LCD touchscreen panel with scanning backlight

Abstract
A liquid crystal display (LCD) device (100) having an integrated touchscreen, includes a touchscreen surface and LC layer (20) that are partitioned according to the touchscreen keys (200). A corresponding probe light source (82) and sensor (92) positioned behind each partition is assigned to the corresponding touchscreen key. Each probe light sensor is configured to detect user contact on the touchscreen surface by sensing a reflection of the probe light. To further distinguish between different keys, each key may be made active according to a scanning or timesharing process. In this process, when a particular key is active, the neighboring keys are inactive. The scanning/timesharing process may be performed during a touchscreen mode of operation, which is interleaved with a normal display mode.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings, which are given by way of illustration only and, thus, are not limitative of the present invention. In these drawings, similar elements are referred to using similar reference numbers, wherein:



FIGS. 1A and 1B illustrate the configuration of a typical liquid crystal display (LCD) device;



FIGS. 2A and 2B illustrate different types of backlight sources within typical backlit LCD devices;



FIG. 3A illustrates an exemplary set of touchscreen keys for a particular application, while FIG. 3B illustrates an assignment of probe light sources and sensors to the corresponding touchscreen keys, according to an exemplary embodiment of the present invention;



FIG. 3C illustrates the implementation of probe light sources and sensors, as assigned in FIGS. 3A and 3B, in an LCD stack according to an exemplary embodiment of the present invention;



FIGS. 4A and 4B provide views of the LCD stack to illustrate the scanning process whereby touchscreen keys are made active, according to an exemplary embodiment of the present invention;



FIGS. 5A and 5B illustrate alternative scanning patterns whereby the touchscreen keys are made active, according to alternative exemplary embodiments of the present invention;



FIGS. 6A and 6B illustrate alternative scanning patterns when the touchscreen keys are grouped into blocks, which are concurrently provided probe light openings, according to alternative exemplary embodiments of the present invention; and



FIG. 7 illustrates the implementation of probe light sources and sensors within an LCD device utilizing a backlight source, according to an exemplary embodiment of the present invention.



FIG. 8 illustrates the reflection of probe light to the probe light sensor as the corresponding touchscreen key is being touched by a user, according to an exemplary embodiment of the present invention; and



FIG. 9 illustrates additional elements in the LCD device for processing measurements from the probe light sensors and compensating for the effects of ambient light, according to an exemplary embodiment of the present invention.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

In order to integrate a touchscreen interface with a liquid crystal display (LCD) device, the present invention utilizes probe signals transmitted from within the stack of LCD layers to detect user contact with the touchscreen surface. Specifically, a corresponding probe signal source and sensor are disposed within the LCD stack for each touchscreen key. By sensing a reflection of the probe signal from the touchscreen surface, each probe signal sensor is capable of detecting user contact with the corresponding touchscreen key. Accordingly, the front protective sheet of the LCD device may be used as the touchscreen surface without requiring additional layers.


According to an exemplary embodiment, the source of the probe signals may comprise a plurality of probe light sources implemented behind the liquid crystal (LC) layer within the LCD casing or enclosure. Each probe light source may be paired with a probe light sensor, which is similarly implemented behind the LC layer to sense the reflection of probe light. For a given touchscreen application, each set of probe light source and sensor may be assigned to a corresponding touchscreen key.



FIGS. 3A-3C illustrate a set of probe light sources 82 and sensors 92, which are assigned to a set of touchscreen keys 200 for a particular touchscreen application of LCD device 100. For instance, FIG. 3A shows a set of touchscreen keys 200 corresponding to numerical keys of a traditional push-button telephone. Of course, this is provided merely for the purpose of illustration, and the types of touchscreen keys are purely a matter of design choice depending on the given application.



FIG. 3B more particularly illustrates the assignment of each set of probe light source 82 and sensor 92 to a corresponding touchscreen key 200. Specifically, FIG. 3B illustrates a planar view at cross-section CV′ of the LCD device 100 illustrated in FIG. 3C. Although FIG. 3B illustrates a “one-to-one” correspondence between the touchscreen keys 200 and the sets of probe light source 82 and sensor 92, this need not be the case. For example, in another embodiment of the present invention, the number of probe light sources 82 and sensors 92 may exceed the number of touchscreen keys 200 of a particular application. This allows the LCD device 100 to be compatible with a number of touchscreen interface applications that utilize a different number of keys 200. For each application, however, each touchscreen key 200 is assigned a particular probe light source 82 and sensor 92, which are disposed at the corresponding position with respect to the touchscreen surface, i.e., behind the corresponding partition of the LC layer 20.


