Information
-
Patent Grant
-
RE38043
-
Patent Number
RE38,043
-
Date Filed
Friday, March 3, 200024 years ago
-
Date Issued
Tuesday, March 25, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Leydig, Voit & Mayer, Ltd.
-
-
US Classifications
Field of Search
US
- 257 666
- 257 670
- 257 671
- 257 702
-
International Classifications
-
Abstract
In a lead frame, L-shaped support tapes are applied to inner leads and suspension leads. Ends of the support tapes are overlapped with each other at the suspension leads to form, together, a rectangular ring shape. Since the support tapes are L-shaped, when the overlapped portions are positioned at the suspension leads, there are only two overlapped portions of the support tapes at the suspension leads. Thus, the number of overlapped portions requiring accurate alignment is reduced. Moreover, the L-shaped support tapes can be cut from the material for the support tape with higher efficiency.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a leadframe included is a resin-sealed semiconductor device.
2. Description of the Background Art
When a resin-sealed semiconductor device, for example, fabricated, a leadframe is prepared to mount a semiconductor element (chip) thereon.
FIG. 18
is a perspective view showing a configuration of a background-art leadframe
100
. A metal sheet is processed to form the leadframe
100
. The leadframe
100
has a pad
2
for mounting the semiconductor element
3
at its center portion, which is supported by suspension leads
6
a to
6
d from four directions. Inner leads
5
radially extend from the periphery towards the pad
2
. The inner leads
5
are connected b electrode portions of the semiconductor element
3
with metal thin wires
4
.
After the leadframe
100
in the state of
FIG. 18
is obtained, the semiconductor element
3
is sealed in resin such as epoxy resin and the inner leads
5
and the suspension leads
6
a to
6
d are cut off from the leadframe
100
.
In a case of a semiconductor package which includes a larger number of inner leads
5
, such as a multiple pin QFP (Quad Flat Package), each inner lead
5
becomes narrower sad longer and its rigidity becomes lower. To prevent deformation of such inner lead
5
in a fabricating process, a support tape is applied to the inner leads
5
and the suspension leads
6
a to
6
d. As to the support tape, a variety of forms are proposed as below.
FIG. 18
shows a rectangular ring-shaped support tape
201
. The rectangular ring-shaped support tape
201
is applied to the inner leads
5
and the suspension leads
6
a to
6
d around the pad
2
. Since the support tape is rectangular, the inner leads
5
and the suspension leads
6
a to
6
d are not deformed or displaced even if the support tape
201
contracts.
FIG. 19
is a plan view illustrating a manner of taking the support tape
201
out of its material. The material
200
for the support tape
201
is generally supplied in tape form, and a rectangular ring-shaped support tape
201
is punched and applied to the inner leads
5
. In this case, there are remaining portions
202
and
203
, and the material
200
is disadvantageously utilized with low efficiency. In general, the material
200
is expensive, and therefore inefficient use of the material
200
leads to a costly leadframe
100
.
To solve the problem of the structure of
FIG. 18
, use of strip shaped support tapes, instead of rectangular ring-shaped support tapes, is proposed.
FIG. 20A
is a plan view showing a configuration of a leadframe
101
and
FIG. 20B
is a section taken along the line
20
B—
20
B and viewed from the direction of the arrow of FIG.
20
A.
The support tapes
211
and
221
are of strip-shape and applied to all of the inner leads and suspension leads
6
a to
6
d.
FIG. 21
is a plan view illustrating a manner of taking the support tapes
211
and
221
out of their materials
210
and
220
in tape form. The support tapes
211
and
221
can be taken out of the materials
210
and
220
with higher efficiency than in the structure of
FIG. 18
since those support tapes are rectangular.
With this type of support tapes, however, the inner leads
5
are deformed at the suspension leads
6
a to
6
d and their vicinities, e.g., in an area A including the suspension lead
66
and its vicinity.
FIG. 22
is as enlarged plan view of an area A and its vicinity of FIG.
