diameter DN measurements of an aneurysm 10. The location of the plane 18 defining a boundary between the aneurysm 10 and blood vessels is also illustrated.



FIG. 7A is an illustration of an example implant 200 having a tubular braid 210 in an alternative predetermined shape. FIG. 7B is an illustration of the example implant 200 in an aneurysm 10 with the tubular braid 210 in an implanted shape. The tubular braid 210 can have an open end 214 and a pinched end 212. The implant 200 can include a detachment feature 150 attached to the braid 210 at the pinched end 212. The braid 210 can be formed in the predetermined shape, collapsed for delivery through a microcatheter, attached to a delivery system at the detachment feature 150, and implanted in the implanted shape.


As illustrated in FIG. 7A, when in the predetermined shape, the tubular braid 210 can include two inversions 222, 224, dividing the braid 210 into three segments 242, 244, 248. In the predetermined shape, the braid 210 can have an outer segment 242 extending from the open end 214 of the braid 210 to one of the inversions 222, an inner segment 248 extending from the pinched end 212 of the braid 210 to the other of the inversions 224, and a middle segment 244 extending between the two inversions 222, 224. When in the predetermined shape, the tubular braid 210 can be substantially radially symmetrical about a central vertical axis y (see FIG. 6A). FIG. 7A illustrates a profile of each segment 242, 244, 248.


Comparing the predetermined shape of the braid 210 illustrated in FIG. 7A to that of the braid 110 illustrated in FIG. 1A, the outer segments 142, 242 and middle segments 144, 244 are respectively similar to each other, and the inner segment 248 of the braid 210 illustrated in FIG. 7A is longer than the inner segment 146 of the braid 110 illustrated in FIG. 1A. The pinched end 212 of the braid 210 in FIG. 7A is positioned near the inversion 222 adjacent the outer segment 242 rather than near the inversion 124 near the inner segment 146 as illustrated in FIG. 1A. The elongated inner segment 248 illustrated in FIG. 7A can be positioned to help the implant 200 resist compaction when implanted as illustrated in FIG. 7B.


The tubular braid 210 illustrated in FIG. 7A can be formed into the predetermined shape similar to as described in relation to FIG. 1A with some differences. The middle segment 244 need not have bends 132, 134 positioned facilitate the movement of the braid 210 into a second implanted shape. The inner segment 248 as illustrated in FIG. 7A can be made longer than that illustrated in FIG. 1A. The inner segment 248 can be shaped to have a length that is optimized to reduce the likelihood that the implant 200 can become compacted when implanted.


An implant 200 having a braid 210 having a predetermined shape as illustrated in FIG. 7A can have outer dimensions in the predetermined shape including an outer diameter and height similar to as illustrated and described in relation to FIG. 2H. The inner segment 248 of the braid 210 illustrated in FIG. 7A can have a height that is approximately equal to the height of the braid 210 in the predetermined shape.


The braid 210 can be elongated to a single layer tubular braid in a delivery shape that is sized to traverse a microcatheter. The length of the braid 210 in the delivery shape can be measured from the open end 214 to the pinched end 212. A braid 210 having a predetermined shape as illustrated in FIG. 7A and outer dimensions as illustrated and described in relation to FIG. 2H can have a length in the delivery shape that is longer compared to the length of the braid 110 illustrated in FIG. 2A. The length of the braid 210 illustrated in FIG. 7A when in the delivery shape can be longer than a braid 110 having a predetermined shape as illustrated in FIG. 1A by about the height of the braid 110, 210 in the predetermined shape. In other words, an implant 200 having a braid 210 with a predetermined shape as illustrated in FIG. 7A can have an outer diameter between about 6 mm and about 6.5 mm and a height between about 5 mm and 5.5 mm when in the predetermined shape and can be elongated to a single layer tube having a circumference collapsed to fit within a microcatheter and a length measuring between about 27 mm and 30 mm. The ratio of outermost diameter in the predetermined shape to length in the delivery shape can be between about 0.24 and about 0.2.


As illustrated in FIG. 7B, when in the implanted shape, the braid 210 can have an outer layer 242a contacting the aneurysm's wall 14, a sack 244a nested within the outer layer 242a, a proximal inversion 222a positioned at the aneurysm's neck 16, and a distal inversion 224a positioned near a distal portion 15 of the aneurysm wall 14. The detachment feature 150 and pinched end 212 of the braid 210 can be positioned near the aneurysm neck 16, near the proximal inversion 222a. The detachment feature 150 and pinched end 212 can be positioned to reduce the likelihood that the implant 200 becomes impacted.



FIG. 8A is an illustration of an example implant 300 having a tubular braid 310 in another alternative predetermined shape. FIG. 8B is an illustration of the example implant 300 when the tubular braid 310 in an implanted shape. The tubular braid 310 can have an open end 314 and a pinched end 312, and a detachment feature 150 can be attached to the braid 310 at the pinched end 312. The braid 310 can be formed in the predetermined shape, collapsed for delivery through a microcatheter, attached to a delivery system at the detachment feature 150, and implanted in the implanted shape.


