Layered heat exchangers

Information

  • Patent Grant
  • 6241011
  • Patent Number
    6,241,011
  • Date Filed
    Wednesday, June 17, 1998
    26 years ago
  • Date Issued
    Tuesday, June 5, 2001
    23 years ago
Abstract
A layered heat exchanger for use as a motor vehicle air conditioner evaporator comprises pairs of generally rectangular adjacent plates, which are joined together in layers with the corresponding recesses of the plates in each pair opposed to each other to thereby form juxtaposed flat tubes each having a U-shaped fluid channel, and front and rear headers in communication respectively with opposite ends of each flat tube. The turn portion of U-shaped fluid channel of the flat tube has a fluid mixing portion comprising many small projections, and a rectifying portion comprising parallel long projections along a flow of fluid. The channel turn portion rectifies the flow of fluid and mixes the fluid at the same time, permitting the fluid to flow through the turn portion smoothly to result in a diminished fluid pressure loss, an improved heat transfer coefficient and improved performance.
Description




BACKGROUND OF THE INVENTION




The present invention relates to layered heat exchangers useful as evaporators for motor vehicle air conditioners.




Already known as such layered beat exchangers are two types; those having headers at one of the upper and lower sides of an assembly of plates in layers, and those having headers at these sides, respectively. Those of the former type have a heat exchange portion which is greater than in the latter type and are therefore expected to exhibit improved performance.




Stated more specifically, layered heat exchangers having the headers at one side comprise pairs of generally rectangular adjacent plates, each of the plates being formed in one side thereof with a U-shaped channel recess and a pair of header recesses continuous respectively with one end and the other end of the channel recess and each having a fluid passing opening, the plates being joined together in layers with the corresponding recesses of the plates in each pair opposed to each other to thereby form juxtaposed flat tubes each having a U-shaped fluid channel, and front and rear headers communicating respectively with opposite ends of each flat tube for causing a fluid to flow through all the flat tubes and the headers.




However, the conventional layered heat exchanger having the headers at one side has the problem that when used as an evaporator for motor vehicle air conditioners, the refrigerant fails to flow smoothly along the turn portion of U-shaped channel recess of each plate and to achieve as high an efficiency as is expected. This is because if the plates are designed, for example, to produce a rectifying effect, the refrigerant flow pressure loss can be diminished, but a reduced heat transfer coefficient and therefore an impaired heat exchange efficiency will result, whereas if the plates are conversely adapted to give a mixing effect chiefly, the refrigerant flow pressure loss increases to an undesirable level despite an improved heat transfer coefficient. The refrigerant is then liable to stagnate or flow unevenly especially in the vicinity of U-shaped turn portion of the refrigerant channel of each flat tube, consequently permitting the evaporator to exhibit impaired performance.




Further with the conventional evaporator, the joint between the plates is made by point contact, which therefore entails the problem that it is difficult to ensure pressure resistant strength.




SUMMARY OF THE INVENTION




The present invention provides a layered heat exchanger which is free of the foregoing problems.




The invention provides a layered heat exchanger wherein the headers are disposed at one side and which is characterized in that the U-shaped recess of each plate has a turn portion provided with a fluid mixing portion having a multiplicity of small projections and a rectifying portion having parallel long projections, the plates in each pair being joined to each other with their recesses opposed to each other to provide a fluid mixing portion and a rectifying portion in a channel turn portion of U-shaped fluid channel of the resulting flat tube.




The turn portion of U-shaped channel forming recess of each plate is provided with a fluid mixing portion at its central part and a rectifying portion at each of front and rear sides of the mixing portion. Alternatively, the rectifying portion is provided at the central part of the turn portion, and the fluid mixing portion at each of front and rear sides of the rectifying portion.




In the former case wherein the rectifying portion is provided at each of front and rear parts of the channel forming recess of the plate, the parallel long projections are, for example, generally L-shaped, have inward horizontal portions and arc larger in size when positioned closer to the outside. Accordingly, the fluid rapidly flows through the turn portion and is thoroughly mixed in the central part where the multiplicity of small projections are formed to provide the mixing portion.




In the latter case wherein the rectifying portion is provided in the central part of the turn portion, the rectifying portion comprises, for example, rearwardly downwardly inclined parallel projections, horizontal parallel projections and forwardly downwardly inclined parallel projections, permitting the fluid to flow from the rear channel portion through the central part of the turn portion and to the front channel portion rapidly. In this case, many small projections are disposed in front of and in the rear of the rectifying portion to provide the fluid mixing portions, where the fluid is, fully mixed.




With the layered heat exchanger thus constructed, the mixing portion and the rectifying portion provided in the turn portion of U-shaped channel of each flat tube rectify the flow of fluid and mix the fluid at the same time, enabling the fluid to flow through the channel turn portion smoothly to achieve an improved heat transfer coefficient. With the U-shaped channel of the conventional flat tube, the flow of fluid stagnates in the return channel portion upon passing through the turn portion, whereas the flat tube of the invention causes no stagnation, enabling the fluid to smoothly flow in the vicinity of channel turn portion of the tube free of stagnation or flow irregularities. The present flat tube is therefore diminished in fluid pressure loss and can be expected to exhibit greatly improved performance.




The small projections for forming the fluid mixing portion and the long projections for constituting the rectifying portion have a height equal to the depth of the recess, or a height which is twice the depth.




In the former case, the opposed small projections of the recess turn portions of the adjacent plates as fitted together with their recesses opposed to each other, as well as the opposed long projections, are joined together end-to-end.




In the latter case, the small projections and long projections in the recess turn portion are joined at their top ends to the bottom wall of turn portion of the plate opposed thereto. This gives an increased joint area and increases the pressure resistant strength of the heat exchanger.




The small projections for the mixing portion in the turn portion of U-shaped fluid channel of each flat tube at the central part thereof, or the long projections for forming the rectifying portion in the central part have a height equal to the depth of the recess. When the adjacent plates are joined to each other, these small or long projections are opposed to each other in corresponding relation, and are joined together end-to-end.




The layered heat exchanger of the invention is further characterized in that the U-shaped channel recess of each plate has front and rear straight channel forming portions provided with vertically elongated rectifying ridges having a height twice the depth of the recess, each pair of adjacent plates as fitted together having the rectifying ridges arranged alternately in different positions, the rectifying ridges each having an end joined to a bottom wall of the straight channel forming portion of the plate opposed thereto.




With this heat exchanger, the elongated rectifying ridges provided on the front and rear channel forming portions of channel recess of each plate permit the fluid to flow straight through the front and rear portions of U-shaped channel of the flat tube, consequently eliminating tale likelihood of the fluid pressure loss increasing.




Further these elongated rectifying ridges have their top ends joined to the bottom wall of straight channel forming portion of the plate opposed thereto. This results in an increased joint area and imparts enhanced pressure resistant strength to the heat exchanger.




The vertically elongated rectifying ridges are arranged alternately in different positions in the assembly of adjacent plates as joined together. The turn portions of the opposed channel recesses have a multiplicity of small projections for forming the fluid mixing portion and long projections four forming the rectifying portion, and these projections are also alternately arranged in different positions in the assembly of adjacent plates. Accordingly, the elongated rectifying ridges, long projections and small projections on each plate can be smaller in number. The plates can therefore be formed easily.




The heat exchanger of the present invention is further characterized in that at least one of the adjacent plates in each pair is provided with a U-shaped divided channel forming ridge on the bottom wall of the channel forming recess, the pair of plates being fitted and joined to each other with the corresponding recesses opposed to each other to thereby form a plurality of U-shaped divided independent channels of reduced width inside the flat tube.




With the heat exchanger described, the fluid flows through the flat tube without mixing between the adjacent divided channels and free of stagnation. Accordingly, vapor-liquid separation is confined to only one divided channel, therefore diminishes and will not entail an increased fluid pressure loss.




