Lead or lead extension having a conductive body and conductive body contact

Information

  • Patent Grant
  • 9259572
  • Patent Number
    9,259,572
  • Date Filed
    Monday, June 2, 2014
    10 years ago
  • Date Issued
    Tuesday, February 16, 2016
    8 years ago
Abstract
An implantable medical device that includes a body that includes a proximal end portion configured to be at least partially received by an apparatus, and a distal end portion; a stimulating electrical element at the distal end portion of the body; a stimulating contact at the proximal end portion of the body, wherein the stimulating contact is positioned such that, when received by the apparatus, at least a portion of the apparatus is capable of electrically coupling to the stimulating contact; a stimulating conductor that electrically couples the stimulating electrical element to the stimulating contact; a conductive body, wherein the conductive body is not utilized for application of stimulation; a conductive body contact, wherein the conductive body is electrically connected to the conductive body contact. Systems that include devices are also disclosed.
Description
FIELD

This application relates to medical devices, more particularly implantable leads and extensions for delivering electrical signals.


BACKGROUND

The medical device industry produces a wide variety of electronic and mechanical devices for treating medical conditions. Commonly used neuromodulators include an implantable signal generator and at least one lead. Such devices are commonly utilized to treat numerous conditions in various portions of the body.


Magnetic resonance imaging (MRI) is commonly used to diagnose many disorders and conditions in many parts of the body. MRI scans utilize strong magnetic fields to produce diagnostic images. Concerns have arisen regarding possible undesirable interactions between the environment created during an MRI scan and implantable medical devices. Implantable medical devices and components thereof fabricated in order to alleviate concerns in an MRI environment would be advantageous.


BRIEF SUMMARY

An implantable medical device comprising: a body comprising a proximal end portion configured to be at least partially received by an apparatus, and a distal end portion; a stimulating electrical element at the distal end portion of the body; a stimulating contact at the proximal end portion of the body, wherein the stimulating contact is positioned such that, when received by the apparatus, at least a portion of the apparatus is capable of electrically coupling to the stimulating contact; a stimulating conductor that electrically couples the stimulating electrical element to the stimulating contact; a conductive body, wherein the conductive body is not utilized for application of stimulation; a conductive body contact, wherein the conductive body is electrically connected to the conductive body contact.


A system comprising: the implantable medical device described herein, and the apparatus by which the device described herein is configured to be received.


An implantable medical system comprising: an extension comprising: a) an extension body comprising a proximal end portion configured to be at least partially received by an apparatus, and a distal end portion; a stimulating electrical element at the distal end portion of the extension body; a stimulating contact at the proximal end portion of the extension body, wherein the stimulating contact is positioned such that, when received by the apparatus, at least a portion of the apparatus is capable of electrically coupling to the stimulating contact; a stimulating conductor that electrically couples the stimulating electrical element to the stimulating contact; a conductive body, wherein the conductive body is not utilized for application of stimulation; a conductive body contact that is electrically connected to the conductive body; and b) a lead comprising: a lead body having a proximal end portion configured to be at least partially received by the extension, and a distal end portion; an electrode at the distal end portion of the lead body; a stimulating contact at the proximal portion of the lead body, the stimulating contact being electrically coupled to the electrode and being positioned such that when received by the extension, at least a portion of the extension is capable of electrically coupling to the stimulating contact; a conductive body, wherein the conductive body contact of the extension and the conductive body of the lead are configured to electrically connect the conductive body of the lead and the conductive body of the extension.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic representation of a side view of an implantable electrical signal therapy system.



FIG. 2 is a diagrammatic representation of a side view of an implantable electrical signal therapy system.



FIG. 3 is a diagrammatic representation of a side view of an implantable electrical signal therapy system.



FIG. 4 is an isometric view of a portion of a connector block of a representative implantable electrical signal therapy system.



FIG. 5 is an exploded view of a representative implantable electrical signal therapy system.



FIG. 6 is a perspective view of a representative lead.



FIG. 7 is a perspective view of a representative lead.



FIG. 8 is a diagrammatic representation of a representative spinal cord stimulation (SCS) system implanted in a patient.



FIG. 9 is a diagrammatic representation of a top view of a representative lead.



FIG. 10 is a diagrammatic representation of an exemplary longitudinal cross section of an embodiment of the lead shown in FIG. 9 between lines A and B.



FIG. 11 is a diagrammatic representation of an exemplary longitudinal cross section of an embodiment of the lead shown in FIG. 9 between lines A and B.



FIG. 12 is a diagrammatic representation of an exemplary longitudinal cross section of an embodiment of the lead shown in FIG. 9 between lines A and B.





The drawings are not necessarily to scale. Like numbers used in the figures refer to like components, steps and the like. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number.


DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration several specific embodiments of devices, systems and methods. It is to be understood that other embodiments are contemplated and may be made without departing from the scope of spirit of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense.


All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.


Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein.


The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


As used herein, “proximal” and “distal” refer to position relative to an implantable pulse generator. For example, a proximal portion of a lead or a extension is a portion nearer a signal generator, and a distal portion is a portion further from the signal generator.


As used herein, “signal generator” and “pulse generator” are used interchangeably. It will be understood that a pulse generator may generate an electrical signal or a plurality of electrical signals that are not pulses.