As illustrated in FIG. 8A, when in the predetermined shape, the tubular braid 310 can include two inversions 322, 324, dividing the braid 310 into three segments 342, 344, 346. In the predetermined shape, the braid 310 can have an outer segment 342 extending from the open end 314 of the braid 310 to one of the inversions 322, an inner segment 346 extending from the pinched end 312 of the braid 310 to the other of the inversions 324, and a middle segment 344 extending between the two inversions 322, 324. When in the predetermined shape, the tubular braid 310 can be substantially radially symmetrical about a central vertical axis. FIG. 8A illustrates a profile of each segment 342, 344, 346.


Comparing the predetermined shape of the braid 310 illustrated in FIG. 8A to that of the braid 110 illustrated in FIG. 1A, the outer segments 142, 342 and inner segments 146, 346 are respectively similar to each other, and the middle segment 344 of the braid 310 illustrated in FIG. 8A has an undulating pattern rather than the “S” shape of the middle segment 144 of the braid 110 illustrated in FIG. 1A. The undulating middle segment 344 can be radially symmetrical to form a honeycomb shape. When implanted, the middle segment 344 in the undulating pattern can provide a force pattern pressing outwardly to anchor the implant 300 within an aneurysm that is different from a force pattern that could be provided by the middle segment 144 having the “S” shape illustrated in FIG. 1A. The pinched end 312 of the braid 310 in FIG. 8A can be positioned near the inversion 324 adjacent the inner segment 346 as illustrated. Alternatively, the inner segment 346 can be shaped to extend to the inversion 322 adjacent the outer segment 342 to provide a compaction resistant column.


The tubular braid 310 illustrated in FIG. 8A can be formed into the predetermined shape similar to as described in relation to FIG. 1A with some differences. The middle segment 344 can be formed to have an undulating pattern rather than an “S” shaped pattern. The middle segment 344 need not have bends positioned facilitate the movement of the braid 310 into a second implanted shape.


As illustrated in FIG. 8B, when in the implanted shape, the braid 310 can have an outer layer 342a shaped to contact an aneurysm wall, compressed extensions of an undulating middle layer 344a nested within the outer layer 342a, a proximal inversion 322a positioned to be placed an aneurysm neck, and a distal inversion 324a positioned to be placed near a distal portion of the aneurysm wall. The detachment feature 150 and pinched end 312 of the braid 310 can be positioned within the aneurysm sac, either near the distal inversion 324a as illustrated, near the proximal inversion 322a, or at a position in between. The detachment feature 150 and pinched end 312 can be positioned to reduce the likelihood that the implant 300 becomes impacted.



FIG. 9A is an illustration of an example implant 400 having a tubular braid 410 in another alternative predetermined shape. FIG. 9B is an illustration of the example implant 400 illustrating the tubular braid 410 in an implanted shape. The tubular braid 410 can have an open end 414 and a pinched end 412. A detachment feature 150 can be attached to the braid 410 at the pinched end 412. The implant 400 can be formed in the predetermined shape, collapsed for delivery through a microcatheter, attached to a delivery system at the detachment feature 150, and implanted in the implanted shape.


As illustrated in FIG. 9A, when in the predetermined shape, the tubular braid 410 can include two inversions 422, 424, dividing the braid 410 into three segments 442, 444, 446. In the predetermined shape, the braid 410 can have an outer segment 442 extending from the open end 414 of the braid 410 to one of the inversions 422, an inner segment 446 extending from the pinched end 412 of the braid 410 to the other of the inversions 424, and a middle segment 444 extending between the two inversions 422, 424. When in the predetermined shape, the tubular braid 410 can be substantially radially symmetrical about a central vertical axis y (see FIG. 6A). FIG. 9A illustrates a profile of each segment 442, 444, 446.


Comparing the predetermined shape of the braid 410 illustrated in FIG. 9A to that of the braid 110 illustrated in FIG. 1A, the outer segments 142, 442 can be similar to each other, the middle segment 444 of the braid 410 illustrated in FIG. 9A can have a less pronounced “S” shape compared to the “S” shaped middle segment 144 illustrated in FIG. 1A, and the inner segment 446 can be conical or “V” shaped in profile with the pinch end 412 positioned near the inversion 422 adjacent the outer layer 442 rather than near the inversion 142 adjacent the inner layer 146 as illustrated in FIG. 1A. When implanted, the inner segment 446 can reshape to form a compaction resistant column.


The tubular braid 410 illustrated in FIG. 9A can be formed into the predetermined shape similar to as described in relation to FIG. 1A with some differences. The middle segment 444 illustrated in FIG. 9A can be formed to have a less pronounced “S” shape pattern compared to the “S” shaped pattern 144 illustrated in FIG. 1A. The middle segment 444 need not have bends positioned facilitate the movement of the braid 410 into a second implanted shape. The inner segment 446 can have a longer length as illustrated in FIG. 9A compared to the inner segment 146 illustrated in FIG. 1A. The inversion 424 adjacent the inner segment 446 can have a more acute curvature as illustrated in FIG. 9A compared to the corresponding inversion 124 illustrated in FIG. 1A.


