The present invention is generally related to LDO (low-dropout) regulators. Various embodiments use a charge pump in conjunction with a source follower to form a regulator.
Traditionally, LDO regulators include an amplifier and a closed-loop feedback to provide appropriate output levels. The limited frequency response, however, implies the inefficiency of high-speed applications, and, the closed loop may induce instability when the output is connected to large-capacitance or low-current loadings. Further, in the advance process node (e.g., 0.13μ or below), the specified voltage levels are needed to enlarge the supply voltage or to clamp the voltage range for certain purposes.
Embodiments of the invention are related to LDO regulators. In an embodiment, an amplifier drives the gate of a master source follower and at least one slave source follower to form an LDO regulator. In an alternative embodiment, a charge pump drives the master source follower to form the regulator. Additional slave source followers may be used in conjunction with the charge pump and the master source follower to improve the regulator performance. Other embodiments are also disclosed.
Embodiments of the invention can have one or a combination of the following features and/or advantages. The charge pump can be used in an open-loop or closed loop mode, and provides a voltage to the gate of the source follower that can be higher than the supply voltage, which allows the regulator to operate as a true LDO regulator. Embodiments could be implemented as internal supplies capable of sourcing or sinking, and provide predetermined voltage levels to meet the reliability specification of the advance process. Embodiments benefit from the small quiescent current and the fast driving capabilities to heavy loadings due to the charge-pump based architecture and the open-loop source followers. Embodiments are feasible to low-power circuits with fast transient response such as the voltage clamps in the power stages for SOC integrated applications.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features and advantages of the invention will be apparent from the description, drawings, and claims.
Like reference symbols in the various drawings indicate like elements.
Embodiments, or examples, of the invention illustrated in the drawings are now being described using specific language. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and modifications in the described embodiments, and any further applications of principles of the invention described in this document are contemplated as would normally occur to one skilled in the art to which the invention relates. Reference numbers may be repeated throughout the embodiments, but this does not necessarily require that feature(s) of one embodiment apply to another embodiment, even if they share the same reference number.
Amplifier X1 is non-inverting, i.e., receiving reference voltage Vref at the positive terminal instead of the negative terminal like many other approaches. Amplifier X1 uses the feedback loop from the source of master source follower M1 to the inverting (e.g., negative) terminal to stabilize circuit 100, i.e., ensure the frequency response of amplifier X1 is appropriate. Amplifier X1 compares reference voltage Vref to voltage Vsm1 (e.g., the voltage at the source of master source follower M1), and amplifies the difference between these two voltages. Amplifier X1 forces voltage Vsm1 in the direction to be equal to voltage Vref. For example, if voltage Vsm1 is too low amplifier X1 forces voltage Vgm1 and thus voltage Vsm1 to be higher, and if voltage Vsm1 is too high, amplifier X1 forces voltage Vgm1 to be lower.
Master source follower M1 is an NMOS transistor that pre-regulates the voltage output by slave source follower M2, which is also an NMOS transistor. The voltage drop across slave source follower M2 is substantially the same as the voltage drop across master source follower M1, and the output of slave source follower M2 substantially follows the output of master source follower M1. Depending on technologies, the output of master source follower M1 and slave source follower M2 differs about 100 mV.
Embodiments of the invention are advantageous over other approaches because a very small amplifier X1 that uses little or insignificant current (e.g., 1 uA) together with a large slave source follower M2 can regulate a large current at the load comprising resistor R and capacitor C. In effect, the current supplied to the load is from supply voltage Vsup, but there is little or no current going through the gate of source followers M1 and M2. Source followers M1 and M2 provide current to the load and do not require a fast amplifier X1 that requires large power. Further, because slave source follower M2 is not part of the feedback loop of amplifier X1, output node Vout of slave source follower M2 is unconditionally stable regardless of the size of capacitor C.
Embodiments of the invention use NMOS source followers, e.g., transistors, M1 and M2, instead of a common source PMOS transistor like in other approaches because PMOS transistors generally do not have good driving capabilities. When a PMOS transistor is used in other approaches, amplifier X1 driving the PMOS transistor should be fast and thus consume much power.
Charge pump CP uses voltage Vref to provide the appropriate voltage Vgm1, i.e., the voltage at the gate of master source follower M1. Those skilled in the art will recognize that a charge pump (e.g., charge pump CP) is a kind of DC-DC converter that can double, triple, halve, scale, etc., reference voltages (e.g., Vref) or generate arbitrary voltages, depending on a controller and circuit topology, etc. Clock CLK provides the clock source for charge pump CP. Voltage Vout is in fact voltage Vsm1, the voltage at the source of source follower M1. Depending on applications voltage Vgm1 can be higher than voltage Vsup, which allows regulator 200 to operate as a true LDO regulator. Even if supply voltage Vsup falls to a very low value, regulator 200 continues to function because charge pump CP can still generate a voltage Vgm1 that is higher than supply voltage Vsup. For illustration, Vsup ranges from 2-5V. Further, if voltage Vout is desired to be at 2.5V, voltage Vgsm1 is 0.5V, then voltage Vgm1 is 3V (e.g., Vsm1 or Vout (2.5V)+Vgsm1 (0.5V)). In an embodiment, charge pump CP doubles voltage Vref at 1.5V to provide 3V to voltage Vgm1. For further example, voltage Vsup is 4.0V, and, because voltage Vsup is higher than voltage Vgm1, regulator 200 functions normally. But if, for another example, voltage Vsup drops down to about 3.0V or 2.7V, regulator 200 continues to function unlike other approaches using an op-amp that would hardly work at 3.0V (e.g., about the same level as voltage Vgm1) and would not work at 2.7V (e.g., below voltage Vgm1).