The present invention further provides another layered heat exchanger comprising pairs of generally rectangular adjacent plates, each of the plates being formed in one side thereof with a U-shaped channel recess and a pair of header recesses continuous respectively with one end and the other end of the channel recess and each having a fluid passing opening, the plates being joined together in layers with the corresponding recesses of the plates in each pair opposed to each other to thereby form juxtaposed flat tubes each having a U-shaped fluid channel and front and rear headers communicating respectively with opposite ends of each flat tube for causing a fluid to flow through all the flat tubes and the headers, the heat exchanger being adapted to be exposed to air flowing from the front thereof rearward, the heat exchanger being characterized in that one of the front and rear headers has a fluid inlet at one end thereof, and one of the front and rear headers has a fluid outlet at the other end thereof, at least one of the front and rear headers being provided at an intermediate portion thereof with at least one partition to form a zigzag fluid passage divided into a plurality of passageways including an outlet passageway wherein the fluid flows counter-currently against the flow of air.




The heat exchanger described can be in the following three modes.




First, the fluid inlet is provided at one end of the rear header, and the fluid outlet is provided at the other end of the front header, each of the front and rear headers being provided with at least one partition intermediately thereof, the partition being even in total number and arranged on the rear and front sides alternately when seen from above in the direction of from the fluid inlet toward the fluid outlet, to thereby form a zigzag fluid passage divided into an odd number of passageways including an inlet passageway, an outlet passageway and an intermediate passageway between the two passageways, the outlet passageway permitting the fluid to flow therethrough countercurrently against the flow of air.




Second, the fluid inlet is provided at one end of the front header, and the fluid outlet is provided at the other end of the front header, each of the front and rear headers being provided with at least one partition intermediately thereof, the partitions being odd in total number and arranged on the front and rear sides alternately when seen from above in the direction of from the fluid inlet toward the fluid outlet, the partitions on the front header being one greater in number than oil the rear header, to thereby form a zigzag fluid passage divided into an even number of passageways including an inlet passageway, an outlet passageway and an intermediate passageway between the two passageways, the outlet passageway permitting the fluid to flow therethrough countercurrently against the flow of air.




Third, the front header has the fluid inlet at one end thereof, the fluid outlet at the other end thereof and the partition at an intermediate portion thereof to thereby form a zigzag fluid passage divided into an inlet passageway and an outlet passageway, the outlet passageway permitting the fluid to flow therethrough countercurrently against the flow of air.




The layered heat exchanger in any of the above modes is useful, for example, as a layered evaporator for use in motor vehicle air conditioners. Since the flow of refrigerant through the outlet passageway is countercurrent against the flow of air, the temperature difference between superheated refrigerant and air to be subjected to heat exchange therewith is greater than in evaporators of the concurrent type wherein the superheated refrigerant is positioned downstream with respect to the direction of flow of air. The portion wherein the refrigerant is in a superheated state therefore achieves a high heat exchange efficiency. Consequently, this portion of the refrigerant passage can be diminished to provide a larger portion for the refrigerant in the form of a vapor and to assure stabilized heat exchange performance.




The invention will be described in greater detail with reference to the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic perspective view of a layered heat exchanger of the invention;





FIG. 2

is an enlarged fragmentary front view showing a plate of flat tube of the heat exchanger;





FIG. 3

is a front view of the plate;





FIG. 4

is an enlarged view in section taken along the line


4





4


in

FIG. 2

;





FIG. 5

is an enlarged view in section taken along the line


5





5


in

FIG. 2

;





FIG. 6

is an enlarged fragmentary view in section of the heat exchanger, i.e., the first embodiment;





FIG. 7

is an enlarged fragmentary front view showing a plate of flat tubes in a heat exchanger as a second embodiment of the invention;





FIG. 8

is an enlarged fragmentary front view showing a plate of flat tube of a heat exchanger as a third embodiment of the invention;





FIG. 9

is an enlarged fragmentary front view showing plates of flat tubes of the heat exchanger;





FIG. 10

is an enlarged fragmentary view in section of the heat exchanger;





FIG. 11

is a schematic front view of the heat exchanger;





FIG. 12

is an enlarged fragmentary front view showing a plate of flat tube of a heat exchanger as a fourth embodiment of the invention;





FIG. 13

is a front view showing a plate for use in a fifth embodiment of the invention before folding;





FIG. 14

is a side elevation of the plate;





FIG. 15

is an enlarged fragmentary front view showing a plate of flat tube of a heat exchanger as the fifth embodiment;





FIG. 16

is a schematic front view of the heat exchanger;





FIG. 17

is a schematic perspective view of a heat exchanger as a sixth embodiment of the invention;





FIG. 18

is a view in vertical section of the heat exchanger:





FIG. 19

is a perspective view of plates constituting the heat exchanger;





FIG. 20

is an enlarged fragmentary front view showing the plate of flat tube of the heat exchanger;





FIG. 21

is a view in horizontal section of the flat tube of the heat exchanger;





FIG. 22

is an enlarged fragmentary front view partly broken away and showing a modified plate for use in the heat exchanger;





FIG. 23

is a view in section taken along the line


23





23


in

FIG. 22

;





FIG. 24

is a schematic perspective view of the refrigerant passage of heat exchanger of

FIG. 17

;





FIG. 25

is a perspective view schematically showing the refrigerant passage of a heat exchanger as a seventh embodiment of the invention;





FIG. 26

is a graph showing the heat exchange efficiency of the heat exchangers;





FIG. 27

it a schematic perspective view of a heat exchanger as an eighth embodiment of the invention;





FIG. 28

is a perspective, view schematically showing the refrigerant passage of the heat exchanger;





FIG. 29

is a cross sectional view showing a refrigerant feed pipe for use in the heat exchanger;





FIG. 30

is a schematic perspective view of a heat exchanger as a ninth embodiment of the invention, a refrigerant feed pipe and a refrigerant discharge pipe being also shown;





FIG. 31

is an enlarged view in horizontal section of a header portion of the heat exchanger; and





FIG. 32

is an enlarged fragmentary view in horizontal section of a header portion of a heat exchanger as a tenth embodiment of the invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Throughout the drawings, like parts are designated by like reference numerals.




In this specification, the upstream side of flow of air (i.e., the left-hand side of

FIG. 2

) will be referred to as “front,” the downstream side thereof (i.e., the right-hand side of

FIG. 2

) as “rear,” and the terms “right” and “left” are used for the device as it is seen from the front rearward.





FIGS. 1

to


6


show a first embodiment of the invention, i.e., a layered heat exchanger, for use as a layered evaporator


1


in motor vehicle air conditioners.




With reference to these drawings, the evaporator


1


comprises pairs of generally rectangular adjacent plates


2


made of aluminum (including an aluminum alloy). Each of the plates


2


is formed in one side thereof with a U-shaped channel recess


3


and two header recesses


4


,


4


continuous respectively with the upper-end front and rear portions of the recess


3


. The recess


3


is provided with a vertically elongated partition ridge


9


extending centrally of the recess


3


from its upper end to a portion close to the lower end thereof. The ridge


9


has a height nearly equal to the depth of the recess


3


. The plates


2


are fitted together in layers with the corresponding recesses


3


,


3


and


4


,


4


of the plates


2


,


2


in each pair opposed to each other, and the opposed partition ridges


9


,


9


, as well as opposed peripheral edge portions


19


,


19


, of each pair of plates


2


,


2


are joined to each other to thereby form U-shaped flat tubes


5


, and a pair of front and rear headers


7


,


6


communicating respectively with opposite ends of each flat tube


5


. The opposed plates


2


,


2


of each two adjacent flat tubes


5


,


5


are joined-at bottom walls


4




a


,


4




a


of their header recesses


4


,


4


butted against each other and at spacing protrusions


29


,


29


formed at the lower ends of the two plates


2


,


2


and butting against each other. A corrugated fin


24


is interposed between the flat tubes


5


,


5


.




Side plates


20


,


20


are arranged respectively on the right and left outer sides of the evaporator


1


with a corrugated fin


24


also provided between each side plate


20


and the flat tube


5


. The side plates


20


,


20


and the plates


2


therebetween are each prepared from an aluminum brazing sheet.