20
A. Among the inner leads
5
, an inner lead
501
adjacent to the suspension lead
6
b to which both the support tapes
211
and
221
are applied is pulled in the directions of the arrows by contractions of the support tapes
211
and
221
. The inner lead
501
is thereby deformed and comes into contact with an adjacent inner lead
502
at a point B. Then, the suspension lead
6
b and the inner lead
502
are also deformed.
To solve the problems of the structure of
FIGS. 18 and 20A
, it is also proposed that the strip-shaped support tapes
211
and
221
should be applied to the inner leads
5
and the suspension leads
6
a to
6
d with their end portions over-lapped.
FIG. 23A
is plan view showing a configuration of a leadframe
102
and
FIG. 23B
is a section taken along the line
23
B—
23
B of FIG.
23
A and viewed from the direction of the arrow.
The end portions of the strip-shaped support tapes
211
and
221
are overlapped to form a rectangular ring-shaped support tape on the whole and further their materials
210
and
220
can be utilized with higher efficiency. Moreover, at their overlapped end portions, stresses generated by contraction along the directions of the respective lengths of the support tapes
211
and
221
are balanced and the suspension leads
6
a to
6
d are given stresses only in a direction towards the pad
2
. That avoids deformation of the suspension leads
6
a to
6
b.
It is not desirable, however, that many portions are each given stresses in different directions at an angle of 90° when the support tapes contract. The reason is the alignment of their end portions to be overlapped should be accurately made in order to balance the stresses applied to the support tapes
211
and
221
along the directions of their lengths.
SUMMARY OF THE INVENTION
The present invention is directed to a leadframe. According to a first aspect of the present invention, the leadframe comprises: a plurality of inner leads provided radially; and a group of support tapes applied to the plurality of inner leads in a ring shape, in which inner end portions of the plurality of inner leads expose on inner peripheral side of the group of support tapes, and in which the group of support tapes includes a plurality of first support tapes of L-shape, and both and portions of one of the plurality of first support tapes are overlapped with end portions of at least one of the plurality of first support tapes which is different from said one of the plurality of first support tapes.
According to a second aspect of the present invention, in the leadframe of the first aspect, the group of support tapes includes two first support tapes.
According to a third aspect of the present invention, the leadframe of the fast aspect further comprises: a pad of substantially rectangular surrounded by the plurality of inner leads, in which the respective center portions of the plurality of first support tapes are located on two opposed ones of four suspension leads which are inner leads for supporting the pad at its four corners.
According to a fourth aspect of the present invention, in the leadframe of the third aspect, one of the plurality of first support tapes is applied to a front surface of the inner leads and the other is applied to a back surface of the inner leads, and the respective end portions are overlapped with each other through the inner leads.
According to a fifth aspect of the present invention, in the leadframe of the second aspect, each of the end portions of the plurality of first support tapes has a chipped portion having an angle of almost 45° in its extending direction.
According to a sixth aspect of the present invention, in the leadframe of the first aspect, the group of support tapes includes four first support tapes.
According to a seventh aspect of the present invention, the leadframe of the sixth aspect further comprises: a pad of substantially rectangular surrounded by the plurality of inner leads, in which the respective center portions of the plurality of first support tapes are located on four suspension leads which are inner leads for supporting the pad at its four corners.
According to an eighth aspect of the present invention, in the leadframe of the seventh aspect, a first pair of the plurality of first support tapes are opposed to each other and a second pair of the plurality of first support tapes are opposed to each other, the first pair and the second pair are different from each other, the first pair is applied to a front surface of the inner leads and the second pair is applied to a back surface of the inner leads, and end portions of the first support tapes are overlapped with adjacent ones through the inner leads.
According to a ninth aspect of the present invention, the leadframe comprises: a plurality of inner leads provided radially; and a group of support tapes applied to the plurality of inner leads in a ring shape, in which inner end portions of the plurality of inner leads expose on inner peripheral side of the group of support tapes; and in which the group of support tapes includes a plurality of first support tapes of L-shape and a plurality of second support tapes of strip-shape, and both end portions of one of the plurality of first support tapes are overlapped with end portions of the plurality of second support tapes.
