LCOS illumination via LOE

Information

  • Patent Grant
  • 11243434
  • Patent Number
    11,243,434
  • Date Filed
    Thursday, July 19, 2018
    5 years ago
  • Date Issued
    Tuesday, February 8, 2022
    2 years ago
Abstract
A system for uniform optical illumination of an image light provider in a smaller (compact) configuration than conventional implementations includes a lightguide having: a first external surface and a second external surface mutually parallel, and a first sequence of facets, at least a portion of which are: a plurality of parallel, partially reflecting, and polarization selective surfaces, at an oblique angle relative to the first and second external surfaces, and between the first and second external surfaces, and a front-lit reflective polarization rotating image modulator: deployed to spatially modulate light coupled-out from the first external surface, outputting reflected light corresponding to an image, and deployed such that the reflected light traverses the lightguide from the first external surface via the first sequence of facets to the second external surface.
Description
FIELD OF THE INVENTION

The present invention generally relates to optical illumination, and in particular, it concerns uniform illumination of an image light provider.


BACKGROUND OF THE INVENTION

Referring to FIG. 1, there is shown a conventional implementation of an architecture for illumination. A light source 2L produces an unpolarized, uniformly illuminated input beam 4L. The unpolarized input beam 4L is polarized by a polarizer 103 to produce a polarized, uniformly illuminated input beam 4P, assumed to be polarized S-pol (S-polarization). The polarized input beam 4P is input to a polarizing beam splitter (PBS) 104 and reflected by a polarization selective reflector 105 as ray 124 onto the liquid crystal on silicon (LCOS) matrix 106. The LCOS matrix 106 is illuminated from the front of the LCOS, spatially modulates the reflected light as an image by changing polarization of the illumination, and reflects the light back as an image ray 126. The LCOS rotates the polarization of the reflected light from the S-pol of ray 124 to P-pol (P-polarization) for white pixels in ray 126 while the polarization for black pixels is unchanged (remains S-pol). The light from the white pixels having P-polarization in ray 126 passes through the polarization selective reflector 105 while the light from the black pixels having S-polarization in ray 126 do not pass through the polarization selective reflector 105. The P-pol ray 126 then propagates on toward projecting optics 107 (generally of a projecting system, depicted schematically as lens). The projecting optics 107 performs collimation and other functions, as necessary for specific applications.


SUMMARY

According to the teachings of the present embodiment there is provided a optical system including: a lightguide having: a first external surface and a second external surface mutually parallel, and a first sequence of facets, at least a portion of which are: a plurality of parallel, partially reflecting, and polarization selective surfaces, at an oblique angle relative to the first and second external surfaces, and between the first and second external surfaces, and a front-lit reflective polarization rotating image modulator: deployed to spatially modulate light coupled-out from the first external surface, outputting reflected light corresponding to an image, and deployed such that the reflected light traverses the lightguide from the first external surface via the first sequence of facets to the second external surface.


In an optional embodiment, each of the facets reflects at least a portion of first polarized light and transmits a remaining portion of the first polarized light, and transmits second polarized light.


In another optional embodiment, the reflectivity of the first polarization increases from one facet to a subsequent facet in the first sequence of facets.


In another optional embodiment, the first polarized light is coupled-out from the first external surface, and the reflected light is of the second polarized light.


In another optional embodiment, the first sequence of facets expands light in-coupled to the lightguide such that the light is uniformly coupled-out of the first external surface.


In another optional embodiment, the image modulator is a liquid crystal on silicon (LCOS) matrix.


In another optional embodiment, the facets are constructed at least in part using a technique selected from the group consisting of: multi-layer coatings, a dielectric coating, and a wire-grid.


In another optional embodiment, orientation of a primary axis of the facets determines reflectivity of the facets.


In another optional embodiment, reflectivity of each of the facets is dependent on an angle light impinges of the facet.


In another optional embodiment, the first sequence of facets is configured to perform coupling-out of light from the first external surface, the first sequence of facets having a constant number of facets overlapping in a line of sight toward a nominal point of observation of light coupling-out of the first external surface.


In another optional embodiment, further including: a second sequence of facets, at least a portion of which are: a plurality of parallel, partially reflecting, and polarization selective surfaces, at an oblique angle relative to the first and second external surfaces, and between the first and second external surfaces, wherein the facets of the first sequence of facets and the second sequence of facets are non-parallel relative to each other.


In another optional embodiment, each of the sequences of facets spans an area of coverage, the spanning being an area over which each of the sequences of facets are deployed, and wherein the areas of coverage for the first and second sequences of facets are at least partially overlapping.





BRIEF DESCRIPTION OF FIGURES

The embodiment is herein described, by way of example only, with reference to the accompanying drawings, wherein:



FIG. 1, a conventional implementation of an architecture for illumination.



FIG. 2, a side view of an exemplary lightguide optical element (LOE) 903 configured for use with the current embodiment.



FIG. 3A and FIG. 3B, respective front and side view sketches of an exemplary compact system for optical illumination 302.



FIG. 3C, a sketch of a first exemplary embodiment 300C of source optics 300.



FIG. 3D, a sketch of a second exemplary embodiment 300D of source optics 300.



FIG. 4A, a sketch of a side view of facets with uniform angular response.



FIG. 4B, a sketch of a side view of facets with differing angular response.



FIG. 5A, a schematic view of a lightguide with non-overlapping facets, illustrating the effects of variation on image uniformity.



FIG. 5B, a schematic view of a lightguide with overlapping facets, illustrating the effects of variation on image uniformity.



FIG. 5C, a sketch of triple facets



FIG. 6, a sketch of an angular space architecture of the lightguide 20.



FIG. 7, a sketch of an angular space architecture of FIG. 6 with improved energy extraction.



FIG. 8, a chart of performance of coating designed for the configuration of FIG. 7.



FIG. 9, a sketch of angular distribution of a configuration including tapered (or cylindrical lens) expansion of the second exemplary embodiment 300D.



FIG. 10A, a sketch of a first optional architecture for optical illumination 302A.



FIG. 10B and FIG. 10C, respective side and front view sketches of a second optional architecture for optical illumination 302B.



FIG. 11A and FIG. 11B, the reflection process by the internal facets in lightguides 10 and 20.





DETAILED DESCRIPTION—FIG. 2 TO FIG. 11B

The principles and operation of the system according to a present embodiment may be better understood with reference to the drawings and the accompanying description. A present invention is a system for optical illumination. The system facilitates uniform illumination of an image light provider in a smaller (compact) configuration than conventional implementations.


A system for uniform optical illumination of an image light provider in a smaller (compact) configuration than conventional implementations includes a lightguide having: a first external surface and a second external surface mutually parallel, and a first sequence of facets, at least a portion of which are: a plurality of parallel, partially reflecting, and polarization selective surfaces, at an oblique angle relative to the first and second external surfaces, and between the first and second external surfaces, and a front-lit reflective polarization rotating image modulator: deployed to spatially modulate light coupled-out from the first external surface, outputting reflected light corresponding to an image, and deployed such that the reflected light traverses the lightguide from the first external surface via the first sequence of facets to the second external surface.


Basic Technology


Referring to FIG. 2, there is shown a side view of an exemplary lightguide optical element (LOE) 903 configured for use with the current embodiment. A collimated light source 2C emanates a collimated input beam 4C. In the context of this document, light sources are also referred to as “projectors.” Light sources can be lasers or an LED that transmits a single or plurality of wavelengths. The light has a plurality of angular propagation directions that are oriented around the axis of the transmission, such as in a lightguide. For simplicity in the current figures, generally only the center direction of propagation is depicted for clarity. Only one light ray is generally depicted, the incoming light ray, the input beam (for example the collimated input beam 4C), also referred to as the “beam” or the “incoming ray”. Generally, wherever an image is represented herein by a light beam, it should be noted that the beam is a sample beam of the image, which typically is formed by multiple beams at slightly differing angles each corresponding to a point or pixel of the image. Except where specifically referred to as an extremity of the image, the beams illustrated are typically a centroid of the image. That is, the light corresponds to an image and the central ray is a center ray from a center of the image or a central pixel of the image.