The present disclosure relates to implantable medical devices, such as leads and extensions, comprising conductive bodies integrated into the body of the device. The conductive bodies are configured to provide additional functionality in the device. In an embodiment, the device can be configured so that the conductive body can provide electromagnetic shielding across the device or across an implantable medical system that includes a device as described herein. In an embodiment, the device can be configured so that the conductive body can aid in electromagnetic transmission from the device or from an implantable medical system that includes a device as disclosed herein.


Referring to FIG. 1, a diagrammatic representation of an implantable electrical signal therapy system 100 is shown. The system 100 comprises an implantable active electrical device 10, and a lead 20 operably coupled to the active electrical device 10. Active electrical device 10 may be any electrical signal generator or receiver useful for delivering therapy to a patient or for patient diagnostics. For example, active electrical device 10 may be a hearing implant; a cochlear implant; a sensing device; a signal generator such as a cardiac pacemaker or defibrillator, a neurostimulator (such as a spinal cord stimulator, a brain or deep brain stimulator, a peripheral nerve stimulator, a vagal nerve stimulator, an occipital nerve stimulator, a subcutaneous stimulator, etc.), a gastric stimulator; or the like. As shown in FIG. 2, system 100 may comprise a extension 30 or other adaptor to couple lead 20 to active electrical device 10. While not shown, it will be understood that more than one lead 20 may be operably coupled to one active electrical device 10 or one extension 30 or that more than one extension 30 may be operably coupled to one active electrical device 10.


Referring to FIG. 3, active electrical device 10 may include a connector portion 40 for connecting to lead 20 or extension 30 or other adaptor to couple lead 20 to active electrical device 10. While not shown, it will be understood that lead 20 may be coupled to active electrical device 10 without extension 30 or adaptor.


Referring to FIG. 4, an isometric view of a portion of a body or connector block 110 is shown. Connector block 110 may be included in connector 60 at distal end portion of extension 30 (see, e.g., FIG. 5) or connector portion 40 of active electrical device 10 (see, e.g., FIG. 3). It will also be understood by one of skill in the art that a connector block 110, and/or components thereof could alternatively be included in the proximal portion of lead 20 or the proximal portion of extension 30, for example in the connector 50. Connector block 110 may be used to secure device 120, which may be a lead, extension, or adaptor to active electrical device, or may be used to secure a lead to an extension or adaptor. Device 120 may be inserted through an axially aligned opening 150 in connector block 110. The connector block 110 shown in FIG. 4 comprises a set screw 130, which may be tightened to apply a compressive force on device 120 to assist in securing device 120 relative to connector block 110, and thus relative to active electrical device 10, extension 30 or adaptor, as the case may be. It will be understood that other suitable methods, including other means for applying compressive force, for securing device 120 relative to connector block 110 may be employed.


Set screw 130 may be used to electrically couple device 120 to connector block 110, and thus to active electrical device, extension or adaptor (as the case may be), by contacting conductive body contact 160 of device 120. Further detail regarding the conductive body contact 160 are presented below. While not shown, it will be appreciated that connector block 110 may comprise a plurality of set screws or other devices to apply compressive force, along is length, which may be configured to align with and contact a plurality of stimulating electrical contacts, as well as conductive body contact 160 of device 120. It will also be understood that an active device, extension, or adaptor, may include a plurality of connector blocks 110.


Compressive force applied to device 120 relative to connector block 110 may be any amount of force to prevent device 120 from pulling out of connector block 110 under implanted conditions. In various embodiments, connector block 110 comprises collapsed springs, such as Balseal rings (not shown), or other elastomeric material (not shown) to provide compressive force, typically at conductive body contact 160. In one embodiment, a conductive body contact comprises collapsed springs, such as Balseal rings, or other elastomeric material in combination with a set screw 130.


Referring to FIG. 5, an exploded view of a representative implantable active electrical system 100 is shown. In the system shown in FIG. 5, implantable active electrical device 10 comprises a connector block 40 configured to receive connector 50 at a proximal end of extension 30. The distal end of extension 30 comprises a connector 60 configured to receive proximal end of lead 20. Connector 60 comprises internal stimulating contacts 70 configured to electrically couple extension 30 to lead 20 via stimulating contacts 80 disposed on the proximal end portion of lead 20. Generally, the connector 60 on the distal end of extension 30 is configured to be complementary to the proximal end portion of lead 20. An example of such a complementary configuration is a male and female connector. One of skill in the art will understand, having read this specification that the connector 60 on the distal end of extension 30 can be configured to be either the male or the female connector, and the connector on the proximal end portion of lead 20 can be configured to be of the complementary connector type. Electrodes 90 are disposed on distal end portion of lead 20 and are electrically coupled to stimulating contacts 80, typically through conductors (not shown). Lead 20 may include any number of electrodes 90, e.g. one, two, three, four, five, six, seven, eight, sixteen, thirty-two, or sixty-four. Typically, each electrode 90 is electrically coupled to a discrete stimulating contact 80.



FIGS. 6 and 7 are perspective views of representative leads 20. Leads 20, as shown in FIGS. 6 and 7, contain four exposed stimulating contacts 80 and four electrodes 90. The lead 20 shown in FIG. 7 is a paddle-type lead. However, it will be understood that any lead configuration may be employed in accordance with the teachings provided herein.