According to a tenth aspect of the present invention, in the leadframe of the ninth aspect, the plurality of first support tapes are applied to a front surface of the inner leads and the plurality of second support tapes are applied to a back surface of the inner leads, and end portions of the first support tapes are overlapped with end potions of second support tapes through the inner leads.
The leadframe of the first aspect employs L-shaped fast support tapers, and therefore achieves higher efficiency in utilizing the material for support which is generally in tape form.
When the support tapes are overlapped in a portion where stresses may be generated in different directions at an angle of 90°, the overlapping should be made with sufficient accuracy. The leadframe of the second and third aspects needs only two overlapped portions of the support tapes, and therefore the number of then overlapped portions requiring sufficient accuracy in overlapping is reduced.
The leadframe of the fifth aspect employs the first support tapes with end portions each having a chipped portion at an angle of almost 45°, and therefore makes it possible to take the first support tape having longer sides out of the material for support tape. That allows standardization of width of the material for support tape for a variety of leadframes of different sizes, and thereby facilitates an abundant supply of materials for support tapes of few kinds, resulting in a lower price of the material for support tape.
Although the leadframe of the sixth and seventh aspects needs four overlapped potions of the support tapes, no stress in different directions at an angle of 90° is generated at the overlapped portions. Therefore, the leadframe has no overlapped portion requiring sufficient accuracy in overlapping.
The second support tapes used in the leadframe of the ninth aspect are of strip-shape, and therefore can be taken oat of the material for support tape with much higher efficiency. Moreover, since the second support tape is interposed between the first support tapes, it is possible to standardize width of the material for support tape for a variety of leadframes of different sizes, even for a larger leadframe regardless of the extent of the enlargement. That facilitates an abundant supply of materials for support tapes of few kinds, resulting in a lower price of the material for support tape.
The leadframe of the fourth, eighth and tenth aspects has no overlapped portion of any two support tapes on its front surface, and therefore suppresses degradation of accuracy in resin-sealing.
An object of the present invention is to reduce the number of overlapped portions of the support tapes where the stresses are generated in different directions at an angle of 90°, for reduction in the number of portions requiring accurate alignment in overlapping, and further to suppress deformation of an inner lead at a low cost by using the support tape which can be taken out of the material with higher efficiency.
These and other objects features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken is conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A and 1B
are a plan view and a n along the line
1
A—
1
A and viewed from the direction of the arrow, respectively, showing a configuration of a leadframe in accordance with a first preferred embodiment of the present invention;
FIG. 2
is a plan view showing a manner of taking support tapes out of a material for support tape;
FIG. 3
is a plan view showing a manner of taking support tapes out of a material for support tape;
FIGS. 4A and 4B
are a plan view and a section taken along the line
4
B—
4
B and viewed from the direction of the arrow, respectively, showing a configuration of a leadframe in accordance with the first preferred embodiment of the present invention;
FIG. 5
is a plan view showing a manner of taking support tapes out of a material for support tape;
FIGS. 6A and 6B
are a plan view and a section taken along the line
6
A—
6
A and viewed from then direction of the arrow, respectively, showing a configuration of a leadframe in accordance with the first preferred embodiment of the present invention;
FIGS. 7A and 7B
are a plan view and a section taken along the line
7
A—
7
A and viewed from the direction of the arrow, respectively, showing a configuration of a leadframe in accordance with the first preferred embodiment of the present invention;
FIGS. 8A and 8B
are a plan view and a section taken along the line
8
A—
8
A and viewed from the direction of the arrow, respectively, showing a configuration of a leadframe in accordance with a second preferred embodiment of the present invention;
FIGS. 9A and 9B
are a plan view and a section taken along the liner
9
A—
9
A and viewed from the direction of the arrow, respectively, showing a configuration of a leadframe in accordance: with a third preferred embodiment of the present invention;