With reference to

FIGS. 2

,


3


and


4


, the U-shaped channel recess


3


of each plate


2


has front and rear straight channel forming portions


3




a


,


3




b


which are provided respectively with vertically elongated rectifying ridges


15


,


16


. These ridges have a height twice the depth of the recess


3


. When the adjacent plates


2


,


2


are fitted to each other, these ridges


15


,


16


are arranged alternately in different positions. With the pair of plates


2


,


2


fitted together, the ridges


15


,


16


are positioned in front and rear straight channel portions


5




a


,


5




b


of a U-shaped refrigerant channel, provided by the flat tube


5


, and are arranged symmetically with respect to the central opposed partition ridges


9


.




More specifically, the front straight channel forming portion


3




a


of recess


3


of each plate


2


of the present embodiment has two rectifying ridges


15


at widthwise intermediate positions, while the rear straight channel forming portion


3




b


has three rectifying ridges


16


close to opposite side edges and at widthwise midportion thereof.




The plates


2


are identical in shape. When the adjacent plates


2


,


2


in each pair are fitted together with their recesses


3


,


3


opposed to each other, the front straight channel forming portion


3




a


of one of the plates, i.e., first plate


2


, is opposed to the rear straight channel forming portion


3




b


of the other plate, i.e., second plate


2


, and the rear portion


3




b


of the first plate


2


is opposed to the front portion


3




a


of the second plate


2


. Thus, the two rectifying ridges


15


of the front portion


3




a


of the first plate


2


and the three rectifying ridges


16


of the rear portion


3




b


of the second plate


2


, which are five in total number, are arranged alternately, and at the same time, the three ridges


16


of the rear portion


3




b


of tho first plate


2


and the two ridges


15


of the front portion


3




a


of the second plate


2


, which are five in total, are arranged alternately. With the plates


2


,


2


in each pair fitted together, these ridges


15


,


16


are arranged symmetrically with respect to the central partition ridges


9


of the recesses


3


.




Further with the two plates


2


,


2


fitted together, the top end of each of the ridges


15


,


16


is joined to the bottom wall


17


of the straight channel forming portion


3




a


(


3




b


) of the plate


2


opposed thereto.




Next with reference to

FIGS. 2

,


3


and


5


, the U-shaped channel recess


3


of each plate


2


has a turn portion


3




c


, which is provided with a rectifying portion


11


in the center and refrigerant mixing portions


10


,


10


on front and rear sides of the rectifying portion


11


.




With the present embodiment, the turn portion


3




c


of U-shaped channel recess


3


of each plate


2


is provided with a multiplicity of small, projections


12


for forming the refrigerant mixing portions


10


and long projections


13


for forming the rectifying portion


11


. The projections other than those positioned in the center of the turn portion


3




c


have a height twice the depth of the recess


3


. Each pair of adjacent plates


2


,


2


as fitted together have the projections with the above-mentioned height arranged alternately in positions different from each other and have the top ends of these-small projections


12


and long projections


13


butted against and joined to the bottom wall of the turn portion


3




c


of the plate


2


opposed thereto. Thus, the U-shaped refrigerant channel of the flat tube


5


has a channel turn portion


5




c


which is provided with refrigerant mixing portions comprising the multiplicity of small projections


32


, and a rectifying portion comprising the parallel long projections


13


.




Stated more specifically, the present embodiment has a long projection


13


inclined rearwardly downward and disposed in front of the center of turn portion


3




c


of recess


3


of each plate


2


, a long projection


13


inclined forwardly downward and disposed in the rear of the center at a higher level than the former, and three horizontal long projections


23


and a circular small projection


22


.




The front half of the turn portion


3




c


has three small projections


12


disposed at a specified spacing in an oblique arrangement inclined forwardly upward for forming one of the refrigerant mixing portion


10


, and the rear half of the turn portion


3




c


has two small projections


12


spaced apart by a predetermined distance in an oblique arrangement inclined rearwardly upward and a small projection


12


at one side of this arrangement for forming the other mixing portion


10


.




Further a generally triangular reinforcing projection


14


is provided in the turn portion


3




c


at a front-half lower corner which will not greatly contribute to heat exchange.




The rearwardly downwardly inclined long projection


13


in front of the center of the turn portion


3




c


, the forwardly downwardly inclined long projection


13


in the rear of the center, the small projection


12


other than the central one


22


, and the reinforcing projection


14


have a height twice the depth of the recess


3


. The three horizontal long projection


23


and the circular small projection


22


in the central part of the turn portion


3




c


have a height equal to the depth of the recess


3


like the central partition ridge


9


of the recess


3


and the plate peripheral edge portion


19


.




When the adjacent first and second plates


2


,


2


are fitted together with the recesses


3


,


3


opposed to each other, the rearwardly downwardly inclined long projection


13


in front of the center of recess turn portion


3




c


of the first plate


2


and the forwardly downwardly inclined long projection


13


in the rear of the center of the recess turn portion


3




c


of the second plate


2


(the latter projection


13


is reversed to opposed the first plate and therefore inclined rearwardly downward) are positioned at different levels, and the top end of each of these long projections


13


is joined to the bottom wall


18


of the turn portions


3




c


of the plate


2


opposed thereto.




The three small projections


12


of the turn portion front half of the first plate recess


3


, the upper and lower two small projections


12


,


12


in the rearwardly upward oblique arrangement of the turn portion rear half of the second plate


2


and the small projection


12


on the same plate at one side of the arrangement Are positioned alternately. The reinforcing projection


14


at the lower front corner of the turn portion


3




c


of the second plate


2


is positioned opposite to the reinforcing projection


14


of the first plate


2


, and is located at the lower rear corner of the second plate turn portion


3




c


. In the channel turn portion


5




c


of the U-shaped refrigerant channel of the-flat tube


5


provided by the adjacent plates


2


as fitted together, these projections


12


and


14


are symmetric with respect to the center of the channel portion.




Further in the assembly of two plates


2


,


2


, the small projections


12


, inclined long projections


13


,


13


and reinforcing projection


14


of the turn portion


3




c


of recess


3


of the first plate


2


are joined each at its top end to the bottom wall


18


of turn portion


3




c


of the second plate


2


opposed thereto, and the three horizontal long projections


23


and one circular small projection


22


in the center of each turn portion


3




c


are each joined to the corresponding projection of the other turn portion


3




c


as butted thereagainst. Consequently, the channel turn portion


5




c


of U-shaped refrigerant channel of the flat tube


5


is provided with a rectifying portion


11


at its central portion, and a refrigerant mixing portion


10


disposed at each of front and rear sides of the rectifying portion


11


and comprising a multiplicity of small projections


12


, the rectifying portion


11


comprising three long projections


23


, small projection


22


and inclined long projections


13


,


13


in front of and in the rear of these projections.




With reference to

FIGS. 3 and 6

, the front and rear header recesses


4


,


4


each have a bottom wall


4




a


which is formed with a refrigerant passing opening


8


in the form of a circle which is elongated in the front-to-rear direction. The wall


4




a


has a circular wall


25


surrounding the opening


8


projecting inwardly of the recess


4


.




With the evaporator


1


described above, a refrigerant introduced into the front header


7


from a refrigerant feed pipe


27


(see

FIG. 1

) at the right side of the evaporator flows into the flat tubes


5


from the header


7


. The refrigerant flows through the U-shaped channel inside each tube


5


into the rear header


6


.




The front and rear straight channel portions


5




a


,


5




b


of the flat tube


5


are provided respectively with the vertically elongated rectifying ridges


15


,


16


, so that the refrigerant flows straight through these channel portions


5




a


,


5




b


without entailing an increased refrigerant pressure loss when flowing through the U-shaped refrigerant channel of the flat tube


5


.