A first reflecting surface 916 is illuminated by the collimated input beam 4C. A first region 954 is proximal to the collimated input beam 4C where an image illumination is coupled into a lightguide 920. The reflecting surface 916 at least partially reflects the incident light of the collimated input beam 4C from the collimated light source 2C such that the light is trapped inside the lightguide 920 by internal reflection, typically total internal reflection (TIR). The lightguide 920 is typically a transparent substrate, and is also referred to as a “planar substrate”, “light-transmitting substrate”, and “waveguide”. The lightguide 920 includes at least two (major, external) surfaces, typically parallel to each other (mutually parallel), shown in the current figure as a first (back, major) surface 926 and a front (second, major) surface 926A. Note that the designation of “front” and “back” with regard to the major surfaces (926, 926A) is for convenience of reference. Coupling-in to the lightguide 920 can be from various surfaces, such as the front, back, side edge, or any other desired coupling-in geometry.


The collimated input beam 4C enters the lightguide substrate at a proximal end of the substrate (right side of the figure). Light propagates through the lightguide 920 and one or more facets, normally at least a plurality of facets, and typically several facets, toward a distal end of the lightguide 920 (left side of the figure). The lightguide 920 typically guides rays of propagating light in the substrate by internal reflection of the external surfaces.


After optionally reflecting off the internal surfaces of the substrate 920, the trapped waves reach a set of selectively reflecting surfaces (facets) 922, which couple the light out of the substrate into the eye 10 of a viewer. In the current exemplary figure, the trapped ray is gradually coupled out from the substrate 920 by two other partially reflecting surfaces 922 at the points 944.


Internal, partially reflecting surfaces, such as the set of selectively reflecting surfaces 922 are generally referred to in the context of this document as “facets.” For applications such as augmented reality, the facets are partially reflecting, allowing light from the real world to enter via the front surface 926A, traverse the substrate including facets, and exit the substrate via the back surface 926 to the eye 10 of the viewer. Exemplary ray 942 shows light of the collimated input beam 4C partially reflected from reflecting surface 916, and exemplary ray 941 shows light of the collimated input beam 4C partially transmitted through reflecting surface 916.


The internal partially reflecting surfaces 922 generally at least partially traverse the lightguide 920 at an oblique angle (i.e., non-parallel, neither parallel nor perpendicular) to the direction of elongation of the lightguide 920. Partial reflection can be implemented by a variety of techniques, including, but not limited to transmission of a percentage of light, or use of polarization.


The lightguide 920 optionally has a second pair of external surfaces (not shown in the current figure side view) parallel to each other and non-parallel to the first pair of external surfaces. In some implementations, the second pair of external surfaces is perpendicular to the first pair of external surfaces. Typically, each of the facets is at an oblique angle to the second pair of external surfaces. In other cases, where reflections from peripheral surfaces of the lightguide are not desired, those peripheral surfaces are typically left unpolished and/or coated with light absorbent (e.g., black) material to minimize undesired reflections.


First Embodiment

Referring to FIG. 3A and FIG. 3B, there are shown respective front and side view sketches of an exemplary compact system for optical illumination 302. The conventional PBS 104 is replaced by a lightguide (waveguide) polarization splitter (WGPS), such as a lightguide 20 (similar to the LOE 903 described above). Source optics 300 provides polarized light with uniform illumination 4P into the lightguide 20. Source optics 300 has an exit width 300W and lightguide 20 has an input width 20W of the polarized light uniform illumination 4P. The side faces 21 (second pair of external faces) of the lightguide 20 can be coated with a reflective coating in order to prevent energy loss from the sides. While the collimated input beam 4C was described above as being used by the LOE 903, the polarized light with uniform illumination 4P into the lightguide 20 is preferably not strictly collimated, but illuminates a spread of angles within a determined range of angles.


As light (uniform polarized light 4P) propagates along the lightguide 20 the light is partially reflected by a sequence of polarization selective facets 922P. The polarization selective partially reflecting facets 922P are similar to the above-described set of selectively reflecting surfaces (facets) 922, with the selective reflection based on polarization. These polarization selective facets 922P reflect a first polarization (for example S-pol) of light 324 and transmit a second, orthogonal, polarization (for example P-pol) of light 326.


An innovative feature of the current embodiment is that the facets are polarization selective and partially reflecting. This feature can be implemented during the production process of the lightguide 20. Refer to U.S. Pat. No. 6,829,095 (granted 2004 Dec. 7 and assigned to LUMUS Ltd) for general exemplary method of production. Preferred methods of creating the polarization selective partially reflecting facets are to use a dielectric coating or wire-grid between plates of the lightguide. It is foreseen that other methods of implementing partially reflecting polarization selectivity can be developed and could be implemented for the current embodiment. In the case of using a wire-grid, the wire-grid polarizer can be made only partially reflective to the polarization (parallel to the wires) by controlling parameters of the wire-grid such as the conductivity of the wires. For example, less conductive wires can be used for less reflection. Conductivity can be controlled by wire material, thickness, and spacing. Another option to control reflectivity is to rotate, or “twist” the wire grid. A combination of techniques, such as combining a dielectric material with a wire-grid, controls intensity of light on the wire-grid, and therefore controls the reflectivity. Additional information and exemplary graphs of polarization selective coatings can be found for example in U.S. Pat. No. 7,643,214 (granted 2010 Jan. 5 and assigned to LUMUS Ltd.).


The first polarized light 324 is output from the lightguide 20 via the first external surface 926 toward a front-lit reflective polarization rotating image modulator, for example, the LCOS 106. For simplicity in the current description, specific implementation using an LCOS will be described. The first polarized light 324 impinges on the LCOS 106. Preferably, the first polarized light 324 illuminates every pixel with a cone of light around appropriate center angle. Preferably, the lightguide 20 should be slightly away from the LCOS 106 in order to prevent observable non-uniformities. The impinging first polarized light 324 is spatially modulated by polarization rotation by the LCOS 106 and reflected toward the lightguide 20. For example, the first polarized light 324 is reflected and rotated as the (orthogonal) second polarized light 326. As the polarization selective facets 922P are designed to be transparent to this second polarization light 326, the second polarized light 326 passes through (traverses) the lightguide 20 from the first external surface 926, via the polarization selective facets 922P, and exits from the second external surface 926A toward the projecting optics 107. In order to filter out scattered light, an optional polarizer 303 can be deployed between the lightguide 20 and the projecting optics 107. In the current example, the polarizer 303 is at P-pol orientation and filters any S-pol polarized light.


Referring to FIG. 3C, there is shown a sketch of a first exemplary embodiment 300C of source optics 300. The unpolarized light source 2U emits (not necessarily uniform) unpolarized light 4U that is introduced perpendicularly into a 2D (two-dimensional) lightguide 9. As the light propagates and reflects in the 2D lightguide 9 the light's illumination becomes more uniform 4L1. An optional diffuser (not shown) can be placed before the lightguide 20, for example, along, or as part of external faces of the 2D lightguide 9 to improve further light uniformity across the output width of the lightguide 9. Optionally, a small PBS can be introduced into the 2D lightguide 9. The small PBS can be used to pass S-polarized light, while outputting P-polarized light that is then rotated by ½ wave-plate to be S-pol and combined in parallel with the passed S-polarization, thereby avoiding loss of 50% power. Alternatively, to 2D lightguide 9, other implementations are known in the art for generating uniform light 4L1.