As illustrated in FIG. 9B, when in the implanted shape, the braid 410 can have an outer layer 442a shaped to contact an aneurysm wall, a tulip or heart shaped sack 444a nested within the outer layer 442a, a proximal inversion 422a positioned to be placed at an aneurysm neck, a distal inversion 424a positioned to be placed near a distal portion of the aneurysm wall, and a compaction resistant column 446a extending within the sack 444a. The detachment feature 150 and pinched end 412 of the braid 410 can be positioned within the sack 444a near the proximal inversion 422a. The detachment feature 150 and pinched end 412 can be positioned to reduce the likelihood that the implant 400 becomes impacted.



FIG. 10 is an illustration of an example implant 400 having a tubular braid 410 in a predetermined shape similar to as illustrated in FIG. 9A.



FIGS. 11A through 11E are illustrations of the example implant 400 illustrated in FIG. 10 showing the tubular braid 410 expanding to the implanted shape within a mock aneurysm 10 similar to as illustrated in FIG. 9B. As illustrated in FIG. 11A, the open end 414 can exit the microcatheter first and expand within the aneurysm 10. As illustrated in FIG. 11B, a distal portion of the braid 410 corresponding to the outer layer 442 in the predetermined shape can expand to appose the aneurysm wall 14 forming the outer later 442a in the implanted shape. As illustrated in FIG. 11C, the braid 410 can begin to invert as the braid 410 is further pushed distally from the microcatheter 600. As illustrated in FIG. 11D, the proximal inversion 422a can be placed at the aneurysm neck 16 as the tulip shaped sack 444a expands within the outer layer 442a. As illustrated in FIG. 11E, the braid 410 can be shaped in the implanted shape within the aneurysm 10 similar to as illustrated in FIG. 9B.


The tubular braid 110, 210, 310, 410 of the example implants 100, 200, 300, 400 can include memory shape material that can be heat set to a predetermined shape, can be deformed for delivery through a catheter, and can self-expand to an implanted shape that is based on the predetermined shape and confined by the anatomy of the aneurysm in which it is implanted.


The example implants 100, 200, 300, 400 described herein can rely on a radial outward force to anchor the implant within the sac of an aneurysm. To this end, the braid 110, 210, 310, 410 can be shaped to a predetermined shape having a diameter that is greater than its height so that the braid is radially constricted when implanted in an aneurysm. The ratio of diameter to height of the braid 110, 210, 310, 410 in a respective predetermined shape can be within the range of 2:1 to 1:3 to treat aneurysms of many known sizes and shapes.


The descriptions contained herein are examples of embodiments of the invention and are not intended in any way to limit the scope of the invention. As described herein, the invention contemplates many variations and modifications of the implant, including alternative materials, alternative geometries, alternative detachment features, alternative delivery systems, alternative means for forming a braid into a predetermined shape, alternative treatment methods, etc. These modifications would be apparent to those having ordinary skill in the art to which this invention relates and are intended to be within the scope of the claims which follow.

