The present invention relates generally to systems for transmitting and receiving digital signals, and in particular, to systems for broadcasting and receiving layered modulation in digital signals.
2. Description of the Related Art
Digital signal communication systems have been used in various fields, including digital TV signal transmission, either terrestrial or satellite.
As the various digital signal communication systems and services evolve, there is a burgeoning demand for increased data throughput and added services. However, it is more difficult to implement either improvement in old systems and new services when it is necessary to replace existing legacy hardware, such as transmitters and receivers. New systems and services are advantaged when they can utilize existing legacy hardware. In the realm of wireless communications, this principle is further highlighted by the limited availability of electromagnetic spectrum. Thus, it is not possible (or at least not practical) to merely transmit enhanced or additional data at a new frequency.
The conventional method of increasing spectral capacity is to move to a higher-order modulation, such as from quadrature phase shift keying (QPSK) to eight phase shift keying (8 PSK) or sixteen quadrature amplitude modulation (16 QAM). Unfortunately, QPSK receivers cannot demodulate conventional 8 PSK or 16 QAM signals. As a result, legacy customers with QPSK receivers must upgrade their receivers in order to continue to receive any signals transmitted with an 8 PSK or 16 QAM modulation.
It is advantageous for systems and methods of transmitting signals to accommodate enhanced and increased data throughput without requiring additional frequency. In addition, it is advantageous for enhanced and increased throughput signals for new receivers to be compatible with legacy receivers. There is further an advantage for systems and methods which allow transmission signals to be upgraded from a source separate from the legacy transmitter.
The present invention obtains these advantages.
Signals, systems and methods for transmitting and receiving non-coherent layered modulation for digital signals are presented. For example, a layered signal for transmitting data, comprises a first signal layer including a first carrier and first signal symbols for a first digital signal transmission and a second signal layer including a second carrier and second signal symbols for a second signal transmission disposed on the first signal layer, wherein the layered signal has the first carrier demodulated and first layer decoded to produce the first signal symbols for a first layer transport, the first signal symbols are remodulated and subtracted from the layered signal to produce the second signal layer, and the second signal layer has the second carrier demodulated and decoded to produce the second signal symbols for a second layer transport.
A receiver of the invention receives the combined layered signal and demodulates it to produce the first carrier and a stable combined signal. The stable combined signal is decoded to produce first layer symbols which are provided to a first layer transport. The first layer symbols are also used to construct an idealized first layer signal. The idealized first layer signal is subtracted from the stable combined layered signal to produce the second layer signal. The second layer signal is demodulated, decoded and the output second layer symbols are provided to a second layer transport.
In the invention, a second (lower) layer of modulation is added to a first (upper) layer of modulation. Such an approach affords backwards-compatible implementation, i.e. legacy equipment can remain unchanged and continue to transmit and receive signals while new equipment may simultaneously transmit and receive enhanced signals. The addition of the second layer provides increased capacity and services to receivers that can process information from both layers. The upper and lower layer signals may be non-coherent; there is no required carrier phase relationship between the two signal layers.
Alternate embodiments may abandon backward compatibility with particular legacy equipment. However, layered modulation may still be used to provide expanded services with future system upgrades. Furthermore, as will be readily apparent to those skilled in the art, the principle of the invention may be extended to additional layers of modulation, with independent modulations, forward error correction (FEC) coding and code rates as the system may support in the future, while maintaining backward compatibility. The present invention provides many advantages.
For example, spectral efficiency may be significantly increased while maintaining backward compatibility with pre-existing receivers; if both layers use the same modulation with the same code rate, the spectral efficiency may be doubled. The present invention is more energy efficient and more bandwidth efficient than other backwards-compatible techniques using adapted 8 PSK and 16 QAM.
While it can achieve at least the spectral efficiency of a 16 QAM modulation, the new modulation of the present invention does not require a linear traveling wave tube amplifier (TWTA) as with 16 QAM. All layers may use QPSK or 8 PSK, which are much more insensitive to TWTA nonlinearity. Also, by using QPSK modulation for all layers in the present invention, there is no additional performance penalty imposed on 8 PSK or 16 QAM due to carrier phase recovery error.