The uniform light 4L1 then enters a first lightguide 10 that has internal partial reflecting facets 12 (similar to the above-described LOE 903 with selectively reflecting facets 922). These facets are at an angle to reflect the internal propagating light out of first lightguide 10 as light with uniform illumination 4L towards the lightguide 20.


Optionally and preferably, the light with uniform illumination 4L reflected out of the first lightguide 10 then passes through optional polarization management 314. Polarization management 314 components can include a polarizer (similar to polarizer 103, described above) and a ½ wave plate. A pure polarization is preferred in order to minimize scattering of light in the lightguide 20 and to obtain a high contrast image from the LCOS 106. Orientation of a polarizer is preferably along a direction of maximal intensity coupled out by the facets 12 (most probably S-polarization). Since generally coatings (on the facets 12) and/or wire-grids reflect S-polarization at much higher efficiency than P-polarization, mostly the S-pol component of the uniform light 4L1 will be reflected as uniform illumination 4L. A wave-plate is required if polarization orientation emitted by the first lightguide 10 (and filtered by the polarizer if used) does not overlap the optimal polarization for a next stage in the light propagation path. In a typical case, the S-pol from the first lightguide 10 is oriented as P-pol after reflection therefore a ½ wave-plate is required to obtain the S-pol orientation again.


The polarization management 314 is optional, depending on purity of the first polarized light 324 impinging on the LCOS 106 (single polarization is preferred for good image contrast). The polarization management 314 should preferably be as thin as possible, without disrupting the TIR in the first lightguide 10. One alternative is for the polarization management 314 to be glued between the first lightguide 10 and the lightguide 20 by low index glue (n˜1.3 for example).


As the lightguide 20 does not do imaging, the light propagation in the lightguide 20 can be injected along an axis of the lightguide 20 corresponding to a direction of the sequence of facets. In this case, a low index glue (for example, with n=1.3) can be used on the external facets of the lightguides 10 and 20. The glue can be between the 2D lightguide 9 and the first lightguide 10, between the lightguide 20 and the projecting optics 107 (prism for example), and between the lightguide 20 and the LCOS 106. This way there will be no air-gap.


Referring to FIG. 3D, there is shown a sketch of a second exemplary embodiment 300D of source optics 300. The light source 2U emits unpolarized light 4U that is introduced perpendicularly into the 2D lightguide 9. As the light propagates and reflects in the 2D lightguide 9 the light's illumination becomes more uniform 4L1. The uniform light 4L1 then enters a tapered non-imaging lightguide 326 that laterally expands the internal propagating light out of the tapered non-imaging lightguide 326 as light with uniform illumination 4L towards (optional polarization management 314 and) the lightguide 20.


In both of the above exemplary embodiments, the polarized light with uniform illumination 4P, is output from the source optics (300C, 300D) and enters the lightguide 20.


Optionally, prior to injection of light (the polarized light with uniform illumination 4P) into the lightguide 20, light with improper angular distribution is filtered, that is, light that does not overlap the desired image. Therefore, only angular distribution overlapping the image is injected into the lightguide 20. This technique reduces the scattering and contrast reduction.


The lightguides (the lightguide 20, the first lightguide 10) can be based on metallic coating, dielectric coating, or on total internal reflection (TIR) in order to reflect the propagating light internally. The face between the first lightguide 10 and lightguide 20 is preferably angular selective transmittance, preferably based on TIR


The combination of aperture management and/or partial reflectors, waveguide-based reflection, coating management, and 2D expansion are features of the compact system for optical illumination 302, more compact than conventional implementations such as based on polarizing beam splitters. A more compact system allows for reduction in cost, weight, and possibly more room for imaging/projecting optics 107.


Alternative Embodiment

Referring to FIG. 4A, there is shown a sketch of a side view of facets with uniform angular response. Illumination of the LCOS 106 can be improved by configuring angular reflectivity of facets in the lightguide 20. The lightguide 20 includes a sequence of facets 922A (similar to the above-described set of facets 922). Several exemplary pixels 434 of the LCOS 106 are shown. Polarized light with uniform illumination 4P enters the lightguide 20 as angular distribution 430. The facets 922A have uniform angular response, therefore, the reflecting pixels 434 all see the same illumination angle cones 432 and will reflect the same illumination angle cones 432. The current configuration improves illumination for telecentric optics, for example if the projecting optics 107 are telecentric.


Referring to FIG. 4B, there is shown a sketch of a side view of facets with differing angular response. For a non-telecentric optical configuration, facets 922N (similar to the above-described set of facets 922) can be constructed with differing angular reflectivities, resulting in differing illumination angle cones 440. In this exemplary configuration, facets in section 922N1 will reflect light at larger angles (relative to a vertex, where each vertex is perpendicular to the same one external surface of the lightguide 20) and be transmissive to all other angles. Facets in sections 922N2, 922N1, and 922N3 all reflect at a same angular spread, but the angular spread of each section is relative to (centered on) a different angular spread.


For reference, in telecentric illumination, the chief rays are collimated and parallel to the optical axis in image and/or object space. Collimated light rays remain collimated as the collimated light rays strike an object's surface. In comparison, light rays from a standard backlight expand and interfere with one another. In the context of this document, telecentric illumination describes illumination in which a cone of light converges perpendicularly on every pixel. In non-telecentric illumination, each of different pixels is illuminated by a cone of light that is tilted differently with respect to the pixel. Collimation is used to describe optics that take diverging rays reflected from a pixel (mostly cone distribution) and makes all the reflected rays parallel at a specific direction. Different pixels are “collimated” to different directions.


Uniform Illumination


In order to assist in obtaining uniform illumination across the LCOS 106, the reflectivity of the S-polarization (a first polarization) should preferably increase along the lightguide, that is, increase from one facet in the sequence of facets 922P to a subsequent facet as the light propagates along the lightguide 20. First facets in the propagation path should be designed with relatively low reflectivity and last facets with relatively high reflectivity of the (first) S-Polarization. The transmissivity of the P-polarized light (a second polarization) reflected by the LCOS should be maximal for each facet. That is, the facets should be as transparent as possible to P-polarization. In the below description, generally S-pol reflectivity and P-pol transmissivity are used, and a telecentric illumination will be assumed for simplicity.


A first requirement is that the illumination of the LCOS 106 should preferably be uniform in order to achieve uniform image intensity (of reflected light 326). A second requirement is for near-eye-display optics (projecting optics 107) exit pupil should also be illuminated uniformly for optimal observation. These two requirements imply that the LCOS 106 pixels (pixels 434) should be illuminated uniformly and the illumination angle cone 432 angle should be uniform. In other words, preferably, 100% full spatial illumination and uniform angular illumination across the numerical aperture of the optical system.


Uniform illumination of the LOE lightguide 20 can be achieved if coupling from the source optics 300 fills completely the entrance to the lightguide 20. Therefore, the exit width 300W of the source optics 300 should preferably be equal or wider than the input width 20W of the lightguide 20. Furthermore, the source optics 300 should preferably also be illuminated uniformly, which can be achieved, for example, by use of diffusers and proper length of the initial 2D lightguide 9.


Some non-uniformity may exist in the light entering and propagating within the lightguide 20, and some uniformity may be introduced by the facets 922P themselves. To reduce and handle this non-uniformity, the first lightguide 10 that has internal partial reflecting facets 12 and the lightguide 20 sequence of polarization selective facets 922P are preferably in an overlapping configuration.