FIGS. 10A and 10B
are a plan view and a section taken along the line
10
A—
10
A and viewed from tire direction of tire arrow, respectively, showing a configuration of a lead-frame in accordance with the third preferred embodiment of the present invention;
FIGS. 11A and 11B
are a plan view and a section taken along the line
11
A—
11
A and viewed from the direction of the arrow, respectively, showing a configuration of a lead-frame in accordance with a fourth preferred embodiment of the present invention;
FIGS. 12A and 12B
are a plan view and a section taken along the line
12
A—
12
A and viewed from the direction of the arrow, respectively, showing a configuration of a lead-frame in accordance with the fourth preferred embodiment of the present invention;
FIGS. 13A and 13B
are a plan view and a section taken along the line
13
A—
13
A and viewed from the direction of the arrow, respectively, showing a configuration of a lead-frame in accordance with the fourth preferred embodiment of the present invention;
FIGS. 14A and 14B
are a plan view and a section taken along the line
14
A—
14
A and viewed from the direction of the arrow, respectively, showing a configuration of a lead-frame in accordance with the fourth preferred embodiment of the present invention;
FIGS. 15A and 15B
are a plan view and a section taken along the line
15
A—
15
A and viewed from the direction of the arrow, respectively, showing a configuration of a lead-frame in accordance with the fourth preferred embodiment of the present invention;
FIGS. 16A and 16B
are a plan view and a section taken along the line
16
A—
16
A and viewed from the direction of the arrow, respectively, showing a configuration of a lead-frame in accordance with the fourth preferred embodiment of the present invention;
FIGS. 17A and 17B
are a plan view and a section taken along the line
17
A—
17
A and viewed from the direction of the arrow, respectively, showing a configuration of a lead-frame in accordance with the fourth preferred embodiment of the present invention;
FIG. 18
is a perspective view showing a configuration of a first background art structure;
FIG. 19
is a plan view showing the first background art structure;
FIGS. 20A and 20B
are a plan view and a section taken along the line
20
A—
20
A and viewed from the direction of the arrow, respectively, showing a configuration of a second background art structure;
FIG. 21
is a plan view showing the second background art structure;
FIG. 22
is an enlarged view of an area A and its vicinity of
FIG. 20A
; and
FIGS. 23A and 23B
are a plan view and a section taken along the line
23
A—
23
A and viewed from the direction of the arrow, respectively, showing a configuration of a third background art structure.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The First Preferred Embodiment
FIG. 1A
is plan view of a leadframe
301
a is accordance with the first preferred embodiment of the present invention and
FIG. 1B
is a section taken along the
1
B—
1
B of FIG.
1
A and viewed from the direction of the arrow.
In the leadframe
301
a, L-shaped support tapes
71
and
72
are applied to the inner leads
5
and the suspension leads
6
a to
6
d. End portions of the support tapes
71
and
72
are overlapped with each other at the upper-right suspension lead
6
b and the lower-left suspension lead
6
d and their vicinities, and thus these two support tapes form together a rectangular ring shaped. That avoids the problem of the second background art structure that the inner leads
5
and the suspension leads
6
a to
6
d are deformed.
Moreover, since the support tapes
71
and
72
are L-shaped, their center portions and their vicinities are positioned at the suspension leads
6
a and
6
c and their vicinities, respectively, and there are only two overlapped end portions of the support tapes
71
and
72
at the suspension leads
6
b and
6
d. Thus, the overlapped portions at the suspension leads and their vicinities are reduced in number by two as compared with those in the third background art structure, and the necessity for accurate alignment is thereby suppressed.
Furthermore, as to the material efficiency which is the problem in the first background art structure, an improvement as discussed below is achieved.
FIG. 2
is a plan view illustrating a manner of taking the support tapes
71
and
72
out of the material
9
. The material
9
is of tape form with a width B. If each outer side of the rectangular ring-shape which is formed of the support tapes
71
and
72
shown in
FIG. 1
has a length L
1
, the support tapes
71
(
72
) are arranged to be adjacent to each other in a direction of the length of the material
9
(perpendicular to the direction of its width). By obtaining the support tapes
71
(
72
) in this manner, the remaining portions
81
of the material
9
are reduced.