Also with the present invention, because the signals of different layers are non-coherent there is no required coordination in transmitting the separate layers. Therefore, the signal of a new layer may be transmitted from a different TWTA or even a different satellite. This allows implementation of the backward-compatible scheme at a later date, such as when a TWTA can output sufficient power to support multiple-layered modulations.
In addition, in typical embodiment the upper layers of the present invention are much more robust to rain fade. Only the lower layer is subject to the same rain fade as the current signal waveform does. As the legacy signal level is moved up in power, existing subscribers will experience far fewer service disruptions from rain fade.
Referring now to the drawings in which like reference numbers represent corresponding parts throughout:
In the following description, reference is made to the accompanying drawings which form a part hereof, and which show, by way of illustration, several embodiments of the present invention. It is understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
The present invention provides for the modulation of signals at different power levels and advantageously for the signals to be non-coherent from each layer. In addition, independent modulation and coding of the signals may be performed. Backwards compatibility with legacy receivers, such as a quadrature phase shift keying (QPSK) receiver is enabled and new services are provided to new receivers. A typical new receiver of the present invention uses two demodulators and one remodulator as will be described in detail hereafter.
In a typical backwards-compatible embodiment of the present invention, the legacy QPSK signal is boosted in power to a higher transmission (and reception) level. This creates a power “room” in which a new lower layer signal may operate. The legacy receiver will not be able to distinguish the new lower layer signal, from additive white Gaussian noise, and thus operates in the usual manner. The optimum selection of the layer power levels is based on accommodating the legacy equipment, as well as the desired new throughput and services.
The new lower layer signal is provided with a sufficient carrier to thermal noise ratio to function properly. The new lower layer signal and the boosted legacy signal are non-coherent with respect to each other. Therefore, the new lower layer signal can be implemented from a different TWTA and even from a different satellite. The new lower layer signal format is also independent of the legacy format, e.g., it may be QPSK or 8 PSK, using the conventional concatenated FEC code or using a new Turbo code. The lower layer signal may even be an analog signal.
The combined layered signal is demodulated and decoded by first demodulating the upper layer to remove the upper carrier. The stabilized layered signal may then have the upper layer FEC decoded and the output upper layer symbols communicated to the upper layer transport. The upper layer symbols are also employed in a remodulator, to generate an idealized upper layer signal. The idealized upper layer signal is then subtracted from the stable layered signal to reveal the lower layer signal. The lower layer signal is then demodulated and FEC decoded and communicated to the lower layer transport.
Signals, systems and methods using the present invention may be used to supplement a pre-existing transmission compatible with legacy receiving hardware in a backwards-compatible application or as part of a preplanned layered modulation architecture providing one or more additional layers at a present or at a later date.
Hereafter the invention will be described in terms of particular applications which are backwards compatible and non-backwards compatible. “Backwards compatible” in this sense describes supplemental signal layers applied to systems previously implemented. In these applications, the pre-existing system architecture must be accommodated by the architecture of the additional signal layers. “Non-backwards compatible” describes a system architecture which makes use of layered modulation, but there is no pre-existing equipment.
The pre-existing legacy IRDs 322 decode and make use of data only from the layer (or layers) they were designed to receive, unaffected by the additional layers. However, as will be described hereafter, the legacy signals may be modified to optimally implement the new layers. The present invention may be applied to existing direct satellite services which are broadcast to individual users in order to enable additional features and services with new receivers without adversely affecting legacy receivers and without requiring additional signal frequency.
In order for the subtraction to leave a clean small lower layer signal, the upper layer signal must be precisely reproduced. The modulated signal may have been distorted, for example, by TWTA non-linearity. The distortion effects are estimated from the received signal after the fact or from TWTA characteristics which may be downloaded into the IRD in AM-AM and/or AM-PM maps 418, used to eliminate the distortion.
A subtracter 412 then subtracts the idealized upper layer signal from the stable demodulated signal 420. This leaves the lower-power second layer signal. The subtracter includes a buffer or delay function to retain the stable demodulated signal 420 while the idealized upper layer signal is being constructed. The second layer signal is demodulated 410 and FEC decoded 408 according to its signal format.