By way of example and referring to FIG. 8, a spinal cord stimulation (SCS) system, is shown implanted in a patient 6. For SCS, an implantable pulse generator (IPG) 10 is typically placed in the abdominal region of patient 6 and lead 20 is placed at a desired location along spinal cord 8. Such a system, or any system including an IPG 10 as described herein, may also include a programmer (not shown), such as a physician programmer or a patient programmer IPG 10 is capable of generating electrical signals that may be applied to tissue of patient 6 via electrodes 90 for therapeutic purposes. IPG 10 contains a power source and electronics for sending electrical signals to the spinal cord 8 via electrodes 90 to provide a desired therapeutic effect. It will be appreciated that other systems employing active electrical devices and therapeutic uses thereof are contemplated.


Referring to FIG. 9, a diagrammatic representation of a perspective view of a device 120 is shown. Device 120 comprises a body 180, which comprises an external surface 190, a proximal end portion 200 configured to be at least partially received by an apparatus, and a distal end portion 210. In FIG. 9, the portion of the device 120 to be at least partially received by the apparatus is shown as the portion of device 120 between lines D and Q. However, it will be understood that the portion of device 120 to be received by the apparatus may vary depending on the interaction between device 120 and apparatus. Device 120 may be a lead, extension, or adaptor configured to couple an active medical device to a lead or extension. The apparatus may be an active medical device, extension or adaptor. Device 120 includes a stimulating contact 140 and a stimulating electrical element 170 electrically coupled to the stimulating contact 140. Stimulating electrical element 170 may be an electrode, e.g. if device 120 is a lead, or may be a stimulating contact, e.g. if device 120 is an extension or adaptor. A stimulating contact as used herein refers to an electrical connection for a stimulating circuit. While not shown, it will be appreciated that device 120 may comprise a plurality of stimulating contacts 140 and stimulating electrical elements 170. The device 120 also includes a conductive body contact 160. Conductive body contact 160 is electrically connected to the conductive member (not shown in FIG. 9). Conductive member contact 160 is not electrically connected to any portion of the device that is directly involved with providing electrical signals for therapeutic stimulation. Although it is pictured in FIG. 9 that the conductive body contact 160 is positioned proximal the stimulating contact 140, one of skill in the art, having read this specification, will understand that the configuration could be reversed.


Devices as described herein may be made according to any known or future developed process. For example, the body material of devices may be injection molded or extruded. In some situations it may be desirable to reflow body material from thermoplastic polymers. Body material is typically made of polymeric material, such as polyurethane, polycarbonate, or silicone or combinations thereof. Stimulating electrodes may be formed of electrically conductive biocompatible materials, such as platinum or platinum iridium. Stimulating contacts, conductive body contacts, and stimulating conductors may be formed of electrically conductive biocompatible materials, such as platinum, platinum iridium, titanium, tantalum, nickel-cobalt-chromium-molybdenum alloys, or the like. Stimulating conductors may comprise braided strand wire.


A device as disclosed herein also includes a conductive body 220. As exemplified in FIG. 10, the conductive body 220 can be integrated into the body 180 of the device 120. Conductive body 220 can also be located on the outer surface 190 of the device 120. One of skill in the art would know, given the desired additional functionality that the conductive body 220 is to provide, desirable locations and configurations for the conductive body 220.


Conductive body 220 generally provides additional functionality to the device 120. In an embodiment, the conductive body 220 can function to affect the way in which other portions of the device 120 are effected by or interact with electromagnetic radiation. In an embodiment, the conductive body 220 can function to provide electromagnetic shielding for the portions of the device 120 that are effected during an MRI scan. In an embodiment, the conductive body 220 can assist in the transmission of electromagnetic radiation, i.e act as an antenna.


In an embodiment, the conductive body 220 can function to shield portions of the device 120 from the electromagnetic fields produced during an MRI scan, thus reducing the amount of energy reaching portions of the device 120 and therefore decreasing the extent to which portions of the device 120 are heated. This shielding of portions of the device 120 may be accomplished through use of a number of methods and conductive materials. Examples of materials that can be used in the conductive body 220 include, but are not limited to, titanium, stainless steel, and platinum. These metals may be used to form sheets, braids, wires, coils (of a constant or variable pitch), foils, or powders. Additional suitable materials include, but are not limited to, gold plated microspheres, solid particles of conductive polymers, carbon powder, carbon fibers, and intrinsically conductive polymers.


These exemplary shielding materials and formats may be incorporated into the device in a number of ways. Materials and configurations for conductive bodies that will function as electromagnetic shields and methods of making them are known to those of skill in the art. Possible methodologies include shielding the device by imbedding, depositing, implanting, bombarding, coextruding, or ionic plasma deposition. Shielding material may be deposited along with vapor deposited material such as paralene using vapor deposition process. A shielding material may be electrochemically deposited onto the outer surface 190 of the device 120 to shield the device, or a bio-compatible organic coating may be bound to the surface of the device 120 which is infused with shielding material or to which shielding material may be bound. Particular examples of such include, but are not limited to those found in commonly assigned U.S. Patent Publication No. 2005/0222658, titled “LEAD ELECTRODE FOR USE IN AN MRI-SAFE IMPLANTABLE MEDICAL DEVICE”.


In an embodiment, the conductive body 220 is configured to have good RF electromagnetic contact with the surrounding body tissue when implanted. In this manner, energy created in the conductive body 220 during an MRI scan can be safely dissipated in the surrounding tissue. Additionally, if the conductive body is in direct contact with the patient's body, the conductive body does not retransmit energy to the device itself. In one embodiment, the conductive body may be configured to be in direct contact with the body tissue when implanted. Such a configuration can more readily assure that energy created in the conductive body is safely dissipated. This may be accomplished by adhering the conductive body to the exterior surface of the device. In another embodiment, the conductive body can be configured to merely reside near the exterior surface of the device so as to easily transmit absorbed RF energy to the body tissue.