Referring to FIG. 5A, there is shown a schematic view of a lightguide (such as lightguide 920) with non-overlapping facets, illustrating the effects of variation on image uniformity. A source of perceived non-uniformity relates to angular overlap of internal facets in different fields of view. In the region of the lightguide illustrated here, the lightguide contains internal facets (two are depicted as last facet 2515 and first facet 2517). Most of the out-coupled light is reflected from a single internal facet. However, at the edge of the facets, there is non-uniformity at off-axis angles. For a region of the FOV pointing to the left (marked as solid arrows), a conventional gap area 2520 (also generally referred to as an “underlapping area”, “black line” area, or “dark strip” area) will not reflect any light, since at this angle there is an effective gap between the light reflected by the last facet 2515 and the first facet 2517, resulting in a dark strip in the perceived. On the other hand, light out-coupled to the right (marked as dashed arrows) has a conventional bright area 2525 (also generally referred to as a “partially overlapping” area, or “intense” area) within which there is overlap of the light reflected from 2515 and 2517 so that the lightguide will reflect almost twice the amount of light. Therefore, the non-uniformity in the current figure will vary between roughly 200% and 0% of the median image intensity across the extended aperture in different regions of the FOV and eye positions.


Referring to FIG. 5B, there is shown a schematic view of a lightguide with overlapping facets, illustrating the effects of variation on image uniformity. Substantial overlap is introduced between the facets, as illustrated in the current figure. In this case, the spacing between adjacent facets is halved, resulting in most parts of the FOV at most eye positions receiving illumination from the image via overlaid reflections from two facets. In this exemplary case, a single middle facet 2535 is configured between the last facet 2515 and the first facet 2517. Near the angular extremities of the image and the extremities of the facets, there will still be changes in the number of overlapping facets which contribute to certain regions of the image, as illustrated by underlapping area 2540 which originates from only one facet (the middle facet 2535) and bright area 2545 which is contributed to by three adjacent facets (2517, 2535, and 2515. Therefore, the output non-uniformity will vary between 50% and 150% of the median reflectivity.


The light from the first half (light propagating from the right) of facet 2517 will couple out as reduced energy (ray/output beam 2546) since at this position there is no overlapping of the next facet 2535 i.e. there is only one facet reflect the light to the observer. The same reduced power happens at the last half of facet 2515 (ray/output beam 2547). In these regions, the reflectivity will be 50% of the median reflectivity.


Referring to FIG. 5C, there is shown a sketch of triple facets (triple facet crossing, triple overlap). Similar to the other examples, a lightguide (the lightguide 20) includes overlapping internal facets 922T, which are shown as double-lines, between the first surfaces (26, 26A). A solid arrow shows a nominal ray crossing three facets and then outcoupled from the substrate (arrow outcoupling ray 38B). As in similar figures, dashed lines are used to show alignment of the facets 922T. In this example, multiple (specifically two) first partial facets and multiple (two) last partial facets are shown.


In the current embodiment, management of configuration of facets in an overlapping configuration, specifically optimizing the overlap to obtain a constant number of facets (more than one) reflecting light onto the observer, in other words, at least two facets reflect light toward a FOV of an observer, can reduce non-uniformity of light output from the lightguides.


Referring to FIG. 6, there is shown a sketch of an angular space architecture of the lightguide 20 (FIG. 3A, FIG. 3B) being fed by the first exemplary embodiment 300C (FIG. 3C). Efficiency of extracting the light from the lightguide 20 depends on the angles and coating parameters of the facets 922P. Exemplary parameters used for the current case are based on BK7 glass and MY-130 glue, but other optical materials may be used.


The critical angles 60 (represented as circles) of the first lightguide 10 are 59 degrees within a BK7 glass lightguide surrounded by protective coating having n=1.3. Four circles represent the critical angles 60 of the four external facets of the lightguide 20. The unpolarized light source 2U and the 2D lightguide 9 generate uniform illumination distribution, therefore we can assume for simplicity that the angular area between the critical angles 62 is uniformly illuminated. Assuming rectangular aperture of the projecting optics 107 having f/2, then the half angle divergence of the required image light is 14 degrees as presented by illumination 64. This required illumination angular distribution propagate along the first lightguide 10 until reflected by the facets 12 at 45 degrees onto the lightguide 20 as depicted by required illumination 66. As the required illumination 66 propagates along the first lightguide 10, the required illumination 66 is reflected by the facets 922P at 45 degrees out of the lightguide 20 and onto the LCOS 106 as depicted by illumination 68.


In order to minimize scattering, it is preferable that the coatings on the facets 12 and the facets 922P have reflectivity of S-polarization at the required angles only. In this example, this should be approximately ±14 degrees around 45 degrees.


The efficiency of this configuration of the present invention is determined by the ratio of the illumination angular distribution (within the angular area defined by the critical angles 62) to the required angular area of the illumination 64. The 2D lightguide 9 (including optional diffusers) with limited angular distribution overlapping the required distribution can optionally be used to improve efficiency.


Referring to FIG. 7, there is shown a sketch of an angular space architecture of FIG. 6 with improved energy extraction. The axis and the critical angles are the same as described in reference the case of FIG. 6.


The required optical illumination angular distribution 70 has the same parameters as in FIG. 6 but is off-center. This way, this distribution is reflected by the four external facets of the first lightguide 10 to generate distributions 70, 72, 74 and 76. These four distributions engage energy as the four distributions propagate along the first lightguide 10.


The facets 12 in this embodiment are at 37 degrees and have coating that partially reflects S-polarization at angles between 20 to 53 degrees (relative to facet vertex). These facets 12 will reflect distributions 70 and 72 onto the lightguide 20 as distributions 78 and 80 respectively. These two distributions (78, 80) also exchange energy as the two distributions propagate along the lightguide 20.


The facets 922P within the lightguide 20 (having same parameter as in the first lightguide 10 in this example) partially reflect distribution 78 out of the lightguide 20 onto the LCOS 106 as distribution 82.


In the current embodiment, the facets partially reflect the light and the continuous coupling with the other distributions within the lightguide enable more energy to be coupled to the required distribution. It is apparent from the current figure that the combined distribution of 70, 72, 74, and 76 fills efficiently the illuminating angular distribution between the critical angles of the first lightguide 10.


A combination of facet (12, 922P) and corresponding coatings can be designed in the lightguides (10, 20) to convert light propagating with a large angle (relative to a normal to the facets) to propagate with a relatively shallower angle. This design combination can be based on reflection at high angles and facets at low angles, preferably only with regard to S-polarization. This design combination can improve efficiency as compared to implementations allowing light to propagate with high angles.


Referring to FIG. 8, there is shown a chart of performance of coating designed for the configuration of FIG. 7. The performance in the current chart includes overlapping facets. The reflectance of S-polarization Rs (toward the LCOS 106) is 10-15%, while the transmittance of the P-polarization Tp (from the LCOS 106 toward the projecting optics 107) is >95%. The transmittance of the other images Ts (74, 76 and 80) is relatively good >85% in most of the angular spectrum. Reflectivity of Rs can cause energy loss to unobservable directions.


The coating design of FIG. 8 is based on an exemplary multi-layer refractive configuration. However, lower cost (with somewhat lower performance) single layer can be used including a glue with different refractive index.


Referring to FIG. 9, there is shown a sketch of angular distribution of a configuration including tapered (or cylindrical lens) expansion of the second exemplary embodiment 300D. The configuration depicted in the second exemplary embodiment 300D describes a tapered 1D expansion of the light (the unpolarized light 4U using the tapered non-imaging lightguide 326) from the 2D lightguide 9. This expansion can also optionally be by cylindrical lenses. It is common knowledge to perform these types of expansion by preserving the Etendue of the light distribution. This way, the spatial expansion of the width of the illumination is accompanied by equivalent reduction of the angular distribution of illumination on the same axis.