The following analysis describes the exemplary two layer demodulation and decoding. It will be apparent to those skilled in the art that additional layers may be demodulated and decoded in a similar manner. The incoming combined signal is represented as:
where, MU is the magnitude of the upper layer QPSK signal and ML is the magnitude of the lower layer QPSK signal and ML<<MU. The signal frequencies and phase for the upper and lower layer signals are respectively ωU,θUand ωU,θU. The symbol timing misalignment between the upper and lower layers is ΔTm. p(t−mT) represents the time shifted version of the pulse shaping filter p(t) 414 employed in signal modulation. QPSK symbols SUm and SLm are elements of
fU(•) and fL(•) denote the distortion function of the TWTAs for the respective signals.
Ignoring fU(•) and fL(•) and noise n(t), the following represents the output of the demodulator 404 to the FEC decoder 402 after removing the upper carrier:
Because of the magnitude difference between MU and ML, the upper layer decoder 402 disregards the ML component of the s′UL(t).
After subtracting the upper layer from sUL(t) in the subtracter 412, the following remains:
Any distortion effects, such as TWTA nonlinearity effects are estimated for signal subtraction. In a typical embodiment of the present invention, the upper and lower layer frequencies are substantially equal. Significant improvements in system efficiency can be obtained by using a frequency offset between layers.
Using the present invention, two-layered backward compatible modulation with QPSK doubles a current 6/7 rate capacity by adding a TWTA approximately 6.2 dB above an existing TWTA power. New QPSK signals may be transmitted from a separate transmitter, from a different satellite for example. In addition, there is no need for linear travelling wave tube amplifiers (TWTAs) as with 16 QAM. Also, no phase error penalty is imposed on higher order modulations such as 8 PSK and 16 QAM.
In an alternate embodiment of this backwards compatible application, a code rate of 2/3 may be used for both the upper and lower layers 504, 510. In this case, the CNR of the legacy QPSK signal 502 (with a code rate of 2/3) is approximately 5.8 dB. The legacy signal 502 is boosted by approximately 5.3 dB to approximately 11.1 dB (4.1 dB above the legacy QPSK signal 502 with a code rate of 2/3) to form the upper QPSK layer 504. The new lower QPSK layer 510 has a CNR of approximately 3.8 dB. The total signal and noise of the lower layer 510 is kept at or below approximately 5.3 dB, the tolerable noise floor 506 of the upper QPSK layer. In this case, overall capacity is improved by 1.55 and the effective rate for legacy IRDs will be 7/9 of that before implementing the layered modulation.
In a further embodiment of a backwards compatible application of the present invention the code rates between the upper and lower layers 504, 510 may be mixed. For example, the legacy QPSK signal 502 may be boosted by approximately 5.3 dB to approximately 12.3 dB with the code rate unchanged at 6/7 to create the upper QPSK layer 504. The new lower QPSK layer 510 may use a code rate of 2/3 with a CNR of approximately 3.8 dB. In this case, the total capacity relative to the legacy signal 502 is approximately 1.78. In addition, the legacy IRDs will suffer no rate decrease.
As previously discussed the present invention may also be used in “non-backward compatible” applications. In a first example embodiment, two QPSK layers 504, 510 are used each at a code rate of 2/3. The upper QPSK layer 504 has a CNR of approximately 4.1 dB above its noise floor 506 and the lower QPSK layer 510 also has a CNR of approximately 4.1 dB. The total code and noise level of the lower QPSK layer 510 is approximately 5.5 dB. The total CNR for the upper QPSK signal 504 is approximately 9.4 dB, merely 2.4 dB above the legacy QPSK signal rate 6/7. The capacity is approximately 1.74 compared to the legacy rate 6/7.
The foregoing description including the preferred embodiment of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto. The above specification, examples and data provide a complete description of the manufacture and use of the invention. Since many embodiments of the invention can be made without departing from the scope of the invention, the invention resides in the claims hereinafter appended.