In an embodiment where the conductive body 220 functions as an electromagnetic shield, the conductive body contact 160 can function to ground the conductive body, electrically connect one conductive body to another, or both. Grounding the conductive body 220 can allow energy in the conductive body that is created by the MRI environment to be safely dissipated. Connecting the conductive body 220 in the device 120 to another conductive body in the apparatus (for example a conductive body in a lead) can function to extend the electromagnetic shielding effect across the entirety of the two articles.


The conductive body 220 can also add functionality to the device 120 by enhancing the transmission of electromagnetic radiation. Such functionality could also be referred to as an antenna. Some implantable medical devices and implantable medical systems utilize wireless communication in order to transmit information to or from the implantable medical device inside a patient to external devices such as programmers, for example. A conductive member 220 that functions as an antenna can include a conductive material. Examples of such conductive materials include, but are not limited to titanium, stainless steel, and the like.



FIG. 10 depicts a longitudinal cross section of an exemplary device 120 from line A to line B shown in FIG. 9. For sake of simplicity, FIGS. 10-12 refer to exemplary embodiments of device 120 shown in FIG. 9, which include only one stimulating contact 140 and only one stimulating electrical element 170, and show longitudinal and cross-sectional schematics of embodiments of devices 120. However, it will be understood that device 120 may comprise any number of stimulating contacts 140 and stimulating electrical elements 170.


In the embodiment depicted in FIG. 10, the conductive body 220 is in contact with conductive body contact 160. The conductive body 220 is connected to conductive body contact 160. That is conductive body 220 may be affixed to, fastened to, adhere to, bonded to, captured, or secured to or by, or otherwise attached to conductive body contact 160. In various embodiments, conductive body 220 is connected to conductive body contact 160 such that, when integrated into body 180, conductive body 220 does not separate from conductive body contact 160 when pulled with an average pull force.


As shown in FIG. 11, the device 120 may comprise a lumen 240 through which stimulating conductor 230 may run. Simulating conductor 230 electrically couples stimulating contact 140 to simulating electrical element 170. Stimulating conductor 230 may also be integrated into the material of body 180 of device 120. One example of this is shown in FIG. 12 where the stimulating conductor 230 is wound or otherwise disposed around lumen 240 and/or in material of body 180. Of course, device 120 may have any number of lumens into which conductors, guidewires, stylets, and the like may be placed. Alternatively, device 120 may have no lumen.


A device as described herein, when utilized with an apparatus that also contains a conductive body can provide advantages. In embodiments having a conductive body that functions to shield electromagnetic radiation, a device and an apparatus with a conductive body can extend the shielding function across the device and apparatus because of the electrical connection made by the conductive body contact. For example, when a lead with a conductive body and an extension with a conductive body are connected via a conductive body contact, the electromagnetic shielding extends from the distal reach of the shield on the lead to the proximal reach of the shield on the extension. In embodiments having a conductive body that functions as an antenna, a device and an apparatus with a conductive body can extend the antenna function across the device and apparatus because of the electrical connection made by the conductive body contact. For example, when a lead with a conductive body and an extension with a conductive body are connected via a conductive body contact, the effective length of the antenna is extended from the distal reach of the conductive body on the lead to the proximal reach of the conductive body on the extension.


In an embodiment, another conductive body contact can be included in the apparatus to connect the conductive body in the apparatus to another apparatus. The second (or additional) apparatus can also optionally include a conductive body. In such an embodiment, the conductive body contact in the second apparatus can function to electrically connect the conductive body from the device, through the first apparatus, and through to the second apparatus. In an embodiment where the second apparatus is an implantable medical device such as an implantable signal generator for example, the connection of the conductive body all the way from the lead can function to extend the electromagnetic shield function of the conductive body or provide the antenna function to a device (i.e. the second apparatus) that could benefit from the antenna function. In an embodiment where the conductive body functions as an electromagnetic shield, the connection to the second apparatus can serve to verify that the entire system is shielded from electromagnetic radiation.


The conductive body contact can also function to diminish mechanical stress on the simulation contacts. By mechanically connecting the device and the apparatus via the conductive body contact, axial forces that could be created can be transferred to the conductive body instead of the stimulating connections. Further details regarding this advantage can be found in commonly assigned U.S. patent application Ser. No. 11/627,532, filed on Jan. 26, 2007, entitled “LEAD HAVING REINFORCING MEMBER”, the disclosure of which is incorporated herein by reference.


An implantable medical system such as that described herein can also offer another advantage over similar systems that do not utilize a conductive body contact as described herein. When commonly utilized implantable signal generator systems, such as for example those that are commercially available from Medtronic, Inc., are implanted into a patient, the implantation generally includes the connection of a lead to an extension, and the connection of the extension to an implanted signal generator. Both of those connections can utilize at least one set screw, which is accessible from a non-insulated region, i.e. on the surface of the system. This set screw generally forms part of an electrical circuit which is directly involved with the stimulation. Because this set screw is electrically connected to a stimulating circuit, it becomes necessary to place a non-conductive boot around the connection. Generally, this is a polymeric boot that requires additional time during implantation to put in place and suture in place. The device as disclosed herein could eliminate that extra step because the set screw which would make the connection mechanically stable, the set screw in the conductive body contact, is not electrically connected to a stimulating circuit.