The channel turn portion


5




c


of each flat tube


5


has the rectifying portion


11


in its central part and the refrigerant mixing portions


10


,


10


on the front end rear sides of the rectifying portion


11


. This rectifies the flow of refrigerant and mixes the refrigerant in the channel turn portion


5




c


at the same time, causing the fluid to flow smoothly through the turn portion


5




c


to achieve an improved heat transfer coefficient and eliminating stagnation and irregularities from the flow of refrigerant in the vicinity of the channel turn portion


5




c


for the evaporator to exhibit further improved performance.




The refrigerant is discharged from the rear header


6


to the outside via a refrigerant discharge pipe


28


connected to the right end of the header


6


.




On the other hand, air flows through the clearances accommodating corrugated fins


24


and formed between the adjacent flat tubes


5


of the evaporator


1


and between the tube


5


and the side plate


20


at each end, whereby the refrigerant and air are efficiently subjected to heat exchange through the plates


2


and the corrugated fins


24


.




It is desired to provide a partition at the bottom of header recess


4


of the plate


2


at a required part of each of the rear and front headers


6


,


7


of the evaporator


1


as will be described later so that the refrigerant flows through the evaporator


1


zigzag in its entirety.




According to the present embodiment, the ridges


15


,


16


of the front and rear straight channel forming portions of the channel recess


3


of each plate


2


, and the long projections


13


and small projections of the channel turn portion


3




c


of the recess


3


have a height twice the depth of the recess


3


and are joined at their top ends to the respective bottom walls


17


and


18


of the plate opposed thereto. The ridges


15


,


16


, long projections


13


and small projections


12


are therefore each joined over an increased area, giving enhanced pressure resistant strength to the evaporator


1


.




The vertically elongated rectifying ridges


15


,


16


of the front and roar straight channel forming portions


3




a


,


3




b


of the channel recesses


3


are provided for the front and rear straight channel portions


5




a


,


5




b


of refrigerant channel of the flat tube


5


of the adjacent plates


2


,


2


as joined together and are positioned symmetrically on the front and rear sides of the channel center line. The turn portions


3




c


of the opposed recesses


3


have the multiplicity of small projections


12


for forming the refrigerant mixing portions


10


and the long projections


13


for forming the rectifying portion


11


, and these projections except for those positioned centrally of the turn portions


3




c


, are alternately arranged inside the assembly of adjacent plates


2


,


2


and are positioned symmetrically as a whole on the front and rear sides of the turn portion center line. Because of these features, the long rectifying ridges


15


,


16


, long projections


13


and projection


12


on each plate


2


can be smaller in number. The plate


2


can therefore be formed by facilitated press work.





FIG. 7

shows a second embodiment of the present invention, which differs from the first embodiment in that the U-shaped refrigerant channel turn portion


5




c


of each flat tube


5


is provided with a refrigerant mixing portion


10


in its central part and rectifying portions


11


,


11


at the front and rear sides of the mixing portion


10


.




More specifically, the turn portion


3




c


of U-shaped refrigerant channel recess


3


of each plate


2


has seven small projections


12


for forming the mixing portion


10


. These projections


12


, except for those positioned centrally of the turn portion


3




c


, have a height twice the depth of the recess


3


. With the adjacent plates


2


,


2


fitted together, such projections


12


with the above-mentioned height are arranged alternately and positioned symmetrically in the front and rear parts of the whole channel turn portion


5




c


of U-shaped refrigerant channel of the flat tube


5


. Like the partition ridge


9


at the widthwise midportion of the recess


3


and the plate peripheral edge portion


19


, the two circular small projections


22


in the center of the turn portion


3




c


have a height equal to the depth of the recess


3


.




The front part of recess turn portion


3




c


is provided with two parallel long projections


13


generally L-shaped, having an inward horizontal portion and larger in size when positioned outward, and a long projection


13


generally L-shaped and positioned in the rear of the former projection. These projections


13


have a height twice the depth of the recess


3


, With the adjacent plates


2


,


2


fitted together, these projections of the plates are arranged alternately and positioned symmetrically as a whole in the front and rear parts of the turn portion


5




c


of U-shaped refrigerant channel of the flat tube


5


.




The adjacent plates


22


are fitted to each other in layers with their recesses


3


,


3


opposed, and in the recess turn portion


3




c


of one of the plates, i.e., first plate


2


, the small projections


12


and the L-shaped long projections


13


are joined at their top ends to the bottom wall


18


of turn portion


3




c


of the other plate, i.e., second plate


2


. Thus, the U-shaped refrigerant channel turn portion


5




c


of the flat tube


5


is formed with the refrigerant mixing portion


10


centrally thereof which portion


10


comprises a multiplicity of small projections


22


,


12


, and rectifying portions


11


,


12


positioned at the front and rear sides of the portion


10


and comprising generally L-shaped long projections


13


.




With the evaporator


1


of the second embodiment as in the case of the first embodiment, the refrigerant flows straight through the front and rear straight channel portions


5




a


,


5




b


of the flat tube


5


when flowing through the U-shaped channel inside each flat tube


5


. In the channel turn portion


5




c


, the refrigerant rapidly flows along the L-shaped parallel long projections


13


when passing through the front and rear rectifying portions


11


,


11


. The multiplicity of small projections


12


of the mixing portion


10


thoroughly mixes the refrigerant in the central part of the channel turn portion


5




c.






Consequently the channel turn portion


5




c


of each flat tube


5


rectifies the flow of refrigerant and mixes the fluid at the same time, permitting the refrigerant to flow through this portion


5




c


smoothly to achieve an improved heat transfer coefficient with the U-shaped channel of the conventional flat tube, the flow of refrigerant stagnates in the return channel portion upon passing through the turn portion, whereas the flat tube of the invention is free of stagnation, is diminished in refrigerant pressure loss and can therefore be expected to exhibit greatly improved performance.




FIGS,


8


to


11


show a third embodiment of the invention, which differs from the second embodiment with respect to the following. With reference to

FIGS. 8 and 9

, the front and rear straight channel forming portions at opposite sides of the central partition ridge


9


of the channel recess


3


of each plate


2


are provided with vertically elongated rectifying ridges


21


which are arranged in parallel at a spacing and which have a height equal to the depth of the recess


3


(accordingly equal to the height of the ridge


9


). The turn portion


3




c


has front and rear rectifying portions


11


,


11


, which comprise generally L-shaped long projections


13


equidistantly arranged in parallel, having an inward horizontal portion and increasing in size forwardly or rearwardly outward. The turn portion


3




c


has in its central part small projections which are twelve in total number to provide a refrigerant mixing portion


10


. These long projections


13


and small projections


12


have a height equal to the depth of the recess


3


(accordingly equal to the height of the partition ridge


9


).




With the layered evaporator


1


described which comprises pairs of adjacent plates


2


,


2


, each pair of adjacent plates


2


,


2


are joined together with their recesses


3


,


3


, as well as the recesses


4


,


4


, opposed to each other. At this time, the central partition ridges


9


of the channel recesses


3


,


3


, as well as the vertically elongated rectifying ridges


21


of the straight channel forming portions at the front and rear sides of the ridges


9


, are joined together end-to-end. In the turn portions


3




c


,


3




c


of the recesses


3


,


3


, the opposed small projections


12


, as well as the opposed long projections


13


, are joined together end-to-end. Consequently, the adjacent plates


2


,


2


, when fitted together, provide a flat tube


5


having a U-shaped refrigerant channel of exactly the same shape as those of the first embodiments, The flat tubes


5


thus formed are arranged side by side.




As is the case with the second embodiment, therefore, the channel turn portion


5




c


of each flat tube


5


rectifies the flow of refrigerant and mixes the refrigerant at the same time, achieving an improved heat transfer coefficient and diminishing the refrigerant pressure loss to result in improved performance.