The angular illumination distribution in the 2D lightguide 9 (illumination between all critical angles) is depicted as area 84. The tapered conversion is depicted as a transformation to thin rectangle 86 (the rotation from one direction to another is not mandatory and is for clarity).


The required intensity distributions 88 and 90 exchange energy and coupled out to 92 by facets 922P the same way as 78 and 80 in FIG. 7. This way, the conversion of light energy from the lightguide 9 to the required illumination distribution is improved in efficiency.


Referring to FIG. 10A, there is shown a sketch of a first optional architecture for optical illumination 302A. A tilted angle is between the first lightguide 10 and the lightguide 20 can be used for optimizing the angular parameters of the coating depicted in FIG. 8.


Referring to FIG. 10B and FIG. 10C, there are shown respective side and front view sketches of a second optional architecture for optical illumination 302B. The source optics 300 provides uniform illumination light 4L1 (in this case polarized or unpolarized) into an overlapping lightguide 20A having a first set of facets 922M and a second set of facets 922N. The crossing (overlapping) orientations of the first and second sets of facets cause lateral expansion of the source aperture within the overlapping lightguide 20A and projects the first polarization of light 324 while transmitting the second, orthogonal, polarization of light 326.


Referring to FIG. 11A and FIG. 11B, there is shown the reflection process by the internal facets in lightguides 10 and 20. Two basic configurations are depicted, and differ by the relative angles of the light beams and the facets. In this schematic illustration, the beams a1, a2 and b1 are depicted as same vector (for simplicity referred to as beam b1) since the same geometrical considerations apply to each as observed from a side view of the corresponding lightguide. Beams a3, a4 and b2 are also depicted as same vector (reference will be only to b2). The beam b1 represents 74, 78, 80, or 90. Beam b2 represent 70, 72, 78, or 88.


Light beams b2 are actually a bundle of rays propagating in same direction as depicted by two vectors in FIG. 11A. In this case, one vector is reflected by the external face to become beam b1 and onto an internal facet 40 (corresponding to facets 922P) where part of the one vector is reflected as beam c1. The other beam b2 vector is reflected directly by facet as vector beam c2. The vector beams c1 and c2 represent the normal image and ghost image not necessarily in this order. In this configuration, beams b1 and b2 impinge on the facet 40 from the same side.



FIG. 11B describes a similar process as described with reference to FIG. 11A, but where the geometry is such that beams b1 and b2 impinge on facet 40 from opposite sides of facet 40.


In both cases, the magnitude of reflection for images c1 and c2 in S- and P-polarizations is determined by the coating on these facets 40. Preferably, one reflection is the image and the other is suppressed since the other image corresponds to an unwanted “ghost” image. Suitable coatings for controlling which ranges of incident beam angles are reflected and which ranges of incident beam angles are transmitted can be found described in detail in U.S. Pat. Nos. 7,391,573 and 7,457,040, coassigned with the present invention.


Note that the above-described examples, numbers used, and exemplary calculations are to assist in the description of this embodiment. Inadvertent typographical errors, mathematical errors, and/or the use of simplified calculations do not detract from the utility and basic advantages of the invention.


To the extent that the appended claims have been drafted without multiple dependencies, this has been done only to accommodate formal requirements in jurisdictions that do not allow such multiple dependencies. Note that all possible combinations of features that would be implied by rendering the claims multiply dependent are explicitly envisaged and should be considered part of the invention.


It will be appreciated that the above descriptions are intended only to serve as examples, and that many other embodiments are possible within the scope of the present invention as defined in the appended claims.