Thus, embodiments of a LEAD OR LEAD EXTENSION HAVING A CONDUCTIVE BODY AND CONDUCTIVE BODY CONTACT are disclosed. One skilled in the art will appreciate that the present invention can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present invention is limited only by the claims that follow.

Claims
  • 1. An implantable medical device comprising: a body comprising (i) a proximal end portion, and(ii) a distal end portion;a stimulating electrical element at the distal end portion of the body;a stimulating contact at the proximal end portion of the body;a stimulating conductor that electrically couples the stimulating electrical element to the stimulating contact;a conductive body that is integrated into and surrounded by the body, wherein the conductive body is not utilized for application of stimulation and wherein the conductive body has a same depth within the body over the length of the body;a conductive body contact that is integrated into the body and surrounds and physically contacts the conductive body at the same depth such that the conductive body is electrically connected to the conductive body contact.
  • 2. The implantable medical device of claim 1, wherein the conductive body shields at least a portion of the device from electromagnetic radiation.
  • 3. The implantable medical device of claim 2, wherein the conductive body comprises titanium.
  • 4. The implantable medical device of claim 2, wherein the conductive body contact is configured to extend the shielding effect of the conductive body.
  • 5. The implantable medical device of claim 1, wherein the stimulation electrical element is an electrical contact.
  • 6. The implantable medical device of claim 5, wherein the device is an extension.
  • 7. The implantable medical device of claim 1, wherein the stimulation electrical element is an electrode.
  • 8. The implantable medical device of claim 7, wherein the device is a lead.
  • 9. The implantable medical device of claim 1, wherein the device is an adapter configured to couple a lead or an extension to an implantable signal generator.
  • 10. A system comprising: an apparatus; andan implantable medical device comprising: a body comprising (i) a proximal end portion at least partially coupled to the apparatus, and(ii) a distal end portion;a stimulating electrical element at the distal end portion of the body;a stimulating contact at the proximal end portion of the body, wherein the stimulating contact is positioned such that at least a portion of the apparatus is electrically coupled to the stimulating contact;a stimulating conductor that electrically couples the stimulating electrical element to the stimulating contact;a conductive body that is integrated into and surrounded by the body, wherein the conductive body is not utilized for application of stimulation and wherein the conductive body is at a same depth within the body over the length of the body;a conductive body contact that is integrated into the body and surrounds and physically contacts the conductive body at the same depth;wherein the conductive body is electrically connected to the conductive body contact.
  • 11. The system of claim 10, wherein the implantable medical device is a lead and the apparatus is an extension.
  • 12. The system of claim 11, wherein the extension comprises a conductive body that is not utilized for application of stimulation.
  • 13. The system of claim 12, wherein conductive body contact is configured to electrically connect the conductive body of the extension to the conductive body of the lead.
  • 14. The system of claim 10, further comprising a set screw block of the apparatus that receives the proximal end of the device and a set screw that when tightened within the set screw block releasably mechanically attaches the device and the apparatus.
  • 15. An implantable medical system comprising: an extension comprising: an extension body comprising a proximal end portion and a distal end portion;a stimulating electrical element at the distal end portion of the extension body;a stimulating contact at the proximal end portion of the extension body;a stimulating conductor that electrically couples the stimulating electrical element to the stimulating contact;a conductive body that is integrated into and surrounded by the extension body, wherein the conductive body is not utilized for application of stimulation;a conductive body contact that is integrated into the extension body and is electrically coupled to the conductive body; anda lead comprising: a lead body having a proximal end portion configured to be at least partially received by the extension, and a distal end portion;an electrode at the distal end portion of the lead body;a stimulating contact at the proximal portion of the lead body, the stimulating contact being electrically coupled to the electrode and being positioned such that when received by the extension, at least a portion of the extension is capable of electrically coupling to the stimulating contact;a conductive body that is integrated into and surrounded by the lead body and wherein the conductive body is at a same depth within the lead body over the length of the lead body;a conductive body contact that is integrated into the lead body and surrounds and physically contacts the conductive body of the lead at the same depth,wherein the conductive body contact of the lead body and the conductive body of the extension are configured to electrically connect the conductive body of the lead and the conductive body of the extension.
  • 16. The implantable medical system of claim 15, further comprising a set screw block of the extension that receives the proximal end of the lead and a set screw that when tightened within the set screw block releasably mechanically attaches the lead and the extension.
  • 17. The implantable medical system of claim 15, wherein the conductive body contact of the lead body and the conductive body of the extension are configured to electrically connect the conductive body of the lead and the conductive body of the extension by the conductive body contact of the lead and the conductive body contact of the extension being in contact.
  • 18. An implantable medical system comprising: an extension comprising: an extension body comprising a proximal end portion and a distal end portion;a stimulating electrical element at the distal end portion of the extension body;a stimulating contact at the proximal end portion of the extension body;a stimulating conductor that electrically couples the stimulating electrical element to the stimulating contact;a conductive body that is integrated into and surrounded by the extension body, wherein the conductive body is not utilized for application of stimulation and wherein the conductive body is at a same depth within the extension body over the length of the extension body;a conductive body contact that is integrated into the extension body and surrounds and physically contacts the conductive body of the extension at the same depth; anda lead comprising: a lead body having a proximal end portion configured to be at least partially received by the extension, and a distal end portion;an electrode at the distal end portion of the lead body;a stimulating contact at the proximal portion of the lead body, the stimulating contact being electrically coupled to the electrode and being positioned such that when received by the extension, at least a portion of the extension is capable of electrically coupling to the stimulating contact;a conductive body that is integrated into and surrounded by the lead body and;a conductive body contact that is integrated into the lead body and is electrically coupled to the conductive body of the lead,wherein the conductive body contact of the lead body and the conductive body of the extension are configured to electrically connect the conductive body of the lead and the conductive body of the extension.
US Referenced Citations (467)
Number Name Date Kind
2433480 Rendich Dec 1947 A
2487038 Jasper Nov 1949 A
3788329 Friedman Jan 1974 A
3842485 Bement Oct 1974 A
3915174 Preston Oct 1975 A
4033355 Amundson Jul 1977 A
4038990 Thompson Aug 1977 A
4214804 Little Jul 1980 A
4220813 Kyle Sep 1980 A
4280507 Rosenberg Jul 1981 A
4320763 Money Mar 1982 A
4350169 Dutcher Sep 1982 A
4383225 Mayer May 1983 A
4403824 Scott Sep 1983 A
4441498 Nordling Apr 1984 A
4628942 Sweeney et al. Dec 1986 A
4683895 Pohndorf Aug 1987 A
4711027 Harris Dec 1987 A
4726379 Altman et al. Feb 1988 A
4852585 Heath Aug 1989 A
4906241 Noddin Mar 1990 A
4920980 Jackowski May 1990 A
4922607 Doan et al. May 1990 A
4934380 De Toledo Jun 1990 A
4947866 Lessar et al. Aug 1990 A
4951672 Buchwald et al. Aug 1990 A
4991583 Silvian Feb 1991 A
5003992 Holleman Apr 1991 A
5005587 Scott Apr 1991 A
5012045 Sato Apr 1991 A
5018523 Bach, Jr. et al. May 1991 A
5020544 Dahl et al. Jun 1991 A
5020545 Soukup Jun 1991 A
5036862 Pohndorf Aug 1991 A
5040544 Lessar et al. Aug 1991 A
5063932 Dahl et al. Nov 1991 A
5197468 Proctor et al. Mar 1993 A
5213111 Cook et al. May 1993 A