Claims
  • 1. A method comprising: selecting a tubular braid comprising an open end and a pinched end; andshaping the tubular braid to a predetermined shape as follows: inverting the tubular braid to form a distal inversion;shaping an inner segment of the tubular braid extending from the distal inversion to the pinched end;inverting the tubular braid to form a proximal inversion by moving the open end over at least a portion of the braid;shaping a middle segment of the tubular braid extending between the proximal inversion and the distal inversion;positioning the middle segment to surround the inner segment;shaping an outer segment of the tubular braid extending between the open end and the proximal inversion;positioning the open end to encircle the middle segment between the proximal inversion and the distal inversion such that the middle segment is only partially surrounded by the outer segment; andpositioning the pinched end distal of the proximal inversion.
  • 2. The method of claim 1, wherein shaping the tubular braid to the predetermined shape further comprises shaping the open end to comprise a diameter greater than or approximately equal to a maximum diameter of the middle segment.
  • 3. The method of claim 1, wherein shaping the tubular braid to the predetermined shape further comprises forming the tubular braid to be implantable in a first aneurysm comprising a first height and in a second aneurysm comprising a second height less than the first height, such that the tubular braid comprises a first implanted shape when implanted in the first aneurysm and a second implanted shape when implanted in the second aneurysm, the first implanted shape based on the predetermined shape when constrained by the first aneurysm and the second implanted shape based on the predetermined shape when constrained by the second aneurysm.
  • 4. The method of claim 3, further comprising: reshaping the tubular braid to one of the first implanted shape or the second implanted shape,wherein reshaping the tubular braid to the first implanted shape comprises: reshaping the outer segment to form an outer braid layer that apposes an aneurysm wall of the first aneurysm;positioning the proximal inversion approximate an aneurysm neck of the first aneurysm; andreshaping the middle segment to form a sack of the tubular braid that apposes the outer braid layer and the aneurysm wall of the first aneurysm, andwherein reshaping the tubular braid to the second implanted shape comprises: reshaping the outer segment to form an outer braid layer that apposes an aneurysm wall of the second aneurysm;positioning the proximal inversion approximate an aneurysm neck of the second aneurysm; andfolding the middle segment to form a middle braid layer apposing the outer layer and an inner braid layer apposing the middle braid layer.
  • 5. The method of claim 4, wherein shaping the tubular braid to the predetermined shape further comprises: forming a bend in the middle segment, andwherein reshaping the tubular braid to the second implanted shape further comprises folding the bend to form a boundary between the middle braid layer and the inner braid layer.
  • 6. The method of claim 4, wherein reshaping the tubular braid to the first implanted shape further comprises suspending the pinched end within the sack, andwherein reshaping the tubular braid to the second implanted shape further comprises positioning the proximal inversion to encircle the pinched end.
  • 7. The method of claim 4, wherein reshaping the tubular braid to the first implanted shape further comprises encircling the sack with the open end, andwherein reshaping the tubular braid to the second implanted shape further comprises positioning the open end to encircle a fold separating the middle braid layer and the inner braid layer.
  • 8. The method of claim 1, wherein shaping the tubular braid to the predetermined shape further comprises forming the tubular braid to be implantable in a first aneurysm comprising a first diameter measuring about 4 mm and a first height measuring about 6 mm, a second aneurysm comprising a second diameter measuring about 5 mm and a second height measuring about 8 mm, and a third aneurysm comprising a third diameter measuring about 6 mm and a third height measuring about 6 mm.
  • 9. The method of claim 1, wherein shaping the tubular braid to the predetermined shape further comprises forming the tubular braid to be suitable for treating a continuum of aneurysm sizes, the continuum bounded by and including diameters between about 4 mm and about 5 mm and heights between about 6 mm and about 8 mm.
  • 10. The method of claim 1, further comprising: positioning the proximal inversion in a proximal direction in relation to a plane defining a boundary between an aneurysm and blood vessel branches.
  • 11. The method of claim 1, further comprising: wherein the tubular braid comprising an implant;collapsing the implant to fit within a microcatheter;pushing the implant at the pinched end of the tubular braid through a majority of the length of the microcatheter to an aneurysm within a patient,wherein the tubular braid is unsheathed within the microcatheter as it is pushed through the majority of the length; and implanting the implant in the aneurysm,wherein the tubular braid is implanted unsheathed within the aneurysm, andwherein the tubular braid is moved to an implanted shape based on the predetermined shape when implanted.
  • 12. A method for aneurysm treatment, the method comprising: delivering a tubular braid comprising an open end and a pinched end through vasculature to an aneurysm;apposing the open end and a first segment of the tubular braid extending from the open end to a wall of the aneurysm;inverting the tubular braid at a neck of the aneurysm to form a proximal inversion and an inverted second segment of the tubular braid extending into the aneurysm from the proximal inversion; andpositioning the second segment of the tubular braid such that the second segment is only partially surrounded by the first segment; andpositioning the pinched end distal of the proximal inversion.
  • 13. The method of claim 12, further comprising: shaping the second segment to form a sack apposing a portion of the wall and the first segment;suspending the pinched end within the sack; andstabilizing the tubular braid in a first implanted shape wherein the open end and the first segment appose the aneurysm wall, the proximal inversion is positioned at the aneurysm neck, the second segment of the tubular braid is only partially surrounded by the first segment, the second segment forms the sack apposing the portion of the wall and the first segment, and the pinched end is suspended within the sack.
  • 14. The method of claim 13, further comprising: delivering a substantially identical tubular braid that is substantially identical to the tubular braid stabilized in the first implanted shape to a smaller aneurysm having a smaller internal dimension compared to the aneurysm;apposing an open end of the substantially identical tubular braid and a first segment of the substantially identical tubular braid extending from the open end of the substantially identical tubular braid to a wall of the smaller aneurysm;inverting the substantially identical tubular braid at a neck of the smaller aneurysm to form a proximal inversion and an inverted second segment of the substantially identical tubular braid extending into the smaller aneurysm from the proximal inversion of the substantially identical tubular braid;inverting the substantially identical tubular braid approximate the open end of the substantially identical tubular braid to form a distal inversion and a third segment of the substantially identical tubular braid extending from the distal inversion to the neck of the smaller aneurysm;positioning the pinched end of the substantially identical tubular braid such that the pinched end of the substantially identical tubular braid is encircled by the proximal inversion of the substantially identical tubular braid; andstabilizing the substantially identical tubular braid in a second implanted shape wherein the open end and the first segment of the substantially identical tubular braid appose the wall of the smaller aneurysm, the proximal inversion of the substantially identical tubular braid is positioned at the aneurysm neck of the smaller aneurysm, the second segment of the substantially identical tubular braid extends from the proximal inversion to the distal inversion of the substantially identical tubular braid, the third segment of the substantially identical tubular braid extends from the distal inversion to the pinched end of the substantially identical tubular braid, and the pinched end of the substantially identical tubular braid is encircled by the proximal inversion of the substantially identical tubular braid.
  • 15. The method of claim 14, further comprising: implanting the tubular braid in the first implanted shape in the aneurysm comprising a first diameter measuring about 5 mm and a first height measuring about 8 mm; andimplanting the substantially identical tubular braid in the second implanted shape in the smaller aneurysm comprising a second diameter measuring about 4 mm and a second height measuring about 6 mm.
  • 16. The method of claim 14, further comprising: implanting the tubular braid in the first implanted shape in the aneurysm comprising a first diameter measuring about 6 mm and a first height measuring about 6 mm; andimplanting the substantially identical tubular braid in the second implanted shape in the smaller aneurysm comprising a second diameter measuring about 4 mm and a second height measuring about 6 mm.
  • 17. The method of claim 14, further comprising: inverting the tubular braid approximate a distal portion of the aneurysm wall to form a distal inversion and a third segment extending from the distal inversion to the neck; andpositioning the third segment to form a compaction resistant post configured to resist compaction of the aneurysm.
  • 18. The method of claim 14, further comprising: shaping the substantially identical tubular braid to comprise a plurality of undulations extending to and from a central axis extending from a distal portion of the aneurysm wall and centrally through the aneurysm neck.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional application of U.S. patent application Ser. No. 16/418,199 filed May 21, 2019, the contents of which are incorporated by reference as if set forth in its entirety herein.

