The present invention relates to the laying of cables in sewers, and in particular to a means for enabling such cables to be laid along the flow channel at the bottom of the sewer.
In order to install a new hardwired network, it is necessary to provide cables linking the various nodes in the network. Often, this will require the cables to link nodes at one address with nodes at one or more different addresses. In order to minimise disruption caused by the laying of new cables, some network installers have taken to laying cables within sewer pipes rather than constructing dedicated conduits. This provides a convenient path for the cable that is relatively sheltered and can cost less than providing a dedicated conduit. Furthermore, providing a dedicated conduit would typically involve digging a trench for the conduit and filling the trench after installing the conduit, which causes considerable disruption to others, particularly if the cable is to be laid in an urban area.
In some locations, no convenient sewer travels between the points to be connected by a cable. In such cases, a cable may have to be travel via a circuitous route along the sewers to connect the two points. This increases costs in laying the cable (and in subsequently maintaining the cable) the network installer reverts to digging a dedicated conduit.
Even if there is a convenient sewer, once the cable reaches the desired location it must exit the sewer. Providing an exit path from the sewer for the cable typically also provides an exit path for fumes from the sewer. Such fumes are unpleasant and may be dangerous.
It is therefore an object of the present invention to alleviate or overcome the above problems.
According to a first aspect of the present invention there is provided a method of laying a cable between two points comprising the steps of: laying a cable through one or more lengths of sewer between the two points; and where there is no convenient length of sewer or a gap between convenient lengths of sewer, providing a length of dedicated cable conduit and laying said cable through said dedicated cable conduit.
By use of the above technique, cables can travel along sewers where possible minimising cost and disruption but for parts of a network wherein there is no convenient sewer, the cable may be laid in a dedicated conduit minimising the costs of laying and subsequently maintaining additional cable.
The cable may be laid through the sewer using any suitable technique. The techniques may include, but are not limited to: laying the cable loose in the flow channel of the sewer; pinning the cable to the walls of the sewer; or passing the cable through a duct provided in the sewer.
In embodiments wherein the method involves laying the cable loose in the flow channel of a sewer, the method may include the step of installing a suitable cable guide at points wherein the cable is desired or required to enter or leave the flow channel. The cable guide is preferably adapted to enable the cable to enter/exit the flow channel without significantly impeding the flow. The cable guide may comprise a body section and an arm section, the body section adapted to lie substantially flush with the wall of the flow channel and the arm section providing a passage for the cable between the flow channel and a point outside the flow channel. Such cable guides may be installed at points wherein the cable is required to enter or leave the sewer and on either side of points such as junctions or bends in the sewer wherein a cable in the flow channel is likely to lie across the direction of flow. In such areas, the cable may be laid outside the flow channel using any suitable other technique such as pinning the cable to the walls of the sewer; or passing the cable through a duct provided in the sewer.
In embodiments wherein the method involves passing the cable through a duct provided in the sewer, the method may involve the additional step of installing a suitable duct. In alternative embodiments, the duct may be pre-installed in the sewer at the time of constructing the sewer. The duct may be pinned or otherwise affixed to the walls or ceiling of the sewer. The duct may be substantially continuous between the cable entry point and the cable exit point or may be comprised of a plurality of separate sections having gaps therebetween.
The cable conduit may be provided by any suitable technique. Typically, this might involve digging a trench, laying the cable in the trench and filling the trench. The cable may be laid in ducting provided at the bottom of the trench. The trench may be filled in layers. In particular, the trench may be filled with a sand layer directly over the cable and a layer of hard core over the sand. A layer of concrete, tarmac, asphalt, bitumen or other suitable sealing/paving surface may be provided over the hardcore if required or desired. The method may further include laying a warning tape between the sand and the hard core layers. The warning tape is adapted to be detectable by the provision of a metal strip inlay and/or being printed with a visible warning. The provision of a metal strip allows the tape to be detected by the a scan of the area using an inductive detector. This may be routinely carried out prior to road excavation. The visible warning may comprise bright colours and/or distinctive patterns and/or a written warning message such as “Warning Fibre Cable”, or similar.
In one preferred embodiment, the trench may be cut and filled in line with the relevant provisions of the MCH 1540 (issue E) standard set by the UK Highways Agency for the installation of inductive loops in roads.
The cable may exit the sewer by any suitable means. Preferably, the cable will exit the sewer via a duct into the space below an access hatch or ‘manhole’.
Preferably, sealing means may be provided at points wherein the cable exits a sewer, to prevent the escape of noxious gases from the sewer. In some embodiments, sealing means may be provided at both ends of a duct carrying the cable between the sewer and the dedicated conduit.
In the above method, it is of course also possible for cables to be laid along the roadside drains and/or other types of storm drain in addition to or in place of cables laid along sewers.