Claims
  • 1. An optical system comprising: (a) a lightguide having: (i) a first external surface and a second external surface, said first and second external surfaces being mutually parallel, and(ii) a first sequence of facets, at least a portion of which are a plurality of parallel, partially reflecting, and polarization selective surfaces, each of said facets reflecting a portion of a first polarized light and transmitting a remaining portion of said first polarized light, and transmitting a second polarized light, said sequence of facets being at an oblique angle relative to said first and second external surfaces, and between said first and second external surfaces,(b) a front-lit reflective polarization-rotating image modulator deployed to spatially modulate light coupled-out from said first external surface, and to output reflected light corresponding to an image, said image modulator being deployed such that said reflected light traverses said lightguide from said first external surface via said first sequence of facets to said second external surface;(c) a polarizer deployed to selectively transmit image illumination emerging from said second external surface corresponding to said second polarization reflected from the image modulator; and(d) an illumination source optically coupled to said light guide to introduce into said light guide light of at least said first polarization so as to propagate by total internal reflection at said first and second external surfaces, said light being progressively partially reflected by successive facets of said first sequence of facets towards said image modulator, reflected light of said second polarization corresponding to the image being transmitted by said facets and by said polarizer.
  • 2. The optical system of claim 1, wherein reflectivity of said first polarization increases from one facet to a subsequent facet in said first sequence of facets.
  • 3. The optical system of claim 1, wherein said first sequence of facets expands light in-coupled to said lightguide such that said light is uniformly coupled-out of said first external surface.
  • 4. The optical system of claim 1, wherein said image modulator is a liquid crystal on silicon (LCOS) matrix.
  • 5. The optical system of claim 1, wherein said facets are constructed at least in part using a technique selected from the group consisting of: (a) multi-layer coatings,(b) a dielectric coating; and(c) a wire-grid.
  • 6. The optical system of claim 1, wherein reflectivity of each of said facets is dependent on an angle at which light impinges on said facet.
  • 7. The optical system of claim 1, wherein said first sequence of facets is configured to perform coupling-out of light from said first external surface, said first sequence of facets having a constant number of facets overlapping in a line of sight toward a nominal point of observation of light coupling-out of said first external surface.
  • 8. The optical system of claim 1, further comprising: a second sequence of facets, at least a portion of which are: a plurality of parallel, partially reflecting, and polarization selective surfaces,at an oblique angle relative to said first and second external surfaces, andbetween said first and second external surfaces,wherein the facets of said first sequence of facets and said second sequence of facets are non-parallel relative to each other.
  • 9. The optical system of claim 8 wherein each of said sequences of facets spans an area of coverage, said spanning being an area over which each of said sequences of facets are deployed, and wherein said areas of coverage for said first and second sequences of facets are at least partially overlapping.
PCT Information
Filing Document Filing Date Country Kind
PCT/IL2018/050798 7/19/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2019/016813 1/24/2019 WO A
US Referenced Citations (416)
Number Name Date Kind
2748659 Geffcken et al. Jun 1956 A
2958258 Kelly Nov 1960 A
3626394 Nelson et al. Dec 1971 A
3658405 Pluta Apr 1972 A
3667621 Barlow Jun 1972 A
3677621 Smith Jul 1972 A
3737212 Antonson et al. Jun 1973 A
3807849 Lobb Apr 1974 A
3873209 Schinke et al. Mar 1975 A
3940204 Withrington Feb 1976 A
4084883 Eastman et al. Apr 1978 A
4233526 Kurogi et al. Nov 1980 A
4240738 Praamsma Dec 1980 A
4309070 St Leger Searle Jan 1982 A
4331387 Wentz May 1982 A
4372639 Johnson Feb 1983 A
4383740 Bordovsky May 1983 A
4516828 Steele May 1985 A
4613216 Herbec et al. Sep 1986 A
4711512 Upatnieks Dec 1987 A
4755667 Marsoner et al. Jul 1988 A
4775217 Ellis Oct 1988 A
4798448 Van Raalte Jan 1989 A
4799765 Ferrer Jan 1989 A
4805988 Dones Feb 1989 A
4932743 Isobe et al. Jun 1990 A
5033828 Haruta Jul 1991 A
5076664 Migozzi Dec 1991 A
5096520 Faris Mar 1992 A
5231642 Scifres et al. Jul 1993 A
5278532 Hegg et al. Jan 1994 A
5301067 Bleier et al. Apr 1994 A
5353134 Michel et al. Oct 1994 A
5369415 Richard et al. Nov 1994 A
5453877 Gerbe et al. Sep 1995 A
5481385 Zimmerman et al. Jan 1996 A
5499138 Iba Mar 1996 A
5537260 Williamson Jul 1996 A
5539578 Togino et al. Jul 1996 A
5543877 Takashi et al. Aug 1996 A
5555329 Kuper et al. Sep 1996 A
5594830 Winston et al. Jan 1997 A
5619601 Akashi et al. Apr 1997 A
5650873 Gal et al. Jul 1997 A
5680209 Maechler Oct 1997 A
5708449 Heacock et al. Jan 1998 A
5712694 Taira et al. Jan 1998 A
5724163 Yair Mar 1998 A
5751480 Kitagishi May 1998 A
5764412 Suzuki et al. Jun 1998 A
5808709 Davis Sep 1998 A
5808800 Handschy Sep 1998 A
5896232 Budd et al. Apr 1999 A
5909325 Kuba et al. Jun 1999 A
5966223 Amitai et al. Oct 1999 A
5982536 Swan Nov 1999 A
6007225 Ramer et al. Dec 1999 A
6021239 Minami et al. Feb 2000 A
6034750 Rai et al. Mar 2000 A
6052500 Takano et al. Apr 2000 A
6091548 Chen Jul 2000 A
6144347 Mizoguchi et al. Nov 2000 A
6204975 Watters et al. Mar 2001 B1
6222676 Togino et al. Apr 2001 B1
6222971 Veligdan et al. Apr 2001 B1
6239092 Papasso et al. May 2001 B1
6256151 Ma et al. Jul 2001 B1
6266108 Bao Jul 2001 B1
6307612 Smith Oct 2001 B1
6310713 Doany et al. Oct 2001 B2
6324330 Stites Nov 2001 B1
6349001 Spitzer Feb 2002 B1
6362861 Hertz et al. Mar 2002 B1
6384982 Spitzer May 2002 B1
6388814 Tanaka May 2002 B2
6400493 Mertz et al. Jun 2002 B1
6404550 Yajima Jun 2002 B1
6404947 Matsuda Jun 2002 B1
6406149 Okuyama Jun 2002 B2
6421031 Ronzani et al. Jul 2002 B1
6433339 Maeda et al. Aug 2002 B1
6480174 Kaufmass et al. Nov 2002 B1
6490087 Fulkerson et al. Dec 2002 B1
6490104 Gleckman et al. Dec 2002 B1
6509982 Steiner Jan 2003 B2
6542307 Gleckman Apr 2003 B2
6580529 Amitai et al. Jun 2003 B1
6606173 Kappel et al. Aug 2003 B2
6671100 McRuer Dec 2003 B1
6690513 Hulse et al. Feb 2004 B2
6704052 Togino et al. Mar 2004 B1
6704065 Sharp et al. Mar 2004 B1
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6879443 Spitzer et al. Apr 2005 B2
6880931 Molitonl et al. Apr 2005 B2
6894821 Kotchick May 2005 B2