Number | Name | Date | Kind |
---|---|---|---|
3076180 | Havens et al. | Jan 1963 | A |
3383598 | Sanders | May 1968 | A |
3878468 | Falconer et al. | Apr 1975 | A |
3879664 | Monsen | Apr 1975 | A |
3974449 | Falconer | Aug 1976 | A |
4039961 | Ishio et al. | Aug 1977 | A |
4068186 | Sato et al. | Jan 1978 | A |
4213095 | Falconer | Jul 1980 | A |
4253184 | Gitlin et al. | Feb 1981 | A |
4283684 | Satoh | Aug 1981 | A |
4384355 | Werner | May 1983 | A |
RE31351 | Falconer | Aug 1983 | E |
4416015 | Gitlin | Nov 1983 | A |
4500984 | Shimbo et al. | Feb 1985 | A |
4519084 | Langseth | May 1985 | A |
4594725 | Desperben et al. | Jun 1986 | A |
4628507 | Otani | Dec 1986 | A |
4637017 | Assal et al. | Jan 1987 | A |
4647873 | Beckner et al. | Mar 1987 | A |
4654863 | Belfield et al. | Mar 1987 | A |
4670789 | Plume | Jun 1987 | A |
4709374 | Farrow | Nov 1987 | A |
4800573 | Cupo | Jan 1989 | A |
4835790 | Yoshida et al. | May 1989 | A |
4847864 | Cupo | Jul 1989 | A |
4860315 | Hosoda et al. | Aug 1989 | A |
4878030 | Vincze | Oct 1989 | A |
4896369 | Adams et al. | Jan 1990 | A |
4918708 | Pottinger et al. | Apr 1990 | A |
4993047 | Moffat et al. | Feb 1991 | A |
5088110 | Bonnerot et al. | Feb 1992 | A |
5111156 | Keate et al. | May 1992 | A |
5121414 | Levine et al. | Jun 1992 | A |
5199047 | Koch | Mar 1993 | A |
5221908 | Katz et al. | Jun 1993 | A |
5229765 | Gardner | Jul 1993 | A |
5233632 | Baum et al. | Aug 1993 | A |
5285480 | Chennakeshu et al. | Feb 1994 | A |
5317599 | Obata | May 1994 | A |
5329311 | Ward et al. | Jul 1994 | A |
5430770 | Abbey | Jul 1995 | A |
5450623 | Yokoyama et al. | Sep 1995 | A |
5467197 | Hoff | Nov 1995 | A |
5493307 | Tsujimoto | Feb 1996 | A |
5555257 | Dent | Sep 1996 | A |
5557067 | Messelhi | Sep 1996 | A |
5577067 | Zimmerman | Nov 1996 | A |
5577087 | Furuya | Nov 1996 | A |
5579344 | Namekata | Nov 1996 | A |
5581229 | Hunt | Dec 1996 | A |
5602868 | Wilson | Feb 1997 | A |
5603084 | Henry et al. | Feb 1997 | A |
5606286 | Bains | Feb 1997 | A |
5625640 | Palmer et al. | Apr 1997 | A |
5642358 | Dent | Jun 1997 | A |
5648955 | Jensen et al. | Jul 1997 | A |
5732113 | Schmidl et al. | Mar 1998 | A |
5793818 | Claydon et al. | Aug 1998 | A |
5815531 | Dent | Sep 1998 | A |
5828710 | Beale | Oct 1998 | A |
5848060 | Dent | Dec 1998 | A |
5870443 | Rahnema | Feb 1999 | A |
5940025 | Koehnke et al. | Aug 1999 | A |
5956373 | Goldston et al. | Sep 1999 | A |
5960040 | Cai et al. | Sep 1999 | A |
5963845 | Floury et al. | Oct 1999 | A |
5966048 | Thompson | Oct 1999 | A |
5966186 | Shigihara et al. | Oct 1999 | A |
5966412 | Ramaswamy | Oct 1999 | A |
5970098 | Herzberg | Oct 1999 | A |
5987068 | Cassia et al. | Nov 1999 | A |
6008692 | Escartin | Dec 1999 | A |
6018556 | Janesch et al. | Jan 2000 | A |
6021159 | Nakagawa | Feb 2000 | A |
6028894 | Oishi et al. | Feb 2000 | A |
6032026 | Seki et al. | Feb 2000 | A |