The remaining portions of the material
9
can be further reduced.
FIG. 3
is a plan view illustrating a manner of taking the L-shaped support tapes
73
and
74
out of the material
9
. If the support tapes
73
and
74
each have a width W, a pattern of adjacent L-shaped support tapes
73
(
74
) is made so that isosceles triangles whose shorter sides each have a length W/2 may extend off the material
9
. In this case, each remaining portion
82
is an isosceles triangle whose shorter sides each have a length W/2 and is smaller in area than the remaining portion
81
which is an isosceles triangle whose shorter sides each have a length W. Thus, the material
9
is utilized with higher efficiency.
In this case, both end portions of each support tape
73
(
74
) are actually missing an isosceles triangular area whose shorter sides each have a length W/2. Nevertheless, the support tapes
73
and
74
can be overlapped with each other.
FIG. 4A
is plan view of a leadframe
302
a on which end portions of the support tapes
73
and
74
are overlapped at the upper right suspension lead
6
b and the lower-left suspension lead
6
d and their vicinities.
FIG. 4B
is a section taken along the line
4
B—
4
B of FIG.
4
A and viewed from the direction of the arrow.
In these figures, the end portions of the support tapes
73
and
74
are overlapped is a pentagon which corresponds to a square whose sides each have a length W with a missing portion having an isosceles triangular area whose shorten sides each have a length W/2. That makes a rectangular ring-shape which is formed of the support tapes
73
and
74
with longer outer sides each of which has a length L
2
=L
1
+(W/2), while keeping a balance of stresses.
In other words, the material
9
having a width to can be used for leadframes of different sizes. For a variety of semiconductor devices of different sins, standardization of the size of the materials for the support tape can be easily achieved That facilitates as abundant supply of materials for support tapes of few kinds, resulting in a lower price of the material for the support tape. Thus, the support tape can be made available at a still lower cost.
The remaining portion of the material
9
can be further reduced is area.
FIG. 5
is a plan view illustrating a manner of taking the support tapes
75
and
76
out of the material
9
. If the support tapes
75
and
76
each have a width W, a pattern of adjacent L-shaped support tapes
75
(
76
) is made so that isosceles triangles whose shorter sides each have a length W may extend off the material
9
. In this case, no remaining portion is left and the material
9
is utilized with maximum efficiency.
In this case, both end portions of each support tape
75
(
76
) are actually missing an isosceles triangle whose shorter sides each have a length W. Nevertheless, the support tapes
75
and
76
can be overlapped with each other.
FIG. 6A
is plan view of a leadframe
303
a on which end portions of the support tapes
75
and
76
are overlapped at the upper-right suspension lead
6
b and the lower-left suspension lead
6
d and their vicinities.
FIG. 6B
is a section taken along the one-dot chain line
6
B—
6
B of FIG.
6
A and viewed from the direction of the arrow.
In these figures, the end portions of the support tapes
75
and
76
are overlapped in an isosceles triangle whose shorter sides each have a length W. That makes a rectangular ring-shape which is formed of the support tapes
75
and
76
with still longer outer sides each of which has a length L
3
=L
1
+W, while keeping a balance of stresses.
It is naturally possible to make a rectangular ring-shape with shorter outer sides.
FIG. 7A
is plan view of a leadframe
304
a on which end portions of the support tapes
75
and
76
are overlapped extending off each other at the upper-right suspension lead
6
b and the lower-left suspension lead
6
d and their vicinities.
FIG. 7B
is a section taken along the
7
A—
7
A of FIG.
7
A and viewed from the direction of the arrow.
In these figures, the end portions of the support tapes
75
and
76
art overlapped in a square with sides each having a length W. That makes a rectangular ring-shape which is formed of the support tapes
75
and
76
with outer sides each of which has a length L
1
.
This means that the material for support tape is utilized with still higher efficiency while facilitating standardization of size of the materials for support tape for a variety of semiconductor devices of different sizes without any hindrance.