6950220 Abramson et al. Sep 2005 B2
7021777 Amitai Apr 2006 B2
7025464 Beeson et al. Apr 2006 B2
7163291 Cado et al. Jan 2007 B2
7285903 Cull et al. Oct 2007 B2
7339742 Amitai et al. Mar 2008 B2
7391573 Amitai Jun 2008 B2
7392917 Alalu et al. Jul 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7430355 Heikenfeld et al. Sep 2008 B2
7448170 Milovan et al. Nov 2008 B2
7457040 Amitai Nov 2008 B2
7554737 Knox et al. Jun 2009 B2
7576916 Amitai Aug 2009 B2
7576918 Goggins Aug 2009 B2
7577326 Amitai Aug 2009 B2
7643214 Amitai Jan 2010 B2
7667962 Mullen Feb 2010 B2
7672055 Amitai Mar 2010 B2
7710655 Freeman et al. May 2010 B2
7724441 Amitai May 2010 B2
7724442 Amitai May 2010 B2
7724443 Amitai May 2010 B2
7751122 Amitai Jul 2010 B2
7777960 Freeman Aug 2010 B2
7884985 Amitai Feb 2011 B2
7995275 Maeda et al. Aug 2011 B2
8000020 Amitai Aug 2011 B2
8004765 Amitai Aug 2011 B2
8035872 Ouchi Oct 2011 B2
8098439 Amitai et al. Jan 2012 B2
8187481 Hobbs May 2012 B1
8405573 Lapidot et al. Mar 2013 B2
8432614 Amitai Apr 2013 B2
8467133 Miller Jun 2013 B2
8611015 Wheeler et al. Dec 2013 B2
8643948 Amitai et al. Feb 2014 B2
8655178 Capron et al. Feb 2014 B2
8665178 Wang Mar 2014 B1
8783893 Seurin et al. Jul 2014 B1
8786519 Blumenfeld et al. Jul 2014 B2
8810914 Amitai et al. Aug 2014 B2
8854734 Ingram Oct 2014 B2
8861081 Amitai et al. Oct 2014 B2
8902503 Amitai et al. Dec 2014 B2
8913865 Bennett Dec 2014 B1
8988776 Weber et al. Mar 2015 B2
8998414 Bohn Apr 2015 B2
9025253 Hadad et al. May 2015 B2
9069180 Amitai et al. Jun 2015 B2
9104036 Amitai et al. Aug 2015 B2
9207457 Amitai Dec 2015 B2
9248616 Amitai Feb 2016 B2
9279986 Amitai Mar 2016 B2
9316832 Amitai et al. Apr 2016 B2
9417453 Amitai et al. Aug 2016 B2
9448408 Amitai et al. Sep 2016 B2
9488840 Mansharof et al. Nov 2016 B2
9500869 Amitai Nov 2016 B2
9513481 Levin et al. Dec 2016 B2
9541762 Mukawa et al. Jan 2017 B2
9551874 Amitai Jan 2017 B2
9551880 Amitai Jan 2017 B2
9568738 Mansharof et al. Feb 2017 B2
9664910 Mansharof et al. May 2017 B2
9709809 Miyawaki et al. Jul 2017 B2
9740013 Amitai et al. Aug 2017 B2
9804396 Amitai Oct 2017 B2
9805633 Zheng Oct 2017 B2
9910283 Amitai Mar 2018 B2
9977244 Amitai May 2018 B2
10048499 Amitai Aug 2018 B2
10222535 Remhof et al. Mar 2019 B2
10302835 Danziger May 2019 B2
10302957 Sissom May 2019 B2
10571699 Parsons et al. Feb 2020 B1
20010013972 Doany et al. Aug 2001 A1
20010030860 Kimura et al. Oct 2001 A1
20010055152 Richards Dec 2001 A1
20020008708 Weiss et al. Jan 2002 A1
20020015233 Park Feb 2002 A1
20020021498 Ohtaka Feb 2002 A1
20020080615 Marshall et al. Jun 2002 A1
20020080622 Pashley et al. Jun 2002 A1
20020085281 Okabe Sep 2002 A1
20020176173 Song Nov 2002 A1
20020186179 Knowles Dec 2002 A1
20020191297 Gleckman et al. Dec 2002 A1
20030007157 Hulse et al. Jan 2003 A1
20030020006 Janeczko et al. Jan 2003 A1
20030030912 Gleckman et al. Feb 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030090439 Spitzer et al. May 2003 A1
20030165017 Amitai et al. Sep 2003 A1
20030197938 Schmidt et al. Oct 2003 A1
20030218718 Moliton et al. Nov 2003 A1
20040080718 Kojima Apr 2004 A1
20040085649 Repetto et al. May 2004 A1
20040130797 Leigh Travis Jul 2004 A1
20040136082 Cado Jul 2004 A1
20040137189 Tellini et al. Jul 2004 A1
20040145814 Rogers Jul 2004 A1
20040218271 Hartmaier et al. Nov 2004 A1
20040263842 Puppels Dec 2004 A1
20040264185 Grotsch et al. Dec 2004 A1
20050018308 Cassarly et al. Jan 2005 A1
20050023545 Camras et al. Feb 2005 A1
20050024849 Parker et al. Feb 2005 A1
20050083592 Amitai et al. Apr 2005 A1
20050084210 Cha Apr 2005 A1
20050173719 Yonekubo et al. Aug 2005 A1
20050174658 Long et al. Aug 2005 A1
20050180687 Amitai Aug 2005 A1
20050248852 Yamasaki Nov 2005 A1
20050265044 Chen et al. Dec 2005 A1
20060052146 Ou Mar 2006 A1
20060061555 Mullen Mar 2006 A1
20060091784 Conner et al. May 2006 A1
20060103590 Divon May 2006 A1
20060126182 Levola Jun 2006 A1
20060228073 Mukawa Oct 2006 A1
20060268421 Shimizu et al. Nov 2006 A1
20070035706 Margulis Feb 2007 A1
20070070859 Hirayama Mar 2007 A1
20070091445 Amitai Apr 2007 A1
20070153344 Lin Jul 2007 A1
20070159673 Freeman Jul 2007 A1
20070165192 Prior Jul 2007 A1
20070206390 Brukilacchio et al. Sep 2007 A1
20070284565 Leatherdale et al. Dec 2007 A1
20070285663 Hewitt et al. Dec 2007 A1
20070291491 Li et al. Dec 2007 A1
20080013051 Glinski et al. Jan 2008 A1
20080025667 Amitai Jan 2008 A1
20080030974 Abu-Ageel Feb 2008 A1
20080062686 Hoelen et al. Mar 2008 A1
20080068852 Goihl Mar 2008 A1
20080151375 Lin Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080192239 Otosaka Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080198604 Kim et al. Aug 2008 A1
20080278812 Amitai Nov 2008 A1
20090009719 Ryf Jan 2009 A1
20090010023 Kanade et al. Jan 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090097127 Amitai Apr 2009 A1
20090122414 Amitai May 2009 A1
20090153437 Aharoni Jun 2009 A1
20090165017 Syed et al. Jun 2009 A1
20090275157 Winberg et al. Nov 2009 A1
20100002465 Tsang et al. Jan 2010 A1
20100020291 Kasazumi et al. Jan 2010 A1
20100027289 Aiki et al. Feb 2010 A1
20100046234 Abu-Ageel Feb 2010 A1
20100053148 Khazenil et al. Mar 2010 A1
20100067110 Amitai et al. Mar 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100201953 Freeman et al. Aug 2010 A1
20100202048 Amitai et al. Aug 2010 A1
20100202128 Saccomanno Aug 2010 A1
20100202129 Abu-Ageel Aug 2010 A1
20100214635 Sasaki et al. Aug 2010 A1
20100278480 Vasylyev et al. Nov 2010 A1
20100291489 Moskovits et al. Nov 2010 A1
20100302276 Levola Dec 2010 A1
20110007243 Tanaka Jan 2011 A1
20110019250 Aiki et al. Jan 2011 A1
20110096566 Tsai et al. Apr 2011 A1
20110149547 Bruzzone et al. Jun 2011 A1
20110228511 Weber Sep 2011 A1
20120069547 Gielen et al. Mar 2012 A1
20120147361 Mochizuki et al. Jun 2012 A1
20120179369 Lapidot et al. Jul 2012 A1
20120194781 Agurok Aug 2012 A1
20120218301 Miller Aug 2012 A1
20120281389 Panagotacos et al. Nov 2012 A1
20120287621 Lee et al. Nov 2012 A1
20130016292 Miao Jan 2013 A1
20130022316 Pelletier et al. Jan 2013 A1
20130038933 Wang Feb 2013 A1
20130120986 Xi May 2013 A1
20130135749 Akutsu et al. May 2013 A1
20130201690 Vissenberg et al. Aug 2013 A1
20130208498 Ouderkirk Aug 2013 A1
20130215361 Wang Aug 2013 A1
20130229717 Amitai Sep 2013 A1
20130242392 Amirparviz et al. Sep 2013 A1
20130257832 Hammond Oct 2013 A1
20130276960 Amitai Oct 2013 A1
20130279017 Amitai Oct 2013 A1
20130334504 Thompson et al. Dec 2013 A1
20140003762 Macnamara Jan 2014 A1
20140043688 Schrader et al. Feb 2014 A1
20140104852 Duong et al. Apr 2014 A1
20140118813 Amitai et al. May 2014 A1
20140118836 Amitai et al. May 2014 A1
20140118837 Amitai et al. May 2014 A1
20140126051 Amitai et al. May 2014 A1
20140126052 Amitai et al. May 2014 A1
20140126056 Amitai et al. May 2014 A1
20140126057 Amitai et al. May 2014 A1