As such, when user contact is made with the touchscreen surface, the particular key 200 being touched can be determined based on the relative position of the probe light sensor 92 that detects the user contact.


It should be noted that principles of the present invention may be implemented in an LCD device 100 utilizing a backlight source. For instance, FIG. 7 illustrates a planar view of a cross-section of an LCD device 100 utilizing an LED edge-lit light guide apparatus. As shown in FIG. 7, the probe light sources 82 and sensors 92 may be installed behind the light guide 44 of the LCD stack (see FIG. 2A). In order to discriminate the probe light from the backlight, the probe light sources 82 may be modulated at a different frequency f1, than the frequency f2 of the LEDs 52.


For example, the frequency f1 of the probe light sources 82 may be operated at a frequency of 100 kHz and the backlights may be DC sources or operated at 60 Hz. Another example is that the probe light sources 82 may be chosen as infrared, while the backlights are visible light sources.


However, other embodiments are contemplated where it is not necessary to modulate the probe light sources 82 at a different frequency than other backlight sources. According to an exemplary embodiment, during operation, the LCD device 100 may alternate between a normal backlight display mode and touchscreen mode in an interleaved manner. In normal display mode, the LCD device 100 may use the backlight source(s) to display the contents of the touchscreen interface (touchscreen keys, etc.) to the user. Thus, during normal display mode, the LEDs 52 are operative and the probe light sources 82 are turned off, as shown in FIG. 7.


During touchscreen mode, however, the LEDs 52 may be turned off, while the probe light sources 82 are turned on (e.g., according to a scanning or timesharing scheme by which the corresponding keys 200 are made active). Also, the probe light sources 82 may have dual functionality, operating as backlight sources when the LCD device 100 is operating according to the normal display mode.


It should be noted that reflective-type LCD devices 100 may also be configured to operate according to normal display and touchscreen modes, in an interleaved manner. For instance, when switching from normal display mode to touchscreen mode, the polarizers 30A and 30B and LC layer 20 may be switched to a configuration that accommodates the use of probe light sources 82 and sensors 92.


Furthermore, another exemplary embodiment allows the LCD device 100 utilizes external light present in the environment, rather than an internal probe light. For example, each probe light sensors 92 may be configured to detect user contact with a particular touchscreen key 200 by sensing whether or not the external light is transmitting through the key 200. When such light is being blocked by the user's touch, the corresponding probe light sensor 92 may sense the lack of external light, and thereby detect the touch.


However, unless otherwise specified, the following description will assume the use of probe light sources 82, unless otherwise noted. It will be readily apparent, however, that many of the principles to be described are also applicable to embodiments where the probe light sensors 92 are configured to detect external light, rather than an internal probe light.


As described above, in order to help further discriminate between touches with different touchscreen keys 200, each key 200 may be made active during touchscreen mode according to a scanning or timesharing scheme. In such a scheme, when one touchscreen key 200 is active, the neighboring keys 200 are inactive. As such, the probe light source 82 corresponding to each key 200 is turned on only when that key 200 is made active. Furthermore, the LC layer 20 may be configured to provide a probe light opening only for the active touchscreen key 200.


Specifically, the LC layer 20 may be partitioned in accordance with the touchscreen keys 200, similar to the touchscreen surface (i.e., front surface 10). During touchscreen mode, each partitioned area of the LC layer 20 may be, by default, opaque so that it does not transmit or reflect light. However, as each key 200 is made active, the corresponding partition of the LC layer 20 is switched from being opaque to transparent, thereby allowing the corresponding probe light source 82 to transmit through. Thus, as each partition of the LC layer 20 becomes transparent, it creates a probe light opening for the corresponding touchscreen key 200. This probe light opening may scan through the LC layer partitions according to the same scanning or timesharing process by which the touchscreen keys 200 are made active.