As indicated by double dashed lines in
FIGS. 3
,
4
,
5
and
6
, the center portion of the L-shaped support tape may be intentionally cut off for uniformity in the shape of the overlapped portions.
The Second Preferred Embodiment
FIG. 8A
is plan view of a leadframe
305
a in accordance with the second preferred embodiment of the present invention and
FIG. 8B
is a section taken along the line
8
A—
8
A of FIG.
8
A and viewed from the direction of the arrow.
The support tapes
71
a to
71
d are of L-shaped like the support tapes
71
(
72
) discussed in the fast preferred embodiment. The corner portions of the support tapes
71
a to
71
d are positioned and applied to the upper-left suspension lead
6
a, the upper-right suspension lead
6
b, the lower-right suspension lead
6
c and the lower-left suspension lead
6
d respectively and their vicinities. One end portion of the support tape
71
a is overlapped with one end portion of the support tape
71
b and the other end portion is overlapped with one end portion of the support tape
71
d. Similarly, one end portion of the support tape
71
c is overlapped with the other end portion of the support tape
71
b and the other end portion is overlapped, with the other end portion of the support tape
71
d.
Thus, since the support tapes are overlapped on some of the inner leads
5
other than those in the vicinity of the suspension leads
6
a to
6
d, stresses caused by contraction of the support tapes are prevented from being applied to the overlapped portico from different directions at an angle of 90°. Thus, in the second preferred embodiment, it is desirably possible to further reduce the number of the overlapped portions to which the stresses are applied from different directions at an angle of 90° as compared with those in the first preferred embodiment.
Furthermore, if the support tape
71
a (
71
b,
71
c,
71
d) has a length L
1
, a rectangular ring-shaped pattern which is formed of the support tapes
71
a to
71
d with sides each of which has a length L
4
=2·L
1
−D (where D represents a length of an overlapped portion) is applied to the inner leads
5
and the suspension leads
6
a to
6
d. Thus, advantageously, the present invention can be applied to a leadframe which is larger, regardless of the extent of the enlargement.
The Third Preferred Embodiment
FIG. 9A
is plan view of a leadframe
306
a in accordance with the third preferred embodiment of the present invention and
FIG. 9B
is a section taken along the line
9
A—
9
A of FIG.
9
A and viewed from the direction of the arrow.
Like the second preferred embodiment, the corner portions of the L-shaped support tapes
71
a to
71
d are positioned and applied to the upper-left suspension lead
6
a, the upper-right suspension lead
6
b, the lower-right suspension lead
6
c and the lower-left suspension lead
6
d, respectively, and their vicinities. An end portion of the L-shaped support tape
71
a and that of the L-shaped support tape
71
b are overlapped with opposite end portions of the strip-shaped support tape
77
a, respectively. Similarly, the other end portion of the L-shaped support tape
71
b and an end portion of the L-shaped support tape
71
c are overlapped with opposite end portions of the strip-shaped support tape
77
b, respectively, the other end portion of the L-shaped support tape
71
c and an end portion of the L-shaped support tape
71
d are over-lapped with opposite end portions of the strip-shaped support tape
77
c, respectively, and the other end portion of the L-shaped support tape
71
d and that of the L-shaped support tape
71
a are overlapped with opposite end portions of the strip-shaped support tape
77
d, respectively.
Thus, the present invention can be applied to a still larger leadframe while achieving an advantage of no overlapped portion to which the stresses are applied from different directions at an angle of 90°, like the second preferred embodiment. Specifically, a rectangular ring-shaped pattern with sides each of which has a length L
5
=2·L
1
+K−2/D (where K represents the length of each support tape
77
a (
77
b,
77
c and
77
d) ) is achieved.
Naturally, the present invention can be applied to a still much larger leadframe by using longer strip-shaped support tapes (making K larger).
FIG. 10A
is plan view of a leadframe
307
a in which strip-shaped support tapes
78
a to
78
d longer than the strip-shaped support tapes
77
a to
77
b are employed.