5217010 Tsitlik et al. Jun 1993 A
5231078 Riebman et al. Jul 1993 A
5243996 Hall Sep 1993 A
5246438 Langberg Sep 1993 A
5260128 Ishii et al. Nov 1993 A
5265608 Lee et al. Nov 1993 A
5265623 Kroll et al. Nov 1993 A
5271417 Swanson et al. Dec 1993 A
5308664 House et al. May 1994 A
5314459 Swanson et al. May 1994 A
5323776 Blakeley et al. Jun 1994 A
5335657 Terry, Jr. et al. Aug 1994 A
5349133 Rogers Sep 1994 A
5360441 Otten Nov 1994 A
5366496 Dahl et al. Nov 1994 A
5370644 Langberg Dec 1994 A
5374286 Morris Dec 1994 A
5374778 Hashimoto et al. Dec 1994 A
5417719 Hull et al. May 1995 A
5456705 Morris Oct 1995 A
5458629 Baudino et al. Oct 1995 A
5458631 Xavier Oct 1995 A
5466252 Soukup et al. Nov 1995 A
5473812 Morris et al. Dec 1995 A
5476496 Strandberg et al. Dec 1995 A
5485667 Kleshinski Jan 1996 A
5500013 Buscemi et al. Mar 1996 A
5504274 McCabe et al. Apr 1996 A
5514172 Mueller May 1996 A
5515848 Corbett, III et al. May 1996 A
5523534 Meister et al. Jun 1996 A
5523578 Herskovic Jun 1996 A
5527348 Winkler Jun 1996 A
5534018 Wahlstrand Jul 1996 A
5552565 Cartier et al. Sep 1996 A
5571157 McConnell Nov 1996 A
5572594 DeVoe et al. Nov 1996 A
5591218 Jacobson Jan 1997 A
5594304 Graber Jan 1997 A
5606981 Tartacower et al. Mar 1997 A
5609622 Soukup et al. Mar 1997 A
5628780 Helland et al. May 1997 A
5629622 Scampini May 1997 A
5643254 Scheldrup et al. Jul 1997 A
5649965 Pons et al. Jul 1997 A
5662697 Li et al. Sep 1997 A
5676659 McGurk Oct 1997 A
5676694 Boser et al. Oct 1997 A
5683435 Truex et al. Nov 1997 A
5683444 Huntley et al. Nov 1997 A
5697909 Eggers et al. Dec 1997 A
5697958 Paul et al. Dec 1997 A
5702437 Baudino Dec 1997 A
5706826 Schwager Jan 1998 A
5722998 Prutchi et al. Mar 1998 A
5727552 Ryan Mar 1998 A
5751539 Stevenson et al. May 1998 A
5766232 Grevious et al. Jun 1998 A
5782241 Felblinger et al. Jul 1998 A
5795341 Samson Aug 1998 A
5807258 Cimochowski et al. Sep 1998 A
5814076 Brownlee Sep 1998 A
5827997 Chung et al. Oct 1998 A
5830136 Delonzor et al. Nov 1998 A
5842966 Markoll Dec 1998 A
5842986 Avrin et al. Dec 1998 A
5851226 Skubitz et al. Dec 1998 A
5897584 Herman Apr 1999 A
5905627 Brendel et al. May 1999 A
5927345 Samson Jul 1999 A
5931861 Werner et al. Aug 1999 A
5954760 Jarl Sep 1999 A
5964705 Truwit et al. Oct 1999 A
5968087 Hess Oct 1999 A
5970429 Martin Oct 1999 A
6004269 Crowley et al. Dec 1999 A
6016447 Juran et al. Jan 2000 A
6024703 Zanelli et al. Feb 2000 A
6032063 Hoar et al. Feb 2000 A
6033408 Gage et al. Mar 2000 A
6055457 Bonner Apr 2000 A
6101417 Vogel et al. Aug 2000 A
6103037 Wilson Aug 2000 A
6108582 Fischer, Sr. Aug 2000 A
6132390 Cookston et al. Oct 2000 A
6141593 Patag Oct 2000 A
6143013 Samson et al. Nov 2000 A
6152746 Brown Nov 2000 A
6156029 Mueller Dec 2000 A
6195267 MacDonald et al. Feb 2001 B1
6198807 DeSena Mar 2001 B1
6198972 Hartlaub et al. Mar 2001 B1
6209764 Hartlaub et al. Apr 2001 B1
6240322 Peterfeso May 2001 B1
6258071 Brookes Jul 2001 B1
6265466 Glatkowski Jul 2001 B1
6269148 Jessop et al. Jul 2001 B1
6284971 Atalar et al. Sep 2001 B1
6302740 Holmstrom Oct 2001 B1
6348070 Teissl et al. Feb 2002 B1
6424234 Stevenson Jul 2002 B1
6471699 Fleischman et al. Oct 2002 B1
6488704 Connelly et al. Dec 2002 B1
6494916 Babalola et al. Dec 2002 B1
6501991 Honeck et al. Dec 2002 B1
6503648 Wang Jan 2003 B1
6506972 Wang Jan 2003 B1
6529774 Greene Mar 2003 B1
6538191 MacDonald Mar 2003 B1
6583361 Clouet Jun 2003 B2
6606521 Paspa et al. Aug 2003 B2
6640137 MacDonald Oct 2003 B2
6648690 Saito et al. Nov 2003 B2
6660116 Wolf et al. Dec 2003 B2
6671544 Baudino Dec 2003 B2
6671554 Gibson et al. Dec 2003 B2
6673999 Wang et al. Jan 2004 B1
6675033 Lardo et al. Jan 2004 B1
6689835 Amarasekera et al. Feb 2004 B2
6695761 Oschman et al. Feb 2004 B2
6708051 Durousseau Mar 2004 B1
6711440 Deal et al. Mar 2004 B2
6712844 Pacetti et al. Mar 2004 B2
6713671 Wang et al. Mar 2004 B1
6718203 Weiner et al. Apr 2004 B2
6718207 Connelly Apr 2004 B2
6725092 MacDonald et al. Apr 2004 B2
6735471 Hill et al. May 2004 B2
6741892 Meadows et al. May 2004 B1
6743055 Flynn Jun 2004 B1
6750055 Connelly et al. Jun 2004 B1
6757566 Weiner et al. Jun 2004 B2
6760628 Weiner et al. Jul 2004 B2
6763268 MacDonald et al. Jul 2004 B2
6765144 Wang et al. Jul 2004 B1
6768053 Wang et al. Jul 2004 B1
6778856 Connelly et al. Aug 2004 B2
6792316 Sass Sep 2004 B2
6793642 Connelly et al. Sep 2004 B2
6795730 Connelly et al. Sep 2004 B2
6795736 Connelly et al. Sep 2004 B2
6799067 Pacetti Sep 2004 B2
6799069 Weiner et al. Sep 2004 B2
6815609 Wang et al. Nov 2004 B1
