The present disclosure relates to the field of batteries. The present disclosure more specifically relates to the field of lead-acid batteries.
Lead-acid batteries are known. Lead-acid batteries are made up of plates of lead and separate plates of lead dioxide, which are submerged into an electrolyte or acid solution. The lead, lead dioxide and electrolyte provide a chemical means of storing electrical energy which can perform useful work when the terminals of a battery are connected to an external circuit. The plates of lead, lead dioxide and electrolyte, together with a battery separator, are contained within a housing of a polypropylene material.
Start-stop vehicles can place various demands on a lead-acid battery. Vehicles also are increasing in the electrical load of components, for which the electrical load must be supported through a stop event. Vehicle manufacturers are seeking a cost effective, reliable energy storage solution that ensures a seamless customer experience. Therefore, there is a need for consistent reliable performance from a lead-acid battery. There is also a need for a robust battery which can support additional prolonged/intermittent loads and support optimal duration and frequency of stop events. To this end, a need exists for a lead-acid battery which provides sustainable and fast rechargeability (e.g., optimized charge acceptance) and consistent cycling performance. Accordingly, a need exists for a lead-acid battery with improved performance over existing devices.
A lead-acid battery is disclosed. The battery comprises a container with a cover having one or more compartments. One or more cell elements are provided in the one or more compartments. The cell elements comprise a positive electrode and a negative electrode. The positive electrode has a positive current collector and a positive electrochemically active material in contact therewith. The negative electrode has a negative current collector and a negative electrochemically active material in contact therewith. At least one of the positive electrode or the negative electrode comprises a cured carbon or carbonized fiber mat current collector impregnated with the respective electrochemically active material. The cured carbon or carbonized fiber mat current collector comprises a frame member composed of a lead-calcium alloy. Electrolyte is provided within the container. One or more terminal posts extend from the container or the cover and are electrically coupled to the cell elements.
An electrode for a lead-acid battery is also disclosed. The electrode comprises a cured carbon or carbonized fiber mat current collector impregnated with an electrochemically active material and a frame member composed of a lead-calcium alloy.
A current collector is also disclosed. The current collector comprises a cured carbon or carbonized fiber mat. The cured carbon or carbonized fiber mat current collector comprises a frame member composed of a lead-calcium alloy.
These and other features and advantages of devices, systems, and methods according to this invention are described in, or are apparent from, the following detailed descriptions of various examples of embodiments.
Various examples of embodiments of the systems, devices, and methods according to this invention will be described in detail, with reference to the following figures, wherein:
It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary to the understanding of the invention or render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
Referring to the Figures, a battery 100 is disclosed, and in particular a rechargeable battery, such as, for example, a lead-acid battery. Various embodiments of lead-acid storage batteries may be either sealed (e.g., maintenance-free) or unsealed (e.g., wet). While specific examples are described and illustrated, the battery 100 may be any secondary battery suitable for the purposes provided.
One example of a battery 100 is provided and shown in a vehicle 102 in
Within the container 114 are positive and negative electrodes or plates 104, 106. Referring to
A plurality of positive electrodes or plates 104 and a plurality of negative electrodes or plates 106 (with separators 108) generally make up at least a portion of the electrochemical cell 110 (see
Each current collector has a lug 134 (see
As described and referring to
However, a “grid” as used herein may include any type of mechanical support for the active material. For instance, according to one or more preferred examples of embodiments described herein at least one of the positive grid or the negative grid may comprise a fibrous material, such as a fiber mat 1005. According to one or more preferred examples of embodiments, the current collector is a conductive fibrous material forming a conductive fibrous matrix 1005. More specifically, the conductive fibrous material or conductive fibrous matrix 1005 may be a mat made of carbon or carbonized fibers. The fibers may be textile fiber material. For example, in various embodiments, the current collector may be understood to be formed from a felt-like fabric material. Accordingly, one of skill in the art will appreciate that a carbonized fiber mat 1005 may have an appearance similar to the fiber mats shown in
The current collector or substrate 1001 may have a strap or frame member 1003 coupled to the mat portion 1005. The strap 1003 is bonded to the top border of the fiber mat 1005. The lead alloy strap may be connected to the fiber mat or substrate by penetration into and/or between the fibers of the fibrous material. The strap 1003 extends along the edge of the current collector 1005, and preferably along the entire length of the edge of the current collector. This strap may be understood to be electrically in communication with the mat portion 1005. Accordingly, in reference to
The strap having a lug may be formed of metal such as lead. In various embodiments, the strap or frame member 1003 may be comprised of a metal or lead alloy. Specifically, in various embodiments, the alloy may be a calcium alloy or calcium tin alloy. In various embodiments, the strap or frame member 1003 may comprise a lead-calcium alloy. In other examples of embodiments, the frame member 1003 may be a lead-calcium-tin alloy. While a lead-calcium alloy and lead-tin-calcium alloy are described, various alloys should be understood as within the scope of this disclosure. In some examples of embodiments, the lead alloy may include one or more of aluminum, tin, silver, antimony, and/or calcium. Likewise, the alloy may also include one or more impurities.