FIGS. 4A and 4B illustrate the scanning process for making the touchscreen keys 200 active and providing the probe light opening. For purposes of example, FIGS. 4A and 4B illustrate a situation where each of touchscreen keys 200A-200D is sequentially made active, while the remaining keys are inactive. For instance, in FIG. 4A, touchscreen key 200A is made active, and the corresponding probe light source 82 and sensor 92 are in operation. FIG. 4A also shows the LC layer 20 providing a probe light opening for the active touchscreen key 200A. However, FIG. 4B shows the next scanning interval, during which touchscreen key 200B is made active. As shown in FIG. 4B, the probe light source 82 and sensor 92 corresponding to key 200B are in operation, and the probe light opening has shifted to the corresponding partition of the LC layer 20.


As shown in FIGS. 4A and 4B, when there is no user contact, the probe light source 82 of the active key 200 will transmit through the LC layer 20 and touchscreen surface generally without impediment. Thus, the corresponding probe light sensor 92, will detect a relatively low intensity of probe light. FIG. 8, on the other hand, illustrates the situation where a user makes contact with a touchscreen key 200 (particularly, touchscreen key 200A). As shown in FIG. 8, when touchscreen key 200A is made active during touchscreen mode, the probe light from the corresponding source 82 is reflected at the point of contact on the touchscreen surface back through the probe light opening and the LC layer 20. Thus, the probe light sensor 92 corresponding to touchscreen key 200A will detect an increased intensity of the probe light, thereby indicating that the corresponding key 200A has been touched. According to an exemplary embodiment, an intensity threshold may be set for each probe light sensor 92. Thus, when the intensity measurement of the probe light sensor 92 corresponding to active key 200A exceeds the threshold, the LCD device 100 can determine that the corresponding touchscreen key 200 is being touched. As will be described in more detail below in connection with FIG. 9, a reference key may be further provided to help set the thresholds for the probe light sensors 92 in order to improve performance of the LCD device 100.


The scanning of a probe light opening, as described above, may also be implemented in embodiments of the LCD device 100 that require the probe light sensors 92 to detect the user touch based on external light, rather than internal probe light sources 82. For instance, as each touchscreen key 200 is made active based on the probe light opening, the corresponding probe light sensor 92 is put in operation to sense the level external light passing through the opening. For instance, when the level of external light sensed by the corresponding probe light sensor 92 is below a threshold, this indicates that the user's touch is blocking the external light from passing through the active key 200.


In the embodiments described above, when a particular touchscreen key 200 is made active, the neighboring keys 200 should be made inactive to facilitate discrimination between the keys 200. According to an exemplary embodiment, during touchscreen mode, the active probe signal scans through the touchscreen keys 200 in such a manner that only one key 200 on the touchscreen surface is active during a given interval. For example, in the interface application illustrated in FIGS. 3A-3C, the keys 200 may be made active according to the sequence illustrated in FIG. 5A or FIG. 5B. In other words, FIGS. 5A and 5B illustrate alternative patterns whereby an active probe signal scans through the keys 200. Of course, FIGS. 5A and 5B are provided for illustration only, and other scanning patterns may be implemented. Furthermore, it is not necessary for all the keys 200 to be scanned through during one cycle of the touchscreen mode. Since the interleaving rate between normal display mode and touchscreen mode is assumed to be relatively high, it is possible to allow the probe signal to scan through all of the touchscreen keys 200 over a plurality of touchscreen mode cycles. For example, it is contemplated that an interleaving rate of 60, 90, or 120 Hz could be used.


However, for touchscreen applications that provide a higher number of keys 200, it may be advantageous to allow multiple active probe signals to simultaneously scan through the keys 200. To do this, the touchscreen keys 200 may be divided into separate groups or “blocks.” During touchscreen mode, one touchscreen key 200 in each of these blocks may be concurrently made active. Accordingly, the LC layer 20 concurrently provides a probe light opening for each of these blocks.



FIGS. 6A and 6B illustrate an exemplary embodiment where the touchscreen keys 200 are grouped together into blocks 400. These figures show alternative scanning patterns that may be concurrently implemented for the probe signal in each block 400. Of course, FIGS. 6A and 6B are provided for purposes of illustration only. For instance, the probe signal in each block 400 may scan through the keys 200 according to other patterns. Furthermore, it is not necessary to implement the same scanning pattern for each block 400.