With reference to

FIG. 10

, the bottom walls


4




a


,


4




a


of the front and rear two header recesses


4


,


4


of each plate


2


are each formed with a refrigerant passing opening


8


in the form of a circle which is elongated in the front-to-rear direction. Each opening


8


in one of the two adjacent plates


2


,


2


is defined by a first annular wall


25


projecting inwardly of the header recess


4


. Each opening


8


in the other plate


2


is defined by a second annular wall


26


projecting outward from the header recess


4


and fittable in the first annular wall


25


. When a multiplicity of plates


2


are fitted together in layers to form parallel flat tubes


5


, the adjacent flat tubes


5


,


5


have plates


2


,


2


which are opposed to each other. These plates


2


,


2


are brazed to each other with the second annular wall


26


of each header recess bottom wall


4




a


of one of the plates


2


,


2


fitting in the first annular wall


25


of each header recess bottom wall


4




a


of the other plate


2


.




Further as shown in

FIG. 11

, a refrigerant inlet pipe


30


is connected to the left ends of the front and rear headers


7


,


6


of the evaporator


1


, and a refrigerant outlet pipe


31


to the right ends of the headers


7


,


6


.





FIG. 12

shows a fourth embodiment of the invention, in which as in the third embodiment, the front and rear straight channel forming portions at opposite sides of the central partition ridge


9


of channel recess


3


of each plate


2


are provided with vertically elongated rectifying ridges


21


which are equidistantly arranged in parallel and which have a height equal to the depth of the recess


3


(accordingly equal to the height of the ridge


9


).




Further as is the case with the first embodiment, the turn portion


3




c


of U-shaped channel recess


3


of each plate


2


has a rectifying portion


11


centrally thereof, and refrigerant mixing portions


10


,


10


in front of and in the rear of the portion


11


.




Although a multiplicity of small projections


12


for forming the mixing portions


10


and long projections


13


for forming the rectifying portion


11


are arranged in substantially the same pattern as in the first embodiment, the small projections


12


of the mixing portion


10


and the long projections


13


of the rectifying portion


11


have a height equal to the depth of the recess


3


(accordingly equal to the height of the partition ridge


9


).




The channel turn portion


3




c


has no reinforcing projection at a corner thereof.




With the layered evaporator


1


described above which comprises pairs of adjacent plates


2


,


2


, each pair of adjacent plates


2


,


2


are joined together with their recesses


3


,


3


, as well as the recesses


4


,


4


, opposed to each other. At this time, the central partition ridges


9


of the channel recesses


3


,


3


, as well as the vertically elongated rectifying ridges


21


of the straight channel forming portions


3




a


,


3




b


, are joined together end-to-end. In the turn portions


3




c


,


3




c


of the recesses


3


,


3


, the opposed small projections


12


of the mixing portions


10


, as well as the opposed long projections


13


, are joined together end-to-end. Consequently, a U-shaped refrigerant channel of substantially the same shape as in the first embodiment is formed in each flat tube


5


of the evaporator


1


.




Thus, the channel turn portion


5




c


rectifies the flow of refrigerant and mixes the refrigerant at the same time when the refrigerant flows three each flat tube


5


. The same effect and advantage as in the case of the first embodiment can therefore be expected.





FIGS. 13

to


16


show a fifth embodiment of the invention, which differs from the fourth embodiment in respect of the following. This embodiment, i.e., layered evaporator


1


, comprises plates


32


having a size corresponding to two plater


2


of the fourth embodiment as interconnected by a joint


33


. Flat tubes


5


and front and rear headers


7


,


6


communicating with the front and rear ends of U-shaped refrigerant channels of the tubes


5


are formed by folding the plates


32


.




Each of the upper half


32


A and lower halft


32


B has a U-shaped channel forming recess


3


including a turn portion


3




c


, the central part of which has a rectifying portion


11


. Refrigerant mixing portions


10


,


10


are provided in front of and in the rear of the rectifying portion


11


. However, this embodiment has exactly the same construction as the fourth embodiment with respect to the following. The recess


3


has front and rear straight channel forming portions on the front and rear sides of its central partition ridge


9


, and these portions have vertically elongated rectifying ridges


21


which are spaced apart by a distance in parallel and which have a height equal to the depth of the recess


3


. A multiplicity of small projections


12


for forming the refrigerant mixing portions


10


and long projections


13


for forming the central rectifying portion


11


are arranged in the same pattern as in the fourth embodiment.




The small projections


12


for forming the mixing portion


10


and the long projections


13


for constituting the rectifying portion


11


in the first to fifth embodiments are not limited in shape to those illustrated but can be shaped otherwise.





FIGS. 17

to


21


and

FIG. 24

show a sixth embodiment of the invention, i.e., a layered evaporator


1


.




Each plate


2


of the evaporator


1


has a channel recess


3


, which has a vertically elongated partition ridge


9


at the widthwise midportion thereof. The ridge


9


has the same height as the peripheral edge portion


19


of the plate


2


and extends from the upper end of the recess


3


to a position close to the lower end thereof.




The recess


3


of the plate


2


has a multiplicity of ridges


15


,


16


having a height twice the depth of the recess


3


. While the evaporator


1


comprises pairs of adjacent plates


2


, the ridges


15


,


16


of each pair of plates


2


,


2


as joined together form independent parallel U-shaped divided refrigerant passages inside a flat tube


5


provided by the pair.




Stated more specifically with reference to

FIG. 20

, each ridge


15


(


16


) comprises a straight portion


15




a


(


16




a


) provided in a front (rear) straight channel forming portion


3




a


(


3




b


) of the recess


3


, and a quarter circular-arc portion


15




b


(


16




b


) provided in a turn portion


3




c


of the recess and continuous with the straight portion. The ridge has exactly one half of U-shape.




When the pair of plates


2


are fitted together with their recessed


3


,


3


opposed to each other, these straight portions


15




a


,


16




a


and the quarter circular-arc portions


15




b


,


16




b


of the ridges


15


,


16


are arranged alternately.




With the two plates


2


,


2


fitted together, the opposed partition ridges


9


,


9


, as well as the opposed plate peripheral edge portions


19


,


19


, butt against and are joined to each other, and the straight portions


15




a


,


16




a


and circular-arc portions


15




b


,


16




b


of the ridges


15


,


16


are joined at their top ends to the bottom wall


18


of recess of the plate


2


opposted thereto, whereby nine parallel U-shaped refrigerant passages as divided by the ridges


15


,


16


are formed in the U-shaped refrigerant channel of the flat tube


5


. The turn portion of each passage is semicircular.




As shown in

FIG. 21

, the divided passages are nearly square in cross section so as to permit uniform distribution of liquid throughout the U-shaped refrigerant channel of the flat tube


5


and to ensure a joint area between the tube


5


and a fin


24


, With respect to the cross sectional area of the divided passages, those positioned inward are largest, outward passages are smallest, and intermediate passages are equal to one another or larger if closer toward inside. This renders the flow velocity uniform transversely of the channel.




Generally triangular front and rear reinforcing projections


35


having the same height as the peripheral edge portion


19


of the plate


2


are provided respectively at the lower-end front and rear corners of the plate


2


(see FIGS.


19


and


20


).




Further as seen in

FIG. 38

, each plate


2


has two header recesses


4


,


4


each having a refrigerant passing opening


8


. The opening


8


of one of the recesses


4


has an annular wall


26


formed by burring and projecting outward from the recess


4


. When the opposed plates


2


,


2


of each two adjacent flat tubes


5


are fitted together, in the front and rear headers


7


,


6


, the annular wall


26


around the opening


8


of the header recess


4


of one of the plates


2


is fitted in the opening


8


of the recess


4


of the other plate


2


opposed thereto.





FIG. 24

shows the overall refrigerant passage of layered evaporator


1


of the sixth embodiment which will be described below.




With reference to the drawing, a refrigerant inlet


41


is provided at the left end of rear header


6


of the evaporator


1


, and a refrigerant outlet


42


at the right end of the front header


7


.




The rear header


6


has a partition


46


at a position rightwardly away from its left end by about ⅓ of the length of the header. The front header


7


has a partition


45


at a position leftwardly away from its right end by about ⅓ of the length of the header. The rear header partition


46


is formed by not forming the refrigerant passing opening in the recess of the plate


2


concerned. The front header partition


45


is formed similarly by not forming the opening.