Charge pump CP in various embodiments of the invention can be used in an open loop or closed loop mode. In an open loop embodiment, clock CLK keeps running and charge pump CP operates normally. Voltage Vout and voltage Vgm1 is not monitored, but voltage Vgm1 is generated and kept as a constant based on estimation because it remains constant regardless of voltage Vsup. In the above example related to LDO 200 where voltage Vout is desired to be at 2.5V, voltage Vgsm1 is about 0.5V, voltage Vgm1 is estimated and kept constant to be about 3.0V. In an embodiment, voltage Vref is doubled to provide the estimated 3V for voltage Vgm1.
When using feedback for charge pump CP in the closed loop mode, the feedback can monitor either the source (e.g., node at Vout) or the gate (e.g., node at Vgm1) of source follower M1 to turn on/off charge pump CP as appropriate.
In an alternative embodiment, the feedback loop starts at the source, e.g., node at voltage Vsm1, instead of the gate, e.g., node at voltage Vgm1, of source follower M1. In this situation, voltage Vref is adjusted to take account of voltage Vgsm1 as voltage Vsm1 equals to Vgm1−Vgsm1. In an embodiment, the feedback ratio is adjusted to Vref/Vout, where Vout is the predetermined value such as 2.5V. As a result charge pump CP operates normally when voltage Vout is lower than 2.5 V, but when voltage Vout reaches the desired level of 2.5V charge pump CP is disabled.
In phase P1 where switches S1 and S2 are closed (and switches S3 and S4 are open), capacitor C1 is connected to voltage Vref via node C1t and ground via node C1b, and therefore is charged to voltage Vref. In phase P2 node C1b is connected to voltage Vref and node C1t is connected to node C2t. In effect, capacitor C1 experiences voltage Vref on both of its ends, and node C1t therefore experiences two times voltage Vref. Further, because node C1t is coupled to node C2t, the two times voltage Vref of node Ct1 is transferred to capacitor C2 or the gate of source follower M1, resulting in voltage Vgm1 being two times voltage Vref or 3V. In an embodiment clock CLK shown in
In phase P1 switches S1 and S2 are closed. In phase P2 switches S3, S4, and S5 are closed, and in phase P3 switches S6 and S7 are closed. Similar to charge pump 500, node C2t of capacitor C2 in phase P2 experiences 2*Vref. Additionally, in phase P3, voltage 2*Vref is transferred to node C3t which has been connected to voltage Vsup, node C3b thus experiences Vsup−2*Vref or Vsup−3V, resulting in Vgm1 being Vsup−3V. Similar to the embodiment of
Embodiments of the invention are advantageous because there is not complex analog circuitry to generate voltage Vgm1 unlike other approaches. Embodiments use simple switches with capacitors. As a result, embodiments of the invention can provide a full voltage Vsup to the gate of the source follower M1.
In this diagram 700, voltage Vsup is shown as starting and remaining at 3V for time t1, rising from 3V to 5.5V during time t2, decreasing from 5.5V to 2.2V during time t3 and t4, and staying at 2.2V for time t5. During the whole time from time t1 to t5, voltage Vgm1 remains at 3V.
During times t1, t2, and t3 where Vgm1−Vsup is less than a threshold voltage of source follower M1, source follower M1 operates in the saturation mode, voltage Vout being voltage Vsm1 (e.g., the voltage at the source of transistor M1) remains a constant at 2.5V. This is because voltage Vgm1 does not change during this time, and because Vout=Vgm1−Vgsm1, Vout does not change as voltage Vgm1 does not change. At times t4 and t5, when voltage Vsup drops too low, e.g., below a predetermined voltage or Vgm1−Vsup is greater than the threshold voltage of source follower M1, source follower M1 operates out of its saturation mode (e.g., saturation region) into a resistive mode or a triode region mode where it behaves like a resistor acting as a switch connected Vsup and Vout. As a result, its source voltage (e.g., voltage Vout) is substantially equal to its drain voltage (e.g., voltage Vdm1 or voltage Vsup). Alternatively expressing, voltage Vout follows voltage Vsup (e.g., Vout=Vsup). In diagram 700, voltages Vgm1 and voltage Vsup are shown overlapped during time t1 and voltages Vsup and Vout are shown overlapped during times t4 and t5. As illustrated, embodiments of the invention provide a steady voltage Vout regardless of voltage Vsup as long as source follower M1 is in the saturation region, and voltage Vout follows voltage Vsup when source follower M1 is in the triode region.