US Referenced Citations (432)
Number Name Date Kind
2849002 Oddo Aug 1958 A
3480017 Shute Nov 1969 A
4085757 Pevsner Apr 1978 A
4282875 Serbinenko et al. Apr 1981 A
4364392 Strother et al. Dec 1982 A
4395806 Wonder et al. Aug 1983 A
4517979 Pecenka May 1985 A
4545367 Tucci Oct 1985 A
4836204 Landymore et al. Jun 1989 A
4991602 Amplatz et al. Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5025060 Yabuta et al. Jun 1991 A
5065772 Cox, Jr. Nov 1991 A
5067489 Lind Nov 1991 A
5122136 Guglielmi et al. Jun 1992 A
5192301 Kamiya et al. Mar 1993 A
5261916 Engelson Nov 1993 A
5304195 Twyford, Jr. et al. Apr 1994 A
5334210 Gianturco Aug 1994 A
5350397 Palermo Sep 1994 A
5423829 Pham et al. Jun 1995 A
5624449 Pham et al. Apr 1997 A
5645558 Horton Jul 1997 A
5733294 Forber et al. Mar 1998 A
5916235 Guglielmi Jun 1999 A
5891128 Yen et al. Jul 1999 A
5928260 Chin et al. Jul 1999 A
5935148 Villar Aug 1999 A
5941249 Maynard Aug 1999 A
5951599 McCrory Sep 1999 A
5964797 Ho Oct 1999 A
6007573 Wallace et al. Dec 1999 A
6024756 Pham Feb 2000 A
6036720 Abrams Mar 2000 A
6063070 Eder May 2000 A
6063100 Diaz et al. May 2000 A
6063104 Villar May 2000 A
6080191 Thaler Jun 2000 A
6086577 Ken et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6113609 Adams Sep 2000 A
6123714 Gia et al. Sep 2000 A
6168615 Ken Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6193708 Ken et al. Feb 2001 B1
6221086 Forber Apr 2001 B1
6270515 Linden et al. Aug 2001 B1
6315787 Tsugita et al. Nov 2001 B1
6331184 Abrams Dec 2001 B1
6334048 Edvardsson et al. Dec 2001 B1
6346117 Greenhalgh Feb 2002 B1
6350270 Roue Feb 2002 B1
6375606 Garbaldi et al. Apr 2002 B1
6375668 Gifford Apr 2002 B1
6379329 Naglreiter et al. Apr 2002 B1
6391037 Greenhalgh May 2002 B1
6419686 McLeod et al. Jul 2002 B1
6428558 Jones Aug 2002 B1
6454780 Wallace Sep 2002 B1
6463317 Kucharczyk et al. Oct 2002 B1
6506204 Mazzocchi et al. Jan 2003 B2
6527919 Roth Mar 2003 B1
6547804 Porter et al. Apr 2003 B2
6551303 Van Tassel et al. Apr 2003 B1
6569179 Teoh May 2003 B2
6569190 Whalen, II et al. May 2003 B2
6572628 Dominguez Jun 2003 B2
6589230 Gia et al. Jul 2003 B2
6589256 Forber Jul 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6620152 Guglielmi Sep 2003 B2
6669719 Wallace et al. Dec 2003 B2
6689159 Lilip et al. Feb 2004 B2
6746468 Sepetka Jun 2004 B1
6780196 Chin et al. Aug 2004 B2
6802851 Jones Oct 2004 B2
6811560 Jones Nov 2004 B2
6833003 Jones et al. Dec 2004 B2
6846316 Abrams Jan 2005 B2
6849081 Sepetka et al. Feb 2005 B2
6855154 Abdel-Gawwad Feb 2005 B2
6949116 Solymar et al. Sep 2005 B2
6964657 Cragg et al. Nov 2005 B2
6964671 Cheng Nov 2005 B2
6994711 Hieshima et al. Feb 2006 B2
7044134 Khairkhahan et al. May 2006 B2
7083632 Avellanet Aug 2006 B2
7093527 Rapaport et al. Aug 2006 B2
7128736 Abrams et al. Oct 2006 B1
7152605 Khairkhahan et al. Dec 2006 B2
7153323 Teoh Dec 2006 B1
7195636 Avellanet et al. Mar 2007 B2
7229454 Tran et al. Jun 2007 B2
7229461 Chin et al. Jun 2007 B2
7309345 Wallace Dec 2007 B2
7371249 Douk et al. May 2008 B2
7377932 Mitelberg et al. May 2008 B2
7410482 Murphy et al. Aug 2008 B2
7572288 Cox Aug 2009 B2
7597704 Frazier et al. Oct 2009 B2
7608088 Jones Oct 2009 B2
7695488 Berenstein et al. Apr 2010 B2
7713264 Murphy May 2010 B2
7744652 Morsi Jun 2010 B2
7892248 Tran Feb 2011 B2
7985238 Balgobin et al. Jul 2011 B2
RE42758 Ken Sep 2011 E
8016852 Ho Sep 2011 B2
8021416 Abrams Sep 2011 B2
8025668 McCartney Sep 2011 B2
8034061 Amplatz et al. Oct 2011 B2
8048145 Evans et al. Nov 2011 B2
8062325 Mitelberg et al. Nov 2011 B2
8075585 Lee et al. Dec 2011 B2
8142456 Rosqueta et al. Mar 2012 B2
8221483 Ford et al. Jul 2012 B2
8261648 Marchand et al. Sep 2012 B1
8267923 Murphy Sep 2012 B2
8361106 Solar et al. Jan 2013 B2