6034952 | Dohi et al. | Mar 2000 | A |
6055278 | Ho et al. | Apr 2000 | A |
6061393 | Tsui et al. | May 2000 | A |
6084919 | Kleider et al. | Jul 2000 | A |
6108374 | Balachandran et al. | Aug 2000 | A |
6125148 | Frodigh et al. | Sep 2000 | A |
6128357 | Lu et al. | Oct 2000 | A |
6131013 | Bergstrom et al. | Oct 2000 | A |
6140809 | Doi | Oct 2000 | A |
6141534 | Snell et al. | Oct 2000 | A |
6144708 | Maruyama | Nov 2000 | A |
6166601 | Shalom et al. | Dec 2000 | A |
6178158 | Suzuki et al. | Jan 2001 | B1 |
6188717 | Kaiser et al. | Feb 2001 | B1 |
6212360 | Fleming et al. | Apr 2001 | B1 |
6219095 | Zhang et al. | Apr 2001 | B1 |
6249180 | Maalej et al. | Jun 2001 | B1 |
6266534 | Raith et al. | Jul 2001 | B1 |
6272679 | Norin | Aug 2001 | B1 |
6275678 | Bethscheider et al. | Aug 2001 | B1 |
6304594 | Salinger | Oct 2001 | B1 |
6307435 | Nguyen et al. | Oct 2001 | B1 |
6320919 | Khayrallah et al. | Nov 2001 | B1 |
6330336 | Kasama | Dec 2001 | B1 |
6333924 | Porcelli et al. | Dec 2001 | B1 |
6366309 | Siegle | Apr 2002 | B1 |
6369648 | Kirkman | Apr 2002 | B1 |
6892068 | Karabinis et al. | Apr 2002 | B2 |
6389002 | Schilling | May 2002 | B1 |
6411659 | Liu et al. | Jun 2002 | B1 |
6411797 | Estinto | Jun 2002 | B1 |
6426822 | Winter et al. | Jul 2002 | B1 |
6429740 | Nguyen et al. | Aug 2002 | B1 |
6433835 | Hartson et al. | Aug 2002 | B1 |
6477398 | Mills | Nov 2002 | B1 |
6515713 | Nam | Feb 2003 | B1 |
6535497 | Raith | Mar 2003 | B1 |
6574235 | Arslan et al. | Jun 2003 | B1 |
6597750 | Knutson et al. | Jul 2003 | B1 |
6718184 | Aiken et al. | Apr 2004 | B1 |
6731700 | Yakhnich et al. | May 2004 | B1 |
6745050 | Forsythe et al. | Jun 2004 | B1 |
6775521 | Chen | Aug 2004 | B1 |
6934314 | Harles et al. | Aug 2005 | B2 |
6970496 | Ben-Bassat et al. | Nov 2005 | B1 |
20010012322 | Nagaoka et al. | Aug 2001 | A1 |
20010024479 | Samarasooriya | Sep 2001 | A1 |
20020006795 | Norin et al. | Jan 2002 | A1 |
20020071506 | Lindquist et al. | Jun 2002 | A1 |
20020158619 | Chen | Oct 2002 | A1 |
20020176516 | Jeske et al. | Nov 2002 | A1 |
20030002471 | Crawford et al. | Jan 2003 | A1 |
20030138037 | Kaku et al. | Jul 2003 | A1 |
20040146296 | Garszberg et al. | Jul 2004 | A1 |
20050008100 | Chen | Jan 2005 | A1 |
20060056541 | Chen et al. | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
3642213 | Dec 1986 | DE |
0222076 | Aug 1986 | EP |
0 238 822 | Sep 1987 | EP |
0 356 096 | Feb 1990 | EP |
2696295 | Apr 1994 | FR |
2-5631 | Jan 1990 | JP |
2-95033 | Apr 1990 | JP |
03139027 | Jun 1991 | JP |
5-41683 | Feb 1993 | JP |
5-114878 | May 1993 | JP |
5-252084 | Sep 1993 | JP |
07-038615 | Feb 1995 | JP |
WO 9920001 | Apr 1999 | WO |
WO 0180471 | Oct 2001 | WO |
WO 03105375 | Dec 2003 | WO |
WO 2005074171 | Aug 2005 | WO |
WO 2005086444 | Sep 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20020181604 A1 | Dec 2002 | US |