A refrigerant inlet pipe


30


has an opening corresponding to the refrigerant inlet


41


, and a refrigerant outlet pipe


31


has an opening corresponding to the refrigerant outlet


42


. A zigzag refrigerant passage


40


is thus formed which is divided into three passageways, i.e., an inlet passageway


40


A, outlet passageway


40


C and intermediate passageway


40


B between the two passageways


40


A,


40


C, and in which the refrigerant flows through the outlet passageway in a counter-current relation with the flow of air.




The refrigerant is introduced into the rear header


6


through a feed pipe


27


and the inlet pipe


30


at the left side of the evaporator


1


(see

FIG. 17

) by way of the refrigerant inlet


41


. The refrigerant is turned by the rear header partition


46


and flows through the inlet passageway


40


A countercurrently against the air flow, is turned by the front header partition


45


and flows through the intermediate passageway


40


B concurrently with the air flow, then flows through the outlet passageway


40


C countercurrently against the air flow and is thereafter discharged from pipe discharge pipe


28


via the outlet


42


.




On the other hand, air flows in the direction of arrow X shown in the drawing, that is, from the front rearward to pass through the clearances between the adjacent flat tubes


5


and between each side plate


20


and the tube


5


adjacent thereto, the clearances having corrugated fins


24


accommodated therein, whereby the refrigerant and the air are efficiently subjected to heat exchange through the plates


2


and the fins


24


.




With the sixth embodiment described, the refrigerant flows into the evaporator


1


as separated into a vapor and liquid, for example, in a volume ratio of 3:7. Inside the roar header


6


, therefore, the liquid stays at a lower position due to a specific gravity difference, and the refrigerant flows into the flat tube


5


at an approximately uniform vapor-liquid distribution ratio with respect to the widthwise direction. Since tho height of inner edge of the recess


3


is greater than that of the outer edge thereof, the vapor is caused to flow into the innermost divided refrigerant passage preferentially. The refrigerant boils within the flat tube


5


to result in an increasing vapor phase ratio.




The refrigerant flows through the U-shaped refrigerant channel of each flat tube


5


without mixing between the adjacent divided passages and free of stagnation. Accordingly, vapor-liquid separation occurs in only one divided passage, therefore diminishes and will not entail an increased refrigerant pressure loss. The refrigerant smoothly flows especially through the turn portion, whereby an improved heat transfer coefficient can be attained. Further in the vicinity of the turn portion of the U-shaped flat tube


5


, the refrigerant flows free of stagnation or irregular flows, while traces of oil contained in the refrigerant will not stay. Moreover, the difference in average temperature between the refrigerant and the atmosphere becomes diminished, leading to a further improved heat transfer coefficient.




The partitions


45


,


46


in the respective front and rear headers


7


,


6


need not always be disposed at a position away from the right or left end by exactly ⅓ of the length of the headers, but the position can be suitably altered rightward or leftward with the heat exchange efficiency taken into consideration. Although the sixth embodiment described has three passageways


40


A to


40


C, two partitions


45


and two partitions


46


may be provided in the front and rear headers


7


,


6


, respectively, as arranged alternately to provide five passageways including an outlet passageway wherein a countercurrent flow is produced against the air flow. An odd number of passageways, not smaller than 7 in number, can be used.





FIGS. 22 and 23

shows a modified plate


2


for use in the evaporator


1


according to the sixth embodiment. With this modification, the ridges


15


,


16


of the channel recess


3


of the plate


2


are separated into straight portions


15


A,


16


A and quarter circular-arc portions


15


B,


16


B, respectively, with the upper ends of the are portions


15


B,


16


B displaced from the lower ends of the straight portions


15


A,


16


A by one-half of the ridge pitch.




Such modified plates


2


,


2


are fitted together with their recesses


3


,


3


, as well as the recesses


4


,


4


, opposed to each other, the central partition ridges


9


,


9


opposed to each other, as well as the peripheral edge portions


19


,


19


of the plates, are butted against and joined to each other, and the independent straight portions


15


A,


16


A and the quarter circular-arc portions


151


,


16


B of the ridges


15


,


16


are joined at their top ends to the bottom wall


18


of channel recess


3


of the plate


2


opposed thereto.




Consequently, nine divided parallel U-shaped refrigerant passages are formed in the U-shaped refrigerant channel of the resulting flat tube


5


as in the case of the sixth embodiment.




With the modification, the front and rear corners of the lower end of the plate


2


are provided with generally triangular front and rear reinforcing projections


35


,


35


, respectively, which have the same height as the plate peripheral edge portion


19


. As shown in

FIGS. 22 and 23

, a bore


39


defined by an annular wall


38


is formed by burring in one of the projections


35


, and the other projection


35


is formed with a hole


36


for the annular wall


38


to fit in.




Accordingly when two plates


2


,


2


are fitted and joined to each other, the annular wall


38


of the projection


35


of one of the plates is fitted into the hole


36


of the projection


35


of the other plate, whereby the adjacent plates


2


,


2


can be accurately positioned relative to each other. This eliminates the need to crimp the peripheral edge portion of the plate


2


as conventionally done, making the plates accurately settable for brazing and positionable relative to each other within the furnace and obviating brazing faults and faults in the internal circuit due to positioning errors. In the front and rear headers


7


,


6


, and annular wall


26


around the refrigerant opening


8


is fitted into the opening


8


in the plate


2


opposed thereto. Thus, these fitting means prevent errors in positioning the plates


2


of the whole evaporator


1


.




The ridges


15


,


16


provided on the plate


2


according to the foregoing sixth embodiment or modification are not limited to those shown in shape but can be modified variously insofar as parallel U-shaped divided refrigerant passages can be formed in the assembly of the adjacent plates


2


,


2


.




With the plates


2


of the sixth embodiment and the modification, the ridges


15


,


16


are so disposed as to be alternately arranged in the assembly of adjacent plates


2


,


2


, and the U-shaped passages of the resulting flat tube


5


are arranged in the front and rear portions of the channel symmetrically as a whole, so that the number of ridges


15


,


16


on the plate


2


can be smaller. Thus makes the plate


2


simple in configuration, easy to shape and less costly to manufacture.




The ridges


15


,


16


in the channel recess


3


of each plate


2


are joined at their top ends to the bottom wall


18


of recess


3


of the palate


2


opposed thereto. This affords an increased joint area, produces joints of line contact instead of spot-to-spot contact and leads to enhanced pressure resistant strength.





FIG. 25

shows a seventh embodiment of the invention, i.e., another layered evaporator


1


, which has the same appearance as the one shown in FIG.


17


.




The evaporator


1


of the seventh embodiment has a refrigerant inlet


41


at the left end of the front header


7


, and a refrigerant outlet


42


at the right end of the header. Partitions


45


are provided in the fornt header


7


at a position rightwardly away from its left end by a distance corresponding to about ¼ of the header length, and at a position leftwardly away from its right end by the same distance. A partition


46


is disposed in the rear header


6


at midportion thereof. The partition


45


of the front header


7


is formed by not forming a refrigerant passing opening


8


in the recess bottom wall


4




a


of the plate


2


concerned. The rear header partition


46


is similarly formed by not forming like opening


8


.




A refrigerant inlet pipe


30


has an opening corresponding to the inlet


41


, and a refrigerant outlet pipe


31


has an opening corresponding to the outlet


42


. Consequently formed is a zigzag refrigerant passage


40


which is divided into an inlet passageway


40


A, outlet passageway


40


C and intermediate passageway


40


B


1


,


40


B


2


positioned between the two passageways


40


A,


40


C, namely, an even number of passageways


40


A,


40


B


1


,


40


B


2


,


40


C, the flow of refrigerant through the outlet passageway


40


C being countercurrent against the flow of air.




The refrigerant admitted from the inlet


41


is turned by the leftward front header partition


45


and flows through the inlet passageway


40


A concurrently with the flow of air, is turned by the rear header partition


46


and flows through the first intermediate passageway


40


B


1


countercurrently against the flow of air, is turned by the rightward front header partition


45


and flows through the second intermediate passageway


40


B


2


concurrently with the flow of air, passes through the outlet passageway


40


C countercurrently against the air flow, and is discharged via the outlet


42


.