8361138 Adams Jan 2013 B2
8372114 Hines Feb 2013 B2
8398671 Chen Mar 2013 B2
8430012 Marchand Apr 2013 B1
8454633 Amplatz et al. Jun 2013 B2
8523897 van der Burg et al. Sep 2013 B2
8523902 Heaven et al. Sep 2013 B2
8551132 Eskridge et al. Oct 2013 B2
8777974 Amplatz et al. Jul 2014 B2
8900304 Alobaid Dec 2014 B1
8974512 Aboytes et al. Mar 2015 B2
8992568 Duggal et al. Mar 2015 B2
8998947 Aboytes et al. Apr 2015 B2
9055948 Jaeger et al. Jun 2015 B2
9107670 Hannes et al. Aug 2015 B2
9161758 Figulla et al. Oct 2015 B2
9232992 Heidner Jan 2016 B2
9259337 Cox et al. Feb 2016 B2
9314326 Heidner et al. Apr 2016 B2
9351715 Mach May 2016 B2
9414842 Glimsdale et al. Aug 2016 B2
9526813 Cohn et al. Dec 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561096 Kim et al. Feb 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579104 Beckham et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9585669 Becking et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9629635 Hewitt et al. Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign et al. Jun 2017 B2
9681861 Heisei et al. Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9770577 Li et al. Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Peterson et al. Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman et al. Nov 2017 B2
9826980 Figulla et al. Nov 2017 B2
9833252 Sepetka et al. Dec 2017 B2
9833604 Lam et al. Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
9918720 Marchand et al. Mar 2018 B2
9955976 Hewitt et al. May 2018 B2
10004510 Gerberding Jun 2018 B2
10130372 Griffin Nov 2018 B2
10307148 Heisei et al. Jun 2019 B2
10327781 Divino et al. Jun 2019 B2
10342546 Sepetka et al. Jul 2019 B2
10517604 Bowman et al. Dec 2019 B2
10653425 Gorochow et al. May 2020 B1
10716573 Connor Jul 2020 B2
10743884 Lorenzo Aug 2020 B2
10751066 Lorenzo Aug 2020 B2
11464518 Connor Oct 2022 B2
20020068974 Kuslich et al. Jun 2002 A1
20020082638 Porter et al. Jun 2002 A1
20020143349 Gifford, III et al. Oct 2002 A1
20020147497 Belef et al. Oct 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20030028209 Teoh et al. Feb 2003 A1
20030120337 Van Tassel et al. Jun 2003 A1
20030171739 Murphy et al. Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030181927 Wallace Sep 2003 A1
20030181945 Opolski Sep 2003 A1
20030195553 Wallace et al. Oct 2003 A1
20030216772 Konya Nov 2003 A1
20040034366 van der Burg et al. Feb 2004 A1
20040034386 Fulton et al. Feb 2004 A1
20040044391 Porter Mar 2004 A1
20040087998 Lee et al. May 2004 A1
20040098027 Teoh et al. May 2004 A1
20040127935 Van Tassel et al. Jul 2004 A1
20040133222 Tran et al. Jul 2004 A1
20040153120 Seifert et al. Aug 2004 A1
20040210297 Lin et al. Oct 2004 A1
20040254594 Alfaro Dec 2004 A1
20050021016 Malecki et al. Jan 2005 A1
20050021072 Wallace Jan 2005 A1
20050159771 Petersen Jul 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050251200 Porter Nov 2005 A1
20060052816 Bates et al. Mar 2006 A1
20060058735 Lesh Mar 2006 A1
20060064151 Guterman Mar 2006 A1
20060106421 Feoh May 2006 A1
20060155323 Porter et al. Jul 2006 A1
20060155367 Hines Jul 2006 A1
20060167494 Suddaby Jul 2006 A1
20060247572 McCartney Nov 2006 A1
20070088387 Eskridge et al. Apr 2007 A1
20070106311 Wallace et al. May 2007 A1
20070208376 Meng Jun 2007 A1
20070162071 Burkett et al. Jul 2007 A1
20070167876 Euteneuer et al. Jul 2007 A1
20070173928 Morsi Jul 2007 A1
20070186933 Domingo Aug 2007 A1
20070191884 Eskridge et al. Aug 2007 A1
20070233188 Hunt et al. Oct 2007 A1
20070265656 Amplatz et al. Nov 2007 A1
20070288083 Hines Dec 2007 A1
20080097495 Feller, III et al. Apr 2008 A1
20080103505 Fransen May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080281350 Sepetka Nov 2008 A1