As discussed above, user contact with a particular touchscreen key 200 may be detected when the corresponding probe light sensor 92 measures an intensity level of the probe light (reflected from the touchscreen surface) that exceeds a certain threshold. Alternatively, if the user touch is detected based on external light, rather than the probe light, the touch may be detected when the measure intensity level of the active probe light sensor 92 is below the relevant threshold.


As illustrated in FIG. 9, the LCD device 100 may include a contact locating processor 400 designed to receive intensity measurements from the probe light sensors 92 and compare them to the appropriate threshold(s). For each series of measurements received during a touchscreen mode cycle, the contact locating processor 400 may detect which, if any, of the measurements exceeds the threshold and correlate that measurement to the appropriate touchscreen key 200. If multiple measurements exceed the threshold, the contact locating processor may further be configured to execute one or more algorithms for determining which touchscreen key 200 has been touched. Such algorithms may involve, e.g., a comparison of intensity measurements.


The performance of the contact locating processor 400 may be improved through the use of “reference key.” An example of a reference key RK is illustrated in FIG. 9. A light sensor RS may be included in the LCD stack to measure ambient light passing through the reference key RK. As such, the LC layer 20 provides a transparent opening corresponding to the location of the reference key RK. Based on measurements from the sensor RS, the contact locating processor 400 may adjust the threshold(s) corresponding to the probe light sensors 92, e.g., to compensate for the movement of the bias point of the probe light sensors 92. However, as an alternative to adjusting the threshold, the contact locating processor 400 may be designed to differentially process the intensity measurements to make the necessary compensation. According to the exemplary embodiment, the size and shape of the transparent opening in the LC layer for reference key RK should be of a similar size and shape as the probe light opening for the active touchscreen key 200.


Exemplary embodiments having been described above, it should be noted that such descriptions are provided for illustration only and, thus, are not meant to limit the present invention as defined by the claims below. Any variations or modifications of these embodiments, which do not depart from the spirit and scope of the present invention, are intended to be included within the scope of the claimed invention.