The layered evaporator of the seventh embodiment (referred to as the “4-pth counter current type”) was compared with a comparative layered evaporator (referred to as the “4-path concurrent type”) which differed from the fomer only in that the flow of refrigerator through the outlet passageway was concurrent with the flow of air.

FIG. 26

is a graph showing the result.




The graph shows that the evaporator


1


of the 4-path countercurrent type embodying the invention is always greater than the comparative evaporator of the 4-path concurrent type in the quantity of exchanged heat regardless of the refrigerant pressure at the outlet, achieving an improvement of about 10% in the quantity of exchanged heat over the comparative evaporator.




Although not illustrated in the graph, the layered evaporator of the first embodiment, i.e., of the 3-path countercurrent type, and a modification thereof, i.e. a layered evaporator of the 5-path countercurrent type, achieved an improvement of about 10 to 15% in the quantity of exchanged heat over comparative evaporators of the 3-path concurrent type and 5-path concurrent type.




The partitions


45


in the front header


7


of the seventh embodiment need not always be disposed at a distance away from the right or left end by exactly ¼ of the header length, while the position of the partition


46


in the rear header


6


is not limited exactly to the midportion. These partitions are suitably shiftable rightward or leftward in view of the heat exchange efficiency.




Although the seventh embodiment has four passageways, partitions


45


,


46


, five in total number, may be disposed alternately in the front header


7


and rear header


6


, i.e., three on the front side and two on the rear side, to form six passageways including an outlet passageway wherein the refrigerant flow is countercurrent against the air flow. Alternatively, only one partition


45


can be disposed in the front header


7


to form two passageways, one of which is a countercurrent outlet passageway against the air flow.





FIGS. 27

to


29


show an eighth embodiment of the invention.




The illustrated layered evaporator


1


has a refrigerant outlet


42


at the left end of the front header


7


, and a refrigerant discharge pipe


28


connected to the outlet


42


. The rear header


6


has at its left end a pipe hole


44


, through which a refrigerant feed pipe


27


is inserted. The feed pipe


27


comprises an inner pipe portion


27




a


extending rightward into the rear header


6


and an outer pipe portion


27




b


in parallel to the discharge pipe


28


and disposed outside the rear header


6


.




As shown in

FIG. 28

, a partition


46


is provided in the rear header


6


at a position leftwardly away from the right end of the header


6


by a distance corresponding to about ⅓ of the header length. The front header


7


has a partition


45


at a position rightwardly away from its left end by a distance equal to about ⅓ of the header length. The rear header partition


46


is formed with a socket hole


43


. The inner pipe portion


27




a


of the feed pipe


27


is inserted into the rear header


6


with a refrigerant passing clearance left in refrigerant passing openings


8


around the pipe portion


27




a


, and the pipe end is inserted in a socket


43


of the partition


46


of the rear header


6


.




The arrangement described divides the rear header


6


into a first rear header compartment extending from the partition


46


to the right end plate


2


, and a second rear header compartment from the left end plate


2


to the partition


46


. The front header


7


is similarly divided into a first front header compartment extending from the partition


45


to the right end plate


2


, and a second front header compartment from the left end plate


2


to the partition


45


.




Now suppose the evaporator


1


has 15 flat tubes. The first rear header compartment from the rear header partition


46


to the right end plate


2


corresponds to 5 flat tubes


5


, and the second rear header compartment front the left end plate


2


to the partition


46


to 10 flat tubes


5


. On the other hand, the first front header compartment from the front header partition


45


to the right end plate


2


corresponds to 10 flat tubes


5


, and the second front header compartment from the left end plate


2


to the partition


45


to 5 flat tubes


5


.




The interior of the evaporator


1


in its entirety is divided into three passageways


40


A,


40


B,


40


C, i.e., a countercurrent inlet passageway


40


A against the flow of air, a similarly countercurrent outlet passageway


40


C against the flow of air, and an intermediate passageway


40


B which is positioned between the two passageways


40


A,


40


C and wherein the refrigerant flows concurrently with the air flow.




The inlet passageway


40


A comprises the first rear header compartment, for example 5 flat tubes corresponding thereto and the right half of the first front header compartment. The outlet passageway


40


C comprises the second front header compartment, 5 flat tubes


5


corresponding thereto and the left half of the second rear header compartment. The intermediate passageway


40


B between


40


A,


40


C comprises the left of the first front header compartment, 5 flat tubes


5


corresponding thereto and the right half of the second rear header compartment.




The partitions


45


,


46


of the front and rear headers


7


,


6


are each formed by not forming the refrigerant passing opening


8


in the header recess bottom wall


4




a


of the plate


2


concerned.




Now, the refrigerant is admitted into the first rear header compartment of the inlet passageway


40


A from the forward end of inner pipe portion


27




a


of the refrigerant feed pipe


27


. The refrigerant is turned by the right end plate


2


and flows into the corresponding 5 flat tubes


5


and the right half of the first front header compartment. The refrigerant then flows through the opening


8


into the left half of the first front header compartment of the intermediate passageway


40


B, is turned by the partition


45


and flows into the corresponding 5 flat tubes


5


and the right half of the second front header compartment. Finally, the refrigerant passes through the opening


8


into the second front header compartment of the outlet passageway


40


C which is countercurrent to the air flow, is turned by the left end plate


2


, flows into the corresponding 5 flat tubes


5


and the second rear header compartment and is discharged from the outlet


42


to the outside via the discharge pipe


28


.




The inner pipe portion


27




a


of the feed pipe


27


, except for its opposite ends, is internally and externally provided with parallel fins


47


,


48


extending longitudinally of the pipe portion


27




a


as shown in FIG.


29


. Such parallel fins may be provided only on the inner or outer periphery of the pipe


27


.




The forward end of the inner pipe portion


27




a


of the feed pipe


27


is secured by brazing to the peripheral edge of the socket


43


of the rear header partition


46


.




With the layered evaporators


1


of the sixth to eighth embodiments described, the outlet passageway


40


C achieves a higher heat exchange efficiency when countercurrent against the direction X of flow of air than when concurrent therewith for the following reason.




The refrigerant flows into the evaporator


1


in vapor and gas two phases, gradually evaporates within the flat tubes


5


, and is discharged as superheated after evaporation four the prevention of return of liquid to the compressor.




The refrigerant is completely in the form of a gas in the superheat portion, so that the heat transfer coefficient of the superheat portion is as low as about {fraction (1/10)} of that of the evaporation portion, and the superheat portion can be smaller in the entire layered evaporator


1


. This permits provision of larger evaporation portion for an improved efficiency. In the rear half of the outlet passageway


40


C wherein the refrigerant is in a superheated state and which is of the countercurrent type, the air is subjected to heat exchange first with the superheated refrigerant and thereafter with the refrigerant as evaporated in the usual state. In the case of the concurrent type, the air is subjected to heat exchange with the refrigerant in the usual evaporated state and then with superheated refrigerant.




Now, suppose the temperature difference between the refrigerant and air is ΔT, the overall heat transfer coefficient between the refrigerant and air is K, and the area of heat transfer between the refrigerant and air is A. The quantity Q of heat to be exchanged by the superheat portion is expressed by the following equation.








Q=ΔT×K×A








On the other hand, if the quantity of superheat ΔT


sh


is determined, the quantity Q


sh


of heat required for exchange at the superheat portion is expressed by the following equation wherein C


p


is specific heat.








Q




sh




=C




p




×ΔT




sh








Assuming that Q


sh


is definite, ΔT is greater when the outlet passageway


40


C is countercurrent than when it is concurrent, so that the above equations indicate that the area of heat transfer A can be smaller. Thus, the superheat portion in the entire evaporator


1


can be diminished to attain an improved efficiency.