20090036877 Nardone et al. Feb 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090099647 Glimsdale Apr 2009 A1
20090227983 Griffin et al. Sep 2009 A1
20090281557 Sander et al. Nov 2009 A1
20090287291 Becking et al. Nov 2009 A1
20090287294 Rosqueta et al. Nov 2009 A1
20090287297 Cox Nov 2009 A1
20090318941 Sepetka Dec 2009 A1
20100023046 Heidner et al. Jan 2010 A1
20100023048 Mach Jan 2010 A1
20100063573 Hijlkema Mar 2010 A1
20100063582 Rudakov Mar 2010 A1
20100069948 Veznedaroglu et al. Mar 2010 A1
20100168781 Berenstein Jul 2010 A1
20100211156 Linder et al. Aug 2010 A1
20100324649 Mattsson Dec 2010 A1
20110046658 Conner et al. Feb 2011 A1
20110054519 Neuss Mar 2011 A1
20110112588 Linderman et al. May 2011 A1
20110137317 O'Halloran et al. Jun 2011 A1
20110152993 Marchand et al. Jun 2011 A1
20110196413 Wallace Aug 2011 A1
20110319978 Schaffer Dec 2011 A1
20120010644 Sideris et al. Jan 2012 A1
20120071911 Sadasivan Mar 2012 A1
20120165732 Müller Jun 2012 A1
20120191123 Brister et al. Jul 2012 A1
20120283768 Cox et al. Nov 2012 A1
20120310270 Murphy Dec 2012 A1
20120323267 Ren Dec 2012 A1
20120330341 Becking et al. Dec 2012 A1
20130035665 Chu Feb 2013 A1
20130035712 Theobald et al. Feb 2013 A1
20130066357 Aboytes et al. Mar 2013 A1
20130079864 Boden Mar 2013 A1
20130110066 Sharma et al. May 2013 A1
20130204351 Cox et al. Aug 2013 A1
20130211495 Halden et al. Aug 2013 A1
20130261658 Lorenzo et al. Oct 2013 A1
20130261730 Bose et al. Oct 2013 A1
20130274863 Cox et al. Oct 2013 A1
20130345738 Eskridge Dec 2013 A1
20140005714 Quick et al. Jan 2014 A1
20140012307 Franano et al. Jan 2014 A1
20140012363 Franano et al. Jan 2014 A1
20140018838 Franano et al. Jan 2014 A1
20140135812 Divino et al. May 2014 A1
20140200607 Sepetka et al. Jul 2014 A1
20140257360 Keillor Sep 2014 A1
20140257361 Prom Sep 2014 A1
20140277013 Sepetka et al. Sep 2014 A1
20140358178 Hewitt et al. Dec 2014 A1
20150057703 Ryan et al. Feb 2015 A1
20150209050 Aboytes et al. Jul 2015 A1
20150272589 Lorenzo Oct 2015 A1
20150313605 Griffin Nov 2015 A1
20150342613 Aboytes et al. Dec 2015 A1
20150374483 Janardhan et al. Dec 2015 A1
20160022445 Ruvalcaba et al. Jan 2016 A1
20160030050 Franano et al. Feb 2016 A1
20160192912 Kassab et al. Jul 2016 A1
20160249934 Hewitt et al. Sep 2016 A1
20160249935 Hewitt et al. Sep 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu et al. Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer et al. Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079661 Bardsley et al. Mar 2017 A1
20170079662 Rhee et al. Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079717 Walsh et al. Mar 2017 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace et al. Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Granfield Apr 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170114350 dos Santos et al. Apr 2017 A1
20170147765 Mehta May 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein et al. Jun 2017 A1
20170165454 Tuohy et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170252064 Staunton Sep 2017 A1
20170258473 Plaza et al. Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder et al. Oct 2017 A1
20170290593 Cruise et al. Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa et al. Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman et al. Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman et al. Nov 2017 A1
20170340333 Badruddin et al. Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20180140305 Connor May 2018 A1
20180206850 Wang et al. Jul 2018 A1
20180242979 Lorenzo Aug 2018 A1
20180303531 Sanders et al. Oct 2018 A1
20180338767 Dasnurkar et al. Nov 2018 A1
20190008522 Lorenzo Jan 2019 A1
20190223878 Lorenzo et al. Jan 2019 A1
20190110796 Jayaraman Apr 2019 A1