Claims
  • 1. A liquid crystal display (LCD) device, comprising: a casing;a transparent touchscreen surface held into place by the casing;a liquid crystal (LC) layer disposed within the casing behind the touchscreen surface; andat least one probe light sensor disposed within the casing behind the LC layer and configured to detect light transmitted through the touchscreen surface,wherein the probe light sensor is configured to detect user contact with a touchscreen key based on a light sensing operation.
  • 2. The LCD device of claim 1, wherein the LCD device includes a backlight source configured to transmit backlight through the touchscreen surface to convey information to a user.
  • 3. The LCD device of claim 2, wherein the backlight source comprises a plurality of light-emitting diodes (LEDs) including the probe light source.
  • 4. The LCD device of claim 1, further comprising: at least one probe light source disposed within the casing behind the LC layer, the light source being configured to transmit a probe light through the touchscreen surface,wherein the at least one probe light sensor is configured to detect the user contact with a corresponding touchscreen key by sensing a reflection of the probe light from the touchscreen surface.
  • 5. The LCD device of claim 1, wherein at least part of the touchscreen surface is partitioned according to a plurality of touchscreen keys, the device further comprises a plurality of probe light sources and probe light sensors, andeach touchscreen key is matched up with a corresponding probe light source and probe light sensor.
  • 6. The LCD device of claim 5, wherein each probe light source is a light-emitting diode (LED).
  • 7. The LCD device of claim 5, wherein each probe light source modulates the probe light at a frequency above 50 Hz.
  • 8. The LCD device of claim 5, wherein the each probe light source emits the probe light as an infrared signal.
  • 9. The LCD device of claim 5, wherein each corresponding set of probe light source and probe light sensor is disposed within the casing behind the corresponding touchscreen key.
  • 10. The LCD device of claim 9, wherein at least part of the LC layer is partitioned according to the touchscreen keys,the LCD device is configured to operate according to the following interleaved modes: normal display mode and touchscreen mode, andeach LC layer partition is configured to be selectively transparent and opaque during touchscreen mode, such that the LC layer partition is transparent while the corresponding touchscreen key is active, thereby providing a probe light opening for the corresponding touchscreen key; andthe LC layer partition is opaque while the corresponding touchscreen key is inactive.
  • 11. The LCD device of claim 10, wherein, the LC layer partitions are configured to provide the probe light opening to the touchscreen keys according to a timesharing scheme during touchscreen mode.
  • 12. The LCD device of claim 11, wherein the touchscreen keys are grouped into blocks, and the LC layer partitions are configured to concurrently provide probe light openings for each block of touchscreen keys, each probe light opening being provided according to a timesharing scheme.
  • 13. The LCD device of claim 10, wherein, during touchscreen mode, each probe signal source is selectively turned on when the corresponding touchscreen key is active and turned off when the corresponding touchscreen key is inactive.
  • 14. The LCD device of claim 13, wherein user contact with a particular touchscreen key is detected when a measured intensity at the corresponding probe light sensor exceeds a predetermined threshold while the touchscreen key is active.
  • 15. The LCD device of claim 14, further comprising: reference light sensor; anda reference partition in the LC layer corresponding to the reference light source and reference light detector,wherein the reference partition is configured to provide a reference light opening during normal mode, through which the reference light sensor measures a reference light intensity, and the threshold is calibrated according to the measured reference light intensity.
  • 16. The LCD device of claim 1, further comprising a plurality of probe light sensors, each probe light sensor configured to detect the user contact with a corresponding touchscreen key by sensing a lack of external light transmitting through the touchscreen surface.
  • 17. A liquid crystal display (LCD) device, comprising: a casing;a transparent touchscreen surface held into place by the casing, at least part of the touchscreen surface being partitioned according to touchscreen keys;a liquid crystal (LC) layer disposed within the casing behind the touchscreen surface, at least part of the LC layer being partitioned according to the touchscreen keys; anda plurality of probe light sources and probe lights sensor disposed within the casing behind the LC layer, such that each touchscreen key is matched up with a corresponding probe light source and probe light sensor,wherein user contact with a particular touchscreen key is detected when the corresponding light source transmits a probe light and the corresponding probe light sensor senses a reflection of the probe light from the corresponding partition of the touchscreen surface.
  • 18. The LCD device of claim 17, wherein the LCD device is configured to operate according to the following interleaved modes: normal display mode and touchscreen mode, andeach LC layer partition is configured to be selectively transparent and opaque during touchscreen mode, such that: the LC layer partition is transparent while the corresponding touchscreen key is active, thereby providing a probe light opening for the corresponding touchscreen key; andthe LC layer partition is opaque while the corresponding touchscreen key is inactive.
  • 19. The LCD device of claim 18, wherein the LC layer partitions are configured to provide the probe light opening to the touchscreen keys according to a timesharing scheme during touchscreen mode.
  • 20. The LCD device of claim 18, wherein, during touchscreen mode, each probe signal source is selectively turned on when the corresponding touchscreen key is active and turned off when the corresponding touchscreen key is inactive.
  • 21. The LCD device of claim 18, wherein user contact with a particular touchscreen key is detected when a measured intensity at the corresponding probe light sensor exceeds a predetermined threshold while the touchscreen key is active.
  • 22. A liquid crystal display (LCD) device, which is configured to operate according to a normal display mode and a touchscreen mode in an interleaving manner, the LCD device comprising: a casing;a transparent touchscreen surface held into place by the casing, at least part of the touchscreen surface being partitioned according to touchscreen keys;a liquid crystal (LC) layer disposed within the casing behind the touchscreen surface, at least part of the LC layer being partitioned according to the touchscreen keys; anda plurality of probe light sources and probe lights sensor disposed within the casing behind the LC layer, such that each touchscreen key is matched up with a corresponding probe light source and probe light sensor,wherein a probe light opening is selectively provided for each touchscreen key during touchscreen mode by switching the corresponding partition in the LC layer from an opaque state to a transparent state,and user contact with a particular touchscreen key is detected when the corresponding probe light source transmits a probe light through the probe light opening and the corresponding probe light sensor senses a reflection of the probe light from the corresponding partition of the touchscreen surface.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present invention is related to co-pending U.S. patent application Ser. No. ______, entitled “LCD PANEL WITH INTEGRAL TOUCHSCREEN,” which was filed on ______, and copending U.S. patent application Ser. No. ______, entitled “LCD PANEL WITH SYNCHRONIZED INTEGRAL TOUCHSCREEN,” which was filed on ______. The entire contents of the above-identified related applications are hereby incorporated by reference in their entirety.