Referring to
As described in various embodiments herein, the positive and negative electrodes or plates 104, 106 are paste-type electrodes (
As described and shown in
The electrochemically active material or paste (positive and negative) may be formed of compositions including lead or lead oxide. In one or more examples, the lead may be a recycled lead. As is known, the paste or electrochemically active material (positive or negative) is oftentimes a mixture of lead and lead oxide or lead dioxide particles and dilute sulfuric acid, and may include other additives, such as carbon, barium sulfate, and/or expander such as lignosulfonate. Additives may be provided in varying amounts and combinations to the paste (positive and/or negative) suitable for the intended purposes of the battery. Alternative negative mass/paste recipes may also be provided which accomplish the objectives described herein. It is also contemplated that other materials or compositions may be present in the paste mix, such as for example, water, fibers (e.g., polymer or glass), sulfuric acid, and so forth. Different materials may be used in connection with the lead-containing paste composition, with the present invention not being restricted to any particular materials or mixtures (added fibers, or other constituents). These materials may be employed alone or in combination as determined by numerous factors, including for example, the intended use of the battery 100 and the other materials employed in the battery.
In more detail, the positive electrode or plate 104 may contain a substrate or grid 124 or 1001 with lead dioxide active material or paste 128 thereon or in contact therewith. The negative electrode or plate 106 may be composed of a substrate or grid 126 or 1001 with a spongy lead active material or paste 130 thereon or in contact therewith. The negative paste 130 may, in a preferred embodiment, be substantially similar to the positive paste 128 but may also vary. In addition, the negative active material or paste 130 may also contain fiber and/or “expander” additives which may help maintain the active material structure and improve performance characteristics, among other things.
As indicated, positioned between the positive and negative electrodes or plates 104, 106 is a separator 108 (see
An electrolyte, which is typically sulfuric acid, may be included in the battery 100. In various examples, the electrolyte may include one or more metal ions. To this end, the sulfuric acid electrolyte may be a sulfuric acid solution including one or more metal sulfates.
Accordingly, as described above a lead-acid battery is provided. The battery comprises a container with a cover having one or more compartments. One or more cell elements are provided in the one or more compartments. The cell elements comprise a positive electrode and a negative electrode. The positive electrode has a positive current collector and a positive electrochemically active material in contact therewith. The negative electrode has a negative current collector and a negative electrochemically active material in contact therewith. At least one of the positive electrode or the negative electrode comprises a cured carbon or carbonized fiber mat current collector impregnated with the respective electrochemically active material. The cured carbon or carbonized fiber mat current collector comprises a frame member composed of a lead-calcium alloy. The lead-calcium alloy may be a lead-calcium-tin alloy. Electrolyte is provided within the container. One or more terminal posts extend from the container or the cover and are electrically coupled to the cell elements.
An electrode for a lead-acid battery is also provided. The electrode comprises a cured carbon or carbonized fiber mat current collector impregnated with an electrochemically active material and a frame member composed of a lead-calcium alloy. The lead-calcium alloy may be a lead-calcium-tin alloy.
A current collector is also provided. The current collector comprises a cured carbon or carbonized fiber mat. The cured carbon or carbonized fiber mat current collector comprises a frame member composed of a lead-calcium alloy. The lead-calcium alloy may be a lead-calcium-tin alloy.
A lead-acid battery and an electrode formed with a current collector comprising a conductive fiber mat with a lead-calcium alloy or lead-calcium-tin alloy strap has various advantages. In particular, in addition to the unique properties attributable to the use of a carbon fiber matrix or mat, the alloy used for the strap connected to same may have various advantages, including but not limited to, enhanced bonding with the mat portion. The described lead alloy may also improve rigidity and strength of the border, which may improve handling and pasting, and overcome negative effects such as bending or curling of the lugs. The lead alloy may improve density, conductivity and tensile strength. The lead alloy may increase the hardness and strength of the strap, while imparting good melting, casting, and wetting properties. The lead alloy may also assist in reduce water consumption over the life of the battery, reduce electrolyte evolution and generation of hydrogen gas, have better self-discharge characteristics, and a consistent current draw. The foregoing advantages lead to improved performance, including charge acceptance, among other performance characteristics in a lead-acid battery.
While specific examples are shown, one of skill in the art will recognize that these are examples only and variations thereon may be made without departing from the overall scope of the present invention.
As utilized herein, the terms “approximately,” “about,” “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
It should be noted that references to relative positions (e.g., “top” and “bottom”) in this description are merely used to identify various elements as are oriented in the Figures. It should be recognized that the orientation of particular components may vary greatly depending on the application in which they are used.
For the purpose of this disclosure, the term “coupled” means the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or may be removable or releasable in nature.
It is also important to note that the construction and arrangement of the system, methods, and devices as shown in the various examples of embodiments is illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements show as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied (e.g. by variations in the number of engagement slots or size of the engagement slots or type of engagement). The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the various examples of embodiments without departing from the spirit or scope of the present inventions.
While this invention has been described in conjunction with the examples of embodiments outlined above, various alternatives, modifications, variations, improvements and/or substantial equivalents, whether known or that are or may be presently foreseen, may become apparent to those having at least ordinary skill in the art. Accordingly, the examples of embodiments of the invention, as set forth above, are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit or scope of the invention. Therefore, the invention is intended to embrace all known or earlier developed alternatives, modifications, variations, improvements and/or substantial equivalents.
The technical effects and technical problems in the specification are exemplary and are not limiting. It should be noted that the embodiments described in the specification may have other technical effects and can solve other technical problems.
This application claims priority from U.S. Provisional Patent Application, Ser. No. 62/903,561 filed Sep. 20, 2019, entitled “ABSORBENT GLASS MAT BATTERY WITH LEAD-CALCIUM STRAP”, the entire contents of which is hereby incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/051369 | 9/18/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62903561 | Sep 2019 | US |