20190142567 Janardhan et al. May 2019 A1
20190192162 Lorenzo Jun 2019 A1
20190192167 Lorenzo Jun 2019 A1
20190192168 Lorenzo Jun 2019 A1
20190223879 Jayaraman Jul 2019 A1
20190223881 Hewitt et al. Sep 2019 A1
20190328398 Lorenzo Oct 2019 A1
20190357914 Gorochow et al. Nov 2019 A1
20190365385 Gorochow Dec 2019 A1
20200000477 Nita et al. Jan 2020 A1
20200069313 Xu et al. Mar 2020 A1
20200268365 Hebert et al. Aug 2020 A1
20200375606 Lorenzo Dec 2020 A1
20210007755 Lorenzo et al. Jan 2021 A1
20210177429 Lorenzo Jun 2021 A1
Foreign Referenced Citations (104)
Number Date Country
2395796 Jul 2001 CA
2 431 594 Sep 2002 CA
2598048 May 2008 CA
204 683 687 Jul 2015 CN
107374688 Nov 2017 CN
102008015781 Oct 2009 DE
102010053111 Jun 2012 DE
102009058132 Jul 2014 DE
10 2013 106031 Dec 2014 DE
202008018523 Apr 2015 DE
102011102955 May 2018 DE
902704 Mar 1999 EP
1054635 Nov 2000 EP
1295563 Mar 2003 EP
1441649 Aug 2004 EP
1483009 Dec 2004 EP
1527753 May 2005 EP
1569565 Sep 2005 EP
1574169 Sep 2005 EP
1494619 Jan 2006 EP
1633275 Mar 2006 EP
1659988 May 2006 EP
1725185 Nov 2006 EP
1862122 Dec 2007 EP
1923005 May 2008 EP
2063791 Jun 2009 EP
2134263 Dec 2009 EP
2157937 Mar 2010 EP
2266456 Dec 2010 EP
2324775 May 2011 EP
2367482 Sep 2011 EP
2387951 Nov 2011 EP
2460476 Jun 2012 EP
2468349 Jun 2012 EP
2543345 Jan 2013 EP
2567663 Mar 2013 EP
2617386 Jul 2013 EP
2623039 Aug 2013 EP
2647343 Oct 2013 EP
2848211 Mar 2015 EP
2854704 Apr 2015 EP
2923674 Sep 2015 EP
2926744 Oct 2015 EP
3146916 Mar 2017 EP
3501429 Jun 2019 EP
3517055 Jul 2019 EP
3 636 173 Oct 2019 EP
H04-47415 Apr 1992 JP
H07-37200 Jul 1995 JP
2006-509578 Mar 2006 JP
2013-509972 Mar 2013 JP
2013537069 Sep 2013 JP
2014-522268 Sep 2014 JP
2016-502925 Feb 2015 JP
2016-502925 Feb 2016 JP
WO 9641589 Dec 1996 WO
WO 9905977 Feb 1999 WO
WO 9908607 Feb 1999 WO
WO 9930640 Jun 1999 WO
WO 2003073961 Sep 2003 WO
WO 03086240 Oct 2003 WO
WO 2005020822 Mar 2005 WO
WO 2005074814 Aug 2005 WO
2005117718 Dec 2005 WO
WO 2005117718 Dec 2005 WO
WO 2006034149 Mar 2006 WO
WO 2006052322 May 2006 WO
2007076480 Jul 2007 WO
WO 2008150346 Dec 2008 WO
WO 2008151204 Dec 2008 WO
WO 2009048700 Apr 2009 WO
WO 2009105365 Aug 2009 WO
WO 2009132045 Oct 2009 WO
WO 2009135166 Nov 2009 WO
WO 2010030991 Mar 2010 WO
WO 2011057002 May 2011 WO
WO 2012032030 Mar 2012 WO
WO 2012099704 Jul 2012 WO
WO 2012099909 Jul 2012 WO
WO 2012113554 Aug 2012 WO
WO 2013016618 Jan 2013 WO
WO 2013025711 Feb 2013 WO
WO 2013109309 Jul 2013 WO
WO 2013159065 Oct 2013 WO
WO 2013162817 Oct 2013 WO
WO 2014029835 Feb 2014 WO
WO 2014078286 May 2014 WO
WO 2014110589 Jul 2014 WO
WO 2014137467 Sep 2014 WO
WO 2015073704 May 2015 WO
2015160721 Oct 2015 WO
WO 2015160721 Oct 2015 WO
2015171268 Nov 2015 WO
WO 2015166013 Nov 2015 WO
WO 2015171268 Nov 2015 WO
WO 2015184075 Dec 2015 WO
WO 2015187196 Dec 2015 WO
WO 2016044647 Mar 2016 WO
WO 2016107357 Jul 2016 WO
WO 2016137997 Sep 2016 WO
WO 2017161283 Sep 2017 WO
WO 2018051187 Mar 2018 WO
WO 2019038293 Feb 2019 WO
WO 2012034135 Mar 2021 WO
Non-Patent Literature Citations (5)
Entry
Extended European Search Report issued in corresponding European Patent Application No. 19 21 5277 dated May 12, 2020.
Extended European Search Report issued in corresponding European Patent Application No. 20 21 2968 dated May 11, 2021.
File History for corresponding U.S. Appl. No. 16/418,199 in parent application U.S. Appl. No. 16/418,199.
Altes et al., Creation of Saccular Aneurysms in the Rabbit: A Model Suitable for Testing Endovascular Devices. AJR 2000; 174: 349-354.
Schaffer, Advanced Materials & Processes, Oct. 2002, pp. 51-54.
Related Publications (1)
Number Date Country
20200367898 A1 Nov 2020 US
Divisions (1)
Number Date Country
Parent 16418199 May 2019 US
Child 16847284 US