According to a second aspect of the present invention there is provided a network comprising one or more cables laid in accordance with the method of the first aspect of the present invention.
The network may incorporate any or all of the features described in relation to the first aspect of the invention as desired or as appropriate.
The network can be used for any form of data. The cables within the network may be adapted to carry electrical or optical data signals and may thus be electrical data cables or fibre optic cables as required.
According to a third aspect of the present invention there is provided a sealing means for preventing the escape of noxious gases from a sewer at a point wherein a cable exits said sewer comprising: a body having an exterior adapted to fit the aperture through which the cable exits the sewer; and a passage through the body allowing the passage of said cable wherein the body is formed from a resiliently deformable material such that it forms a substantially air tight seal around the cable and a substantially airtight seal between the exterior of the body and the aperture.
One or both ends of the sealing means may be adapted to make it easier to insert a cable. This may be achieved by adapting one or both ends to provide a recessed stepped end portion, a projecting stepped end portion or any other suitable adaptation.
The sealing means may be adapted to fit a duct leading the cable away from the sewer. The sealing means may be retained in the duct with the aid of a suitable adhesive, such as an epoxy resin or similar. Preferably, the adhesive is adapted to cure within a time period of say, 1 hour or less. Most preferably, the adhesive is adapted to cure within a time period of say, 15 minutes or less. Advantageously, the adhesive is adapted to cure in the presence of water. The adhesive may also aid the formation of a substantially airtight seal.
The cable may be retained in the sealing means with the aid of a suitable adhesive, such as an epoxy resin or similar. Preferably, the adhesive is adapted to cure within a time period of say, 1 hour or less. Most preferably, the adhesive is adapted to cure within a time period of say, 15 minutes or less. Advantageously, the adhesive is adapted to cure in the presence of water. The adhesive may also aid the formation of a substantially airtight seal.
According to a fourth aspect of the present invention, there is provided a method of preventing the escape of noxious gases from a sewer at the point wherein a cable exits said sewer comprising installing a sealing means according to the third aspect of the present invention at the point wherein said cable exits said sewer.
The method may include any or all of the features of the sealing means of the third aspect of the present invention, as desired or as appropriate.
The sealing means and method of the third and fourth aspects of the present invention may be used in conjunction with the method of the first aspect of the present invention or the network of the second aspect of the present invention, as desired or as appropriate.
In order that the invention can be more clearly understood it is now described further below with reference to the accompanying drawings:
a is a cross-sectional view of one end of a sealing means according to the present invention; and
b is a cross-sectional view of an alternative embodiment of one end of a sealing means according to the present invention.
Referring now to
According to the methods of the prior art, laying a network cable 105 between A and C would either involve providing a dedicated cable conduit, whether by cut and cover methods or otherwise; or would involve laying a cable 105 through sewer branch 101 to junction D and then along branch 102 to point C. In the present invention, there is a third possibility in that the cable 105 is laid along sewer branch 101 to point B and then travels through a dedicated conduit directly to point C. As the cost of laying cable through a sewer can be cheaper and is usually less disruptive than laying cable in a dedicated conduit, the method of the present invention may reduce the cost of providing a cable link in situations such as A-C wherein a convenient sewer extends only part way between the cable end points.
The cable 105 may be laid through the sewer system 100 by any convenient method, as is discussed further below.
Referring now to
The bottom 200 mm or so of the trench 104 are filled with sand 106 or similar. Optionally, a warning tape 103 may be laid on top of the sand layer 106. The warning tape is provided with metal strip inlay which may be detected by inductive detectors. Additionally, the tape may be brightly coloured and patterned such that it is easily located when digging.
Above the sand layer a layer of hardcore 107 is provided. This hard core layer is typically around 200-400 mm in depth. Above the hardcore layer 107 a layer of tarmac, asphalt, concrete or similar may be provided, to blend the trench 104 in with surroundings.
Accordingly, the present invention thus provides means wherein a cable network may be laid partially through sewers 100 and partially via dedicated conduits where there are no convenient sewers. The invention may be applied to the construction of data transmission networks, as desired or as appropriate. The cables laid through sewers may be laid in any suitable manner. This could comprise the cables being pinned to a side wall of the sewer as illustrated schematically in
In order to prevent the escape of noxious gases from the sewer 101 along duct 111, suitable sealing means 113 may be provided. The sealing means 113 is adapted to form a substantially airtight seal between its exterior surface and the interior surface of duct 111, as is shown in
The ends of sealing means 113 may be adapted to make it easier to insert the cable 105 through the passageway or to make it easier to insert the sealing means 113 into the duct 111. In
It is of course to be understood that the invention is not to be restricted to the details of the above embodiments which have been described by way of example only.
Number | Date | Country | Kind |
---|---|---|---|
0614416.6 | Jul 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB07/02788 | 7/20/2007 | WO | 00 | 7/9/2009 |