FIG. 10B
is a section taken along the line
10
A—
10
A of FIG.
10
A and viewed from the direction of the arrow In these figures, a rectangular ring-shaped pattern with sides each of which has a length L
6
(>L
5
) is achieved.
As discussed in the first preferred embodiment, the L-shaped support tapes, such as the support tapes
71
a to
71
d, can be taken out of the material for support tape with higher efficiency. As discussed in the second background art structure also the strip-shaped support tapes such as the support tapes
77
a to
77
d and
78
a to
78
d can be taken out of the material for support tape with higher efficiency. Therefore, material efficiency of the support tape in the third preferred embodiment does not become worse than in the other preferred embodiments.
The Fourth Preferred Embodiment
As a variation of the above preferred embodiments, the support tapes to be overlapped may be alternately applied to a front surface and a back surface of tire leadframe.
FIGS. 11A and 11B
,
12
A and
12
B,
13
A and
13
B,
14
A and
14
B,
15
A and
15
B,
16
A and
16
B, and
17
A and
17
B show configurations of leadframes
301
b to
307
b as variations of the leadframes
301
a to
307
a shown in
FIGS. 1A and 1B
,
4
A and
4
B,
6
A and
6
B,
7
A and
7
B,
8
A and
8
B,
9
A and
9
B, and
10
A and
10
B, respectively. The figures with A suffixes are plan views and the figures with to suffixes are sections taken along the indicated lines of the corresponding figures with the A suffix.
These configurations achieve the same effect as discussed in the first to third preferred embodiments. Furthermore in each variation, there is no overlapped portions of two support tapes on the front surface, and therefore it becomes possible to suppress degradation in accuracy of resin-sealing.
While the invention has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised without departing from the scope of the invention.
Claims
- 1. A lead frame comprising:a pad for supporting a semiconductor chip; a plurality of inner leads extending radially toward said pad; and a plurality of L-shaped support tapes applied to said plurality of inner leads, said plurality of support tapes forming a ring shape, wherein one of said support tapes is applied to a front surface of said inner leads and another of said support tapes is applied to a back surface of said inner leads.
- 2. The lead frame of claim 1, including two support tapes.
- 3. The lead frame of claim 2, wherein said pad is substantially rectangular and is surrounded by said plurality of inner leads, said inner leads include four suspension leads supporting said pad at respective corners of said pad, and the overlapped ends of said two support tapes are respectively disposed on two of said suspension leads.
- 4. The lead frame of claim 2, wherein ends of one of said support tapes overlap ends of at least one other of said support tapes.
- 5. The lead frame of claim 4 wherein two of said suspension leads are interposed between the overlapped ends of said support tapes.
- 6. The lead frame of claim 1 wherein each of the ends of said support tapes has an edge oblique to other edges of said support tapes.
- 7. A lead frame including:a pad for supporting a semiconductor chip; a plurality of inner leads extending radially toward said pad; and four L-shaped support tapes applied to acid plurality of inner leads, said support tapes forming a ring shape, wherein ends of one of said support tapes overlap ends of at least one other of said support tapes.
- 8. The lead frame of claim 7 wherein said pad to substantially rectangular and is surrounded by said plurality of inner leads, said inns leads include four suspension leads supporting said pad at respective corners of said pad, and the overlapped endscenter portions of said twofour L-shaped support tapes are respectively disposed of four of said suspension leads.
- 9. The lead frame of claim 8 wherein:a first pair of said support tapes are opposed to each other and a second pair of said support tapes are opposed to each other, said first pair of support tapes is applied to a front surface of said inner leads and said second pair of support tapes is applied to a back surface of acid inner leads, and inner leads are interposed between overlapped ends of said support tapes.
- 10. A lead frame comprising:a pad for supporting a semiconductor chip; a plurality of inner leads extending radially toward said pad; and a group of support tapes applied to said plurality of inner leads, said group of support tapes forming a ring shape, wherein said group of support tapes includes a plurality of first L-shaped support tapes and a plurality of second stripe-shaped support tapes, and ends of one of said plurality of first support tapes overlap ends of said plurality of second support tapes.