The improved efficiency is available by determining the construction of the refrigerant passage with consideration given to the direction of flow of air which has not been considered in any way. Accordingly, the improvement involves no conflicting factor.





FIGS. 30 and 31

show a ninth embodiment of the invention.




With reference to these drawings, the illustrated layered evaporator


1


has a pipe connecting block


50


formed with a refrigerant feed bore


51


and a refrigerant discharge bore


52


in communication with a refrigerant inlet


41


and a refrigerant outlet


42


, respectively; a refrigerant feed pipe


27


and refrigerant discharge pipe


28


which are connected to the inlet


41


and the outlet


42


by the block


50


; and a platelike mount member


60


for attaching the pipes


27


,


28


to the pipe connecting block


50


.




The block


50


is secured to the evaporator


1


with the downstream end of its feed bore


51


opposed to the inlet


41


and with the upstream end of the discharge bore


52


opposed to the outlet


42


.




The feed pipe


27


and discharge pipe


28


have retaining protuberances


27


A,


28


A formed by beading and each positioned close to its connected end.




The mount member


60


is formed with a U-shaped cutout


61


opened downward for the feed pipe


27


to fit in, and a U-shaped cutout


62


opened rearward for the discharge pipe


28


to fit in.




The inner periphery of the cut out


61


(


62


) is engageable with the retaining protuberance


27


A (


28


A) of the pipe


27


(


28


). A portion of the pipe


27


(


28


) on one side of the protuberance


27


A (


28


A) opposite to the connected pipe end is inserted in the cutout


61


(


62


) of the mount member


60


. The connected end of the feed pipe


27


is inserted into the feed bore


51


in the connecting block


50


from the bore upstream end, and the connected end of the discharge ipe


28


is inserted into the discharge bore


52


in the block


50


from the bore downstream end. The mount member


60


is fastened to the outer side of the block


50


with a screw


66


. In this way, the two pipes,


27


,


28


are connected to the feed inlet


41


and discharge outlet


42


with their retaining protuberance


27


A,


28


A held between the mount member


60


and the connecting block


50


.




The evaporator


1


has a right end plate


47


, which is provided with the discharge outlet


42


communicating with a rear header


6


, and the feed inlet


41


in communication with a front header


7


.




The front header


7


has a partition


46


closer to its left end and formed with a hole


43


for inserting the forward end


57




a


of an inner pipe


57


. A retaining protuberance


58


is formed by beading on the inner pipe


57


at a position close to its forward end.




The inner pipe end


57




a


is inserted through the hole


43


in the partition


46


. The right end of the inner pipe


57


is inserted in an annular stepped portion formed in the block


50


around the downstream end of the feed bore


51


. These pipe ends are secured by brazing. The left ends of type front and rear headers


7


,


6


are closed with a plate


48


.




Annular stepped portions


54


,


56


are formed in the outer side of the connecting block


50


around the bores


51


and


52


, respectively. An O-ring


55


is filled in each of the stepped portions


54


,


55


.




The feed pipe


27


is fitted in the U-shaped cutout


51


of the mount member


60


from below. The discharge pipe


20


is fitted in the cutout


62


from behind.




The block


50


is centrally formed with a screw bore


59


for the screw


66


to be screwed in. The mount member


60


is centrally formed with a bole


65


corresponding to the bore


59


. The mount member


60


is attached to the outer side of the block


50


by driving the screw


66


into the bore


59


of the block


50


through the hole


65


in the mount member


60


.




The front and rear headers


7


,


6


are divided by the partitions


45


,


46


at required portions into two header compartments


7


A,


7


B and two header compartments


6


A,


6


B, respectively.




These header compartments


7


A,


7


B,


6


A,


6


B and flat tubes


5


form a zigzag refrigerant passage which extends, as indicated by arrows in

FIG. 31

, from the first header compartment


7


A at the left of the front header


7


, via parallel flat tubes


5


at the left, left intermediate header compartment


6


A of the rear header


6


, central parallel flat tubes


5


, right intermediate header compartment


7


B of the front header


7


and parallel flat tubes


5


at the right, to right final header compartment


6


B of the rear header


6


.





FIG. 32

shows a tenth embodiment of the invention, which differs from the above ninth embodiment with respect to the following. The right end portion of the inner pipe


57


is enlarged by flaring into a large-diameter portion


57




b


, while the pipe connecting block


50


is formed around the feed bore


51


with a stepped portion


67


engageable with the large-diameter portion


57




b


of the inner pipe


57


, and a stepped portion


68


for accommodating an O-ring


55


.




The large right end of the inner pipe


57


is fitted in the block


50


in engagement with the stepped portion


57


. This eliminates the need to provide the retaining protuberance


58


on the pipe


57


toward its forward end.




According to the ninth and tenth embodiments, the refrigerant feed pipe


27


and discharge pipe


28


are removably connected to the evaporator


1


by the pipe connecting block


50


on the mount member


60


, so that the evaporator can be transported or stored with the two pipes


27


,


28


removed. This greatly reduces the space needed. Different pipes


27


,


28


shaped in conformity with the conditions for use can be attached to the same type of evaporators


1


. This results in the advantage of obviating the need to prepare different kinds of evaporators by attaching to evaporators of the same type such pipes of different shapes suited to use.




Although the feed pipe


27


and discharge pipe


28


are both attached by one mount member


60


according to the ninth and tenth embodiments, the mount member may be divided into two segments for individually attaching the pipes


27


,


28


.




The layered heat exchangers of the invention are useful not only as motor vehicle evaporators according to the foregoing embodiments but also for oil coolers, after coolers, radiators and other uses.



Claims
  • 1. A layered heat exchanger comprising:a plurality of pairs of generally rectangular adjacent plates with each plate of said pairs of plates having two straight portions separated by a turn portion wherein said turn portion includes at least one fluid mixing portion and at least one portion having somewhat parallel long projections along a flow of the fluid and each of said straight portions has a plurality of generally U-shaped channel recesses formed in one side thereof so that each said plate of each of said pairs of plates has a side with both generally flat and concave surfaces and a side with both generally flat and convex surfaces so that a first plate of each of said pairs of plates is joined to a second plate of each of said pairs of plates with said convex surfaces of said first plate of said pairs of plates positioned to face said convex surfaces of said second plate of said pairs of plates and to abut a flat surface of said second plate of said pairs of plates to thereby form a plurality of juxtaposed flattened tubes with each tube defining a discrete flow path through which fluid particles travel without mixing with fluid particles in adjacent flow paths, wherein said pairs of plates are arranged in layers having a first pair of plates, a last pair of plates and a plurality of pairs of plates therebetween to form said heat exchanger; a front and a rear header formed from a plurality of header recesses such that each of said header recesses is continuous respectively from said first pair of plates to said last pair of plates with each header recess having a fluid passing opening, wherein said front and rear headers each communicate with an end of said flattened tubes in order for a fluid to flow from an inlet through said headers to said flow paths of said flattened tubes; and wherein said turn portion has said fluid mixing portions located centrally thereof and said rectifying portion located at each of a front side and a rear side of said mixing portion and said rectifying portions include long projections which, at their ends adjacent said mixing portion, are each laterally offset in a direction toward said mixing portion.
  • 2. The layered heat exchanger as defined in claim 1 wherein each of said long projections is L-shaped.
Priority Claims (4)
Number Date Country Kind
5-337439 Dec 1993 JP
6-110890 May 1994 JP
6-193190 Aug 1994 JP
6-233248 Sep 1994 JP
Parent Case Info

This application is a division of prior application Ser. No. 08/803,264 filed Feb. 20, 1997 now U.S. Pat. No. 5,810,077 which is a continuation of Ser. No. 08/365,463 filed Dec. 28, 1994 now abandoned.

US Referenced Citations (3)
Number Name Date Kind
5111878 Kadle May 1992
5125453 Bertrand et al. Jun 1992
5152337 Kawakatsu et al. Oct 1992
Continuations (1)
Number Date Country
Parent 08/365463 Dec 1994 US
Child 08/803264 US