20140126175 Amitai et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140177049 Beck Jun 2014 A1
20140192539 Yriberri et al. Jul 2014 A1
20140226215 Komatsu Aug 2014 A1
20140226361 Vasylyev Aug 2014 A1
20140264420 Edwards et al. Sep 2014 A1
20140293434 Cheng Oct 2014 A1
20140334126 Speier et al. Nov 2014 A1
20140374377 Schulz Dec 2014 A1
20150009682 Clough Jan 2015 A1
20150009687 Lin Jan 2015 A1
20150016777 Abovitz et al. Jan 2015 A1
20150049486 Jung et al. Feb 2015 A1
20150081313 Boross et al. Mar 2015 A1
20150098206 Pickard et al. Apr 2015 A1
20150103151 Carls et al. Apr 2015 A1
20150103306 Kaji et al. Apr 2015 A1
20150138451 Amitai May 2015 A1
20150153569 Yonekubo Jun 2015 A1
20150160529 Popovich et al. Jun 2015 A1
20150182348 Siegal et al. Jul 2015 A1
20150182748 Gefen et al. Jul 2015 A1
20150185475 Saarikko et al. Jul 2015 A1
20150198805 Mansharof et al. Jul 2015 A1
20150205140 Mansharof et al. Jul 2015 A1
20150205141 Mansharof et al. Jul 2015 A1
20150219834 Nichol et al. Aug 2015 A1
20150247617 Du et al. Sep 2015 A1
20150260992 Luttmann et al. Sep 2015 A1
20150277127 Amitai Oct 2015 A1
20150293360 Amitai Oct 2015 A1
20150355481 Hilkes et al. Dec 2015 A1
20160041387 Valera et al. Feb 2016 A1
20160109712 Harrison et al. Apr 2016 A1
20160116743 Amitai Apr 2016 A1
20160161740 Bar-Zeev et al. Jun 2016 A1
20160170212 Amitai Jun 2016 A1
20160170213 Amitai Jun 2016 A1
20160170214 Amitai Jun 2016 A1
20160187656 Amitai Jun 2016 A1
20160189432 Bar-Zeev et al. Jun 2016 A1
20160209648 Haddick et al. Jul 2016 A1
20160209657 Popovich et al. Jul 2016 A1
20160215956 Smith et al. Jul 2016 A1
20160234485 Robbins et al. Aug 2016 A1
20160266387 Tekolste et al. Sep 2016 A1
20160313567 Kurashige Oct 2016 A1
20160314564 Jones Oct 2016 A1
20160327906 Futterer Nov 2016 A1
20160341964 Amitai Nov 2016 A1
20160349518 Amitai et al. Dec 2016 A1
20160370534 Liu et al. Dec 2016 A1
20170003504 Vallius et al. Jan 2017 A1
20170011555 Li et al. Jan 2017 A1
20170017095 Fricker et al. Jan 2017 A1
20170045666 Vasylyev Feb 2017 A1
20170045744 Amitai Feb 2017 A1
20170052376 Amitai Feb 2017 A1
20170052377 Amitai Feb 2017 A1
20170122725 Yeoh May 2017 A1
20170176755 Cai Jun 2017 A1
20170242249 Wall Aug 2017 A1
20170276947 Yokoyama Sep 2017 A1
20170299860 Wall et al. Oct 2017 A1
20170336636 Amitai et al. Nov 2017 A1
20170343822 Border et al. Nov 2017 A1
20170353714 Poulad et al. Dec 2017 A1
20170357095 Amitai Dec 2017 A1
20170363799 Ofir et al. Dec 2017 A1
20180039082 Amitai Feb 2018 A1
20180067315 Amitai et al. Mar 2018 A1
20180120559 Yeoh et al. May 2018 A1
20180157057 Gelberg et al. Jun 2018 A1
20180210202 Danziger Jul 2018 A1
20180267317 Amitai Sep 2018 A1
20180275384 Danziger et al. Sep 2018 A1
20180292592 Danziger Oct 2018 A1
20180292599 Ofir et al. Oct 2018 A1
20180373039 Amitai Dec 2018 A1
20190011710 Amitai Jan 2019 A1
20190056600 Danziger et al. Feb 2019 A1
20190064518 Danziger Feb 2019 A1
20190155035 Amitai May 2019 A1
20190170327 Eisenfeld et al. Jun 2019 A1
20190208187 Danziger Jul 2019 A1
20190212487 Danziger et al. Jul 2019 A1
20190227215 Danziger et al. Jul 2019 A1
20190293856 Danziger Sep 2019 A1
20190339530 Amitai Nov 2019 A1
20190346609 Eisenfeld Nov 2019 A1
20190361240 Gelberg Nov 2019 A1
20190361241 Amitai Nov 2019 A1
20190377187 Rubin et al. Dec 2019 A1
20190391408 Mansharof Dec 2019 A1
20200033572 Danziger et al. Jan 2020 A1
20200041713 Danziger Feb 2020 A1
20200089001 Amitai et al. Mar 2020 A1
20200110211 Danziger et al. Apr 2020 A1
20200120329 Danziger Apr 2020 A1
20200209667 Sharlin et al. Jul 2020 A1
20200241308 Danziger et al. Jul 2020 A1
20200249481 Danziger et al. Aug 2020 A1
20200278557 Greenstein et al. Sep 2020 A1
20200285060 Amitai Sep 2020 A1
20200292417 Lobachinsky et al. Sep 2020 A1
20200292744 Danziger Sep 2020 A1
20200292819 Danziger et al. Sep 2020 A1
20200310024 Danziger et al. Oct 2020 A1
20200326545 Amitai et al. Oct 2020 A1
20200371311 Lobachinsky et al. Nov 2020 A1
20210003849 Amitai et al. Jan 2021 A1
20210018755 Amitai Jan 2021 A1
20210033773 Danziger et al. Feb 2021 A1
20210033862 Danziger et al. Feb 2021 A1
20210033872 Rubin et al. Feb 2021 A1
Foreign Referenced Citations (97)
Number Date Country
357371 Feb 1929 BE
1606712 Apr 2005 CN
1795399 Jun 2006 CN
101542346 Sep 2009 CN
101846799 Sep 2010 CN
1422172 Nov 1970 DE
19725262 Dec 1998 DE
102013106392 Dec 2014 DE
0365406 Apr 1990 EP
0380035 Aug 1990 EP
0399865 Nov 1990 EP
0543718 May 1993 EP
0566004 Oct 1993 EP
0580952 Feb 1994 EP
1096293 May 2001 EP
1158336 Nov 2001 EP
1180711 Feb 2002 EP
1326102 Jul 2003 EP
1385023 Jan 2004 EP
1485747 Dec 2004 EP
1562066 Aug 2005 EP
1691547 Aug 2006 EP
0770818 Apr 2007 EP
1779159 May 2007 EP
2496905 Jun 1982 FR
2638242 Apr 1990 FR
2721872 Jan 1996 FR
1321303 Jun 1973 GB
2220081 Dec 1989 GB
2272980 Jun 1994 GB
2278222 Nov 1994 GB
2278888 Dec 1994 GB
183637 Jun 2013 IL
2002539498 Nov 2002 JP
2002350771 Dec 2002 JP
2002368762 Dec 2002 JP
2003140081 May 2003 JP
2003149643 May 2003 JP
2003520984 Jul 2003 JP
2003536102 Dec 2003 JP
2004233909 Aug 2004 JP
2004527801 Sep 2004 JP
2005084522 Mar 2005 JP
2006145644 Jun 2006 JP
2011221235 Nov 2011 JP
2012163659 Aug 2012 JP
101470387 Dec 2014 KR
201809798 Mar 2018 TW
9314393 Jul 1993 WO
9510106 Apr 1995 WO
9815868 Apr 1998 WO
9952002 Oct 1999 WO
0004407 Jan 2000 WO
0055676 Sep 2000 WO
0063738 Oct 2000 WO
0127685 Apr 2001 WO
0195025 Dec 2001 WO
0195027 Dec 2001 WO
02082168 Oct 2002 WO
2082168 Oct 2002 WO
02088825 Nov 2002 WO
02097515 Dec 2002 WO
03058320 Jul 2003 WO
03081320 Oct 2003 WO
2004053541 Jun 2004 WO
2004109349 Dec 2004 WO
2005024485 Mar 2005 WO
2005024491 Mar 2005 WO
2005024969 Mar 2005 WO
2005093493 Oct 2005 WO
2005124427 Dec 2005 WO
2006013565 Feb 2006 WO
2006061927 Jun 2006 WO
2006085308 Aug 2006 WO
2006085309 Aug 2006 WO
2006085310 Aug 2006 WO
2006087709 Aug 2006 WO
2007054928 May 2007 WO
2007093983 Aug 2007 WO
2008023367 Feb 2008 WO
2008129539 Oct 2008 WO
2008149339 Dec 2008 WO
2009074638 Jun 2009 WO
2011130720 Oct 2011 WO
2012008966 Jan 2012 WO
2013065656 May 2013 WO
2013112705 Aug 2013 WO
2013175465 Nov 2013 WO
2013188464 Dec 2013 WO
2014076599 May 2014 WO
2014155096 Oct 2014 WO
2015012280 Jan 2015 WO
2015081313 Jun 2015 WO
2016103251 Jun 2016 WO
2016132347 Aug 2016 WO
2017106873 Jun 2017 WO
2018138714 Aug 2018 WO
Non-Patent Literature Citations (3)
Entry
International Commission on Non-Ionizing Radiation Protection “ICNIRP Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic Fields (up to 300 GHZ)” Published In: Health Physics 74 (4):494-522; 1998.
Jan van de Kraats et al. “Directional and nondirectional spectral reflection from the human fovea” journal of biomedical optics 13(2), 024010 Mar./Apr. 2008.
Lenses and Simple Optics, http://www.nightlase.com.au/education/optics/index.html (Year: 2004).
Related Publications (1)
Number Date Country
20200209667 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62534226 Jul 2017 US