- 11. The lead frame of claim 10 wherein said plurality of first support tapes are applied to a front surface of said inner leads and said plurality of second support tapes are applied to a back surface of said inner leads, and inner leads are interposed between ends of said first support tapes over-lapped with ends of said second support tapes.
- 12. A resin-sealed semiconductor device comprising a lead frame including:a pad for supporting a semiconductor chip; a plurality of inner leads extending radially toward said pad; and a plurality of L-shaped support tapes applied to said plurality of inner leads, said plurality of support tapes forming a ring shape, wherein one of said support tapes is applied to a front surface of said inner leads and another of said support tapes is applied to a back surface of said inner leads.
- 13. The resin-sealed semiconductor device of claim 12 including two of acid support tapes.
- 14. The resin-sealed semiconductor device of claim 13 wherein said pad is substantially rectangular and is surrounded by said plurality of inner leads, said inner leads include four suspension leads supporting said pad at respective corners of said pad, and the overlapped ends of said two support tapes are respectively disposed on two of said suspension leads.
- 15. The resin-sealed semiconductor device of claim 13 wherein ends of are of said support tapes overlap ends of at least are other of said support tapes.
- 16. The resin-sealed semiconductor device of claim 15 wherein two of said suspension leads are interposed between the overlapped ends of said support tapes.
- 17. The resin sealed semiconductor device of claim 12 wherein each of the ends of said support tapes has an edge oblique to other edges of said support tapes.
- 18. A resin-sealed semiconductor comprising a lead frame including:a pad for supporting a semiconductor chip; a plurality of inner leads extending radially toward said pad; and four L-shaped support tapes applied to said plurality of inner leads, acid support tapes forming a ring shape, wherein ends of one of said support tapes overlap ends of at least one other of said support tapes.
- 19. The resin sealed semiconductor device of claim 18 wherein said pad is substantially rectangular and is surrounded by said plurality of inner leads, said inner leads include four suspension leads supporting said pad at respective corners of said pad, and the overlapped endscenter portions of said twofour L-shaped support tapes are respectively disposed on four of said suspension leads.
- 20. The resin-sealed semiconductor device of claim 19 wherein:a first pair of said support tapes are opposed to each other and a second pair of said support tapes are opposed to each other, said first pair of support tapes is applied to a front surface of said inner leads and said second pair of support tapes is applied to a back surface of said inner leads, and inner leads are interposed between overlapped ends of said support tapes.
- 21. A resin-sealed semiconductor device comprising a lead frame including:a pad for supporting a semiconductor chip; a plurality of inner leads extending radially toward said pad; and a group of support tapes applied to said plurality of inner leads, said group of support tapes forming a ring shape, wherein said group of support tapes includes a plurality of first L-shaped support tapes and a plurality of second stripe-shaped support tapes, and ends of one of said plurality of first support tapes overlap ends of said plurality of second support tapes.
- 22. The resin-sealed semiconductor device of claim 21 wherein said plurality of first support tapes are applied to a front surface of said inner leads and said plurality of second support tapes are applied to a back surface of said inner leads, and inner leads are interposed between ends of said first support tapes overlapped with ends of said support tapes.
Priority Claims (1)
Number |
Date |
Country |
Kind |
8-049010 |
Mar 1996 |
JP |
|
US Referenced Citations (3)
Foreign Referenced Citations (4)
Number |
Date |
Country |
62-229864 |
Mar 1987 |
JP |
297051 |
Apr 1990 |
JP |
3129872 |
Jun 1991 |
JP |
637244 |
Feb 1994 |
JP |
Divisions (1)
|
Number |
Date |
Country |
Parent |
08/708706 |
Sep 1996 |
US |
Child |
09/517748 |
|
US |
Reissues (1)
|
Number |
Date |
Country |
Parent |
08/708706 |
Sep 1996 |
US |
Child |
09/517748 |
|
US |