Charge pump controller CPctrl provides voltages Vgnm1 and Vgpm1 to the gate of two source followers NM1 and PM1 using techniques in accordance with embodiments of the invention. For example, charge pump controller CPctrl includes two charge pumps, one charge pump (e.g., charge pump 500) to drive source follower NM1 and another charge pump (e.g., charge pump 600) to drive source follower PM1. Source follower NM1 sources current to level shifter NLVSFT and pre-driver NDRV while source follower PM1 sinks current to level shifter PLVSFT and pre-driver PDRV. Output of source follower NM1 provides supply voltage LS while output of source follower PM1 provides supply voltage HS. In an embodiment voltage LS is at a maximum of 2*Vref−Vthn or no more than 2*Vref−Vthn greater than VSS being at 0V, and voltage HS is no more than voltage Vsup−2*Vref−Vthp where Vthn is the threshold voltage of an N-source follower while Vthp is the threshold voltage of a P-source follower. In this configuration, supply voltages LS and HS clamp the gate voltage of transistors M5 and M4 to predetermined levels (e.g., 2*Vref−Vthn and Vsup−2*Vref−Vthp, respectively) to meet the reliabilities and specification of drain-extended devices (e.g., transistors M4 and M5) in advance process (e.g., 0.13 μm or below). Those skilled in the art will recognize that supply voltages HS and LS are in fact voltage Vout of circuits 200 and 300 respectively. Voltage Vgnm1 and Vgpm1 are voltage Vgm1 of circuits 200 and 300 respectively.
Pre-drivers PDRV and NDRV drive the gate of PMOS transistor M4 and NMOS transistor M5 respectively. Transistors M4 and M5 form an output driver and together may be referred to as a power stage. In an embodiment, transistors M4 and M5 are both drain extended that can tolerate a high voltage from voltage Vsup. For example, the voltage at the drain of transistor M5 (e.g., voltage Vdm5, not shown) ranges from 0-5.5V, but the voltage its gate (e.g., voltage Vgm5, not shown) ranges from 0-2.5V. Similarly, the voltage at the drain of transistor M4 (e.g., voltage Vdm4, not shown) ranges between 0V and voltage Vsup and the voltage at the gate of transistor M4 (e.g., voltage Vgm4, not shown) ranges between voltage Vsup−2.5V and voltage Vsup or from 3V to 5.5V. Depending on applications, transistors M4 and M5 are large enough to handle output switching up to 1 A.
In an embodiment, the supply logic level available for DC-DC converter 800 is about 1.0V, level shifters Plvsft and Nlvsft, shift this available voltage 1.0V to provide appropriate voltages between 0V and voltage LS for transistor M5 or between voltage HS and voltage Vsup for transistor M4.
Voltages Vp and Vn control voltage level shifters Plvsft and Nlvsft respectively. In an embodiment, voltages Vp and Vn are active high and mutually exclusive. They together control whether inductor L (and thus capacitor C and output voltage Vout) is to connect to voltage Vsup through transistor M4 or to VSS through transistor M5. When voltage Vp is activated (e.g., high) it turns on level shifter Plvsft, inductor L and capacitor C are charged to voltage Vsup, and when voltage Vn is high, it turns on level shifter Nlvsft, and inductor L and capacitor C are discharged to ground. In an embodiment, the duty cycle of voltages Vp and Vn determines the energy being charged high or discharged low and the output voltage Vout.
Using the charge pump and source followers in circuit 800 in accordance with techniques of embodiments of the invention is efficient because circuit 800 does not consume a lot of power when the output experiences heavy switching. Further, embodiments provide solid supply voltages LS and HS to drive a large capacitive load. DC power consumption of source followers NM1 and PM1 is very small.
Vgm1>Vthp, Vout=Vgm1+Vgsm1 t1
Vgm1>Vthp, Vout=vgm1+Vgms1 t2, t3
Vgm1>Vthp, Vout=Vgm1+Vgms1 t4
Vgm1<Vthp, Vout=0V t5
Vgm1<Vthp, Vout=0V t6
As indicated above, source follower M1 is in the saturation mode from times t1 to t4, and in the triode mode in times t5 and t6.
A number of embodiments of the invention have been described. It will nevertheless be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, charge pump CP in circuit 500 doubling voltage Vref is used for illustration, other charge pump providing different voltage levels (multiplying voltage Vref, add or minus Vref from Vsup, etc.) are within the scope of embodiments of the invention. Various transistors are shown to be NMOS and some others are shown to be PMOS, but the invention is not limited to such a configuration because selecting a transistor type (e.g., NMOS or PMOS) is a matter of design choice based on need, convenience, etc. Embodiments of the invention are applicable in variations and combinations of transistor types. Some signals are illustrated with a particular logic level to operate some transistors, but selecting such levels and transistors are also a matter of design choice, and embodiments of the invention are applicable in different design choices.
Each claim of this document constitutes a separate embodiment, and embodiments that combine different claims and/or different embodiments are within scope of the invention and will be apparent to those skilled in the art after reviewing this disclosure. Accordingly, the scope of the invention should be determined with reference to the following claims, along with the full scope of equivalences to which such claims are entitled.
Number | Date | Country | |
---|---|---|---|
61253287 | Oct 2009 | US |