The present disclosure relates generally to fiber optic connectors having at least one ferrule assembly inserted into a housing. The connectors that can use the invention, among others, is a Lucent Connector (LC) connector, SN® or CS® connectors sold by assignee of the present invention. The disclosure relates to front loading a unitary retainer and ferrule assembly into a connector housing.
The prevalence of the Internet has led to unprecedented growth in communication networks. Consumer demand for service and increased competition has caused network providers to continuously find ways to improve quality of service while reducing cost.
Certain solutions have included deployment of high-density interconnect panels. High-density interconnect panels may be designed to consolidate the increasing volume of interconnections necessary to support the fast-growing networks into a compacted form factor, thereby increasing quality of service and decreasing costs such as floor space and support overhead. However, the deployment of high-density interconnect panels has not been fully realized.
The invention in a first embodiment provides a connector with a unitary or single body with an opening at the front end or proximal end configured to receive a unitary retainer and ferrule assembly which is secured within an inner connector housing. The connector housing has a release to depress a latch that that secures the connector within an adapter port. The use activates the release to depress the latch on the connector to allow the latch to move out of the adapter recess. In place of the latch and release can be a pull tab as known in the art, and disclosed in U.S. Pat. No. 2,465,531B2, titled “Latching Connector with Remote Release” assigned to the assignee of the present invention. A distal end or second end of the unitary connector housing has a flange post formed as part of the unitary connector housing to accept and secure a fiber optic cable with an optical fiber therein. The ferrule assembly is in communication with the optical fiber of the fiber optic cable. This connection is made in the factory called factory terminated, or in the field called field terminated by a mechanical splice or a fusion splice. The ferrule assembly is biased forward using a bias spring placed at a distal end of the unitary retainer and ferrule assembly and backpost formed as part of the unitary retainer and ferrule assembly. The spring or similar bias member is positioned about a flange tube that accepts and protects the optical fiber.
In a second embodiment, the unitary retainer and ferrule assembly is defined with a proximal end or first end. A ferrule with an optical fiber protrudes from the first end. The ferrule is secured within the first end of the assembly. The first end further defines a nub with a pair of opposing latches or protrusions. The protrusions are secured within the inner connector housing to retain the unitary retainer and ferrule assembly. At a mid-section is a ferrule flange that accepts a distal end of the ferrule body. And at a distal end or second end of the unitary retainer and ferrule assembly is a ferrule holder or backpost to which fiber optic cable jacket or strength members are secured. This aids in pull strength on the fiber optic cable during use, which is an industry standard. The backpost is further configured with a raised surface over which a proximal end of the flange tube can be placed. The raised edge or surface expands the flange tube. The tube then attempts to return to its original shape and compresses about the raised surface and backpost and the tube relaxes and seals about the raised surface and the backpost.
A third embodiment of the unitary retainer and ferrule assembly is similar to the second embodiment except that opposing latches protrusions extend from a top surface of the nub which extends the overall length of the unitary retainer and ferrule assembly. The latches are secured within the inner housing of the connector to hold the unitary retainer and ferrule assembly after front loading the unitary retainer and ferrule assembly into a proximal end of the connector housing.
This disclosure is not limited to the particular systems, devices and methods described, as these may vary. The terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.
As used in this document, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Nothing in this disclosure is to be construed as an admission that the embodiments described in this disclosure are not entitled to antedate such disclosure by virtue of prior invention. As used in this document, the term “comprising” means “including, but not limited to.”
The following terms shall have, for the purposes of this application, the respective meanings set forth below.
A connector, as used herein, refers to a device and/or component thereof that connects a first module or cable to a second module or cable. The connector may be configured for fiber optic transmission or electrical signal transmission. The connector may be any suitable type now known or later developed, such as, for example, a ferrule connector (FC), a fiber distributed data interface (FDDI) connector, an LC connector, a mechanical transfer (MT) connector, a square connector (SC) connector, an SC duplex connector, or a straight tip (ST) connector. The connector may generally be defined by a connector housing body. In some embodiments, the housing body may incorporate any or all of the components described herein.
A “fiber optic cable” or an “optical cable” refers to a cable containing one or more optical fibers for conducting optical signals in beams of light. The optical fibers can be constructed from any suitable transparent material, including glass, fiberglass, and plastic. The cable can include a jacket or sheathing material surrounding the optical fibers. In addition, the cable can be connected to a connector on one end or on both ends of the cable.
In the above detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be used, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.
The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds, compositions, or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
It will be understood by those within the art that, in general, terms used herein, are generally intended as “open” terms (for example, the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” et cetera). While various methods and devices are described in terms of “comprising” various components or steps (interpreted as meaning “including, but not limited to”), the compositions, methods, and devices can also “consist essentially of” or “consist of” the various components and steps, and such terminology should be interpreted as defining essentially closed-member groups. The use of such phrases should not imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (for example, “a” and/or “an” should be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
This application claims the benefit of priority of U.S. Provisional Application No. 62/729,610 filed Sep. 11, 2018 titled “LC One Piece Front Loaded Ferrule with Unitary Retainer and Ferrule Holder”, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5134677 | Leung | Jul 1992 | A |
5481634 | Anderson | Jan 1996 | A |
6017154 | Carlisle | Jan 2000 | A |
6196733 | Wild | Mar 2001 | B1 |
6259856 | Shahid | Jul 2001 | B1 |
6325549 | Shevchuk | Dec 2001 | B1 |
6419399 | Loder | Jul 2002 | B1 |
6789959 | Conn | Sep 2004 | B1 |
6955479 | Erdman et al. | Oct 2005 | B2 |
6962446 | Greub | Nov 2005 | B2 |
7150567 | Luther | Dec 2006 | B1 |
7758389 | Kadar-Kallen | Jul 2010 | B2 |
7766556 | Kachmar | Aug 2010 | B2 |
7997806 | Nakagawa | Aug 2011 | B2 |
8678670 | Takahashi et al. | Mar 2014 | B2 |
9664862 | Lu | May 2017 | B2 |
9678283 | Chang | Jun 2017 | B1 |
10634854 | Davidson | Apr 2020 | B2 |
10725248 | Wong | Jul 2020 | B2 |
20010019654 | Waldron | Sep 2001 | A1 |
20020150343 | Chiu | Oct 2002 | A1 |
20020150353 | Chiu | Oct 2002 | A1 |
20030133665 | Chiu | Jul 2003 | A1 |
20040161207 | Chiu | Aug 2004 | A1 |
20050018973 | Loder | Jan 2005 | A1 |
20050117854 | Chiu | Jun 2005 | A1 |
20050213890 | Barnes | Sep 2005 | A1 |
20050213892 | Barnes | Sep 2005 | A1 |
20060093300 | Marrs | May 2006 | A1 |
20060115219 | Mudd | Jun 2006 | A1 |
20060269194 | Luther | Nov 2006 | A1 |
20070104425 | Larson | May 2007 | A1 |
20090191738 | Kadar-Kallen | Jul 2009 | A1 |
20100098381 | Larson | Apr 2010 | A1 |
20110058772 | Bylander | Mar 2011 | A1 |
20150355417 | Takano | Dec 2015 | A1 |
20160139343 | Dean, Jr. et al. | May 2016 | A1 |
20160139344 | de los Santos Campos et al. | May 2016 | A1 |
Entry |
---|
International Search Report and Written Opinion issued for PCT/US2019/050611, dated Jan. 7, 2020, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20200081195 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62744603 | Oct 2018 | US | |
62743945 | Oct 2018 | US | |
62729610 | Sep 2018 | US |