6819954 Connelly Nov 2004 B2
6819958 Weiner et al. Nov 2004 B2
6844492 Wang et al. Jan 2005 B1
6845259 Pacetti et al. Jan 2005 B2
6845267 Harrison et al. Jan 2005 B2
6846985 Wang et al. Jan 2005 B2
6850805 Connelly et al. Feb 2005 B2
6852091 Edwards et al. Feb 2005 B2
6863653 Zanelli et al. Mar 2005 B1
6864418 Wang et al. Mar 2005 B2
6869683 Sakurai et al. Mar 2005 B2
6871091 Wilkinson et al. Mar 2005 B2
6872882 Fritz Mar 2005 B2
6875180 Weiner et al. Apr 2005 B2
6879861 Benz et al. Apr 2005 B2
6882519 Uzawa et al. Apr 2005 B2
6895280 Meadows et al. May 2005 B2
6901287 Davis et al. May 2005 B2
6901290 Foster et al. May 2005 B2
6906256 Wang Jun 2005 B1
6920361 Williams Jul 2005 B2
6922590 Whitehurst Jul 2005 B1
6925328 Foster et al. Aug 2005 B2
6930242 Helfer Aug 2005 B1
6937906 Terry et al. Aug 2005 B2
6944489 Zeijlemaker et al. Sep 2005 B2
6949929 Gray et al. Sep 2005 B2
6954674 Connelly Oct 2005 B2
6968235 Belden et al. Nov 2005 B2
6968236 Hagele Nov 2005 B2
6971391 Wang et al. Dec 2005 B1
6980865 Wang et al. Dec 2005 B1
6982378 Dickson Jan 2006 B2
6985775 Reinke et al. Jan 2006 B2
6993387 Connelly et al. Jan 2006 B2
6999818 Stevenson et al. Feb 2006 B2
6999821 Jenney et al. Feb 2006 B2
7001369 Griffin et al. Feb 2006 B2
7013174 Connelly et al. Mar 2006 B2
7013180 Villaseca et al. Mar 2006 B2
7015392 Dickenson Mar 2006 B1
7015393 Weiner Mar 2006 B2
7047084 Erickson May 2006 B2
7050855 Zeijlemaker et al. May 2006 B2
7058192 Muller et al. Jun 2006 B2
7076283 Cho et al. Jul 2006 B2
7076302 Scheiner Jul 2006 B2
7082328 Funke Jul 2006 B2
7082337 Sommer et al. Jul 2006 B2
7103413 Swanson Sep 2006 B2
7113827 Silvestri Sep 2006 B2
7115134 Chambers Oct 2006 B2
7118693 Glatkowski et al. Oct 2006 B2
7123013 Gray Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7162302 Wang et al. Jan 2007 B2
7174219 Wahlstrand et al. Feb 2007 B2
7187980 Osypka et al. Mar 2007 B2
7233825 Jorgenson et al. Jun 2007 B2
7257449 Bodner Aug 2007 B2
7282260 LeGrande et al. Oct 2007 B2
7286871 Cohen Oct 2007 B2
7286882 Cole Oct 2007 B2
7292894 Belden Nov 2007 B2
7294785 Uutela et al. Nov 2007 B2
7319901 Dublin Jan 2008 B2
7363090 Halperin Apr 2008 B2
7389148 Morgan Jun 2008 B1
7540865 Griffin et al. Jun 2009 B2
7548788 Chinn et al. Jun 2009 B2
7591831 Parsonage et al. Sep 2009 B2
7674972 Gladd et al. Mar 2010 B2
7711436 Stone May 2010 B2
7729777 Gray et al. Jun 2010 B2
7738942 Weiner Jun 2010 B2
7813811 Wingeier et al. Oct 2010 B2
7819826 Diederich et al. Oct 2010 B2
7822484 Zhao et al. Oct 2010 B1
7828833 Haverkost Nov 2010 B2
7844343 Wahlstrand Nov 2010 B2
7844344 Wahlstrand Nov 2010 B2
7853332 Olsen Dec 2010 B2
7877150 Hoegh et al. Jan 2011 B2
7904178 Williams Mar 2011 B2
7917213 Bulkes Mar 2011 B2
7933652 Phillips Apr 2011 B2
8007440 Magnin et al. Aug 2011 B2
8027736 Wahlstrand Sep 2011 B2
8036756 Swoyer et al. Oct 2011 B2
8048060 Griffin et al. Nov 2011 B2
8055351 Atalar et al. Nov 2011 B2
8106657 Sakellariou et al. Jan 2012 B2
8170691 Eckerdal May 2012 B2
8202259 Evans et al. Jun 2012 B2
8246643 Nita Aug 2012 B2
8275464 Li et al. Sep 2012 B2
8280526 Wahlstrand Oct 2012 B2
8483842 Alexander et al. Jul 2013 B2
8620455 Alexander et al. Dec 2013 B2
8676340 Wahlstrand Mar 2014 B2
8744598 Alexander et al. Jun 2014 B2
8788061 Mehdizadeh Jul 2014 B2
8805534 Olsen Aug 2014 B2
8903504 Hegland Dec 2014 B2
9002474 Olsen Apr 2015 B2
9037263 Marshall May 2015 B2
9044593 Li Jun 2015 B2
20010044646 Marshall et al. Nov 2001 A1
20020032468 Hill Mar 2002 A1
20020038135 Connelly et al. Mar 2002 A1
20020058978 Sass May 2002 A1
20020082673 Benz et al. Jun 2002 A1
20020106918 Saito et al. Aug 2002 A1
20020111659 Davis et al. Aug 2002 A1
20020111663 Dahl et al. Aug 2002 A1
20020116028 Greatbatch et al. Aug 2002 A1
20020116029 Miller et al. Aug 2002 A1
20020116033 Greatbatch et al. Aug 2002 A1
20020116034 Miller et al. Aug 2002 A1
20020128689 Connelly et al. Sep 2002 A1
20020128691 Connelly Sep 2002 A1
20020133086 Connelly et al. Sep 2002 A1
20020133199 MacDonald et al. Sep 2002 A1
20020133200 Weiner et al. Sep 2002 A1
20020133201 Connelly et al. Sep 2002 A1
20020133202 Connelly et al. Sep 2002 A1
20020133208 Connelly Sep 2002 A1
20020133211 Weiner et al. Sep 2002 A1
20020133216 Connelly et al. Sep 2002 A1
20020138102 Weiner et al. Sep 2002 A1
20020138107 Weiner et al. Sep 2002 A1
20020138108 Weiner et al. Sep 2002 A1
20020138110 Connelly et al. Sep 2002 A1
20020138112 Connelly et al. Sep 2002 A1
20020143377 Wessman et al. Oct 2002 A1
20020183438 Amarasekera et al. Dec 2002 A1
20020183740 Edwards et al. Dec 2002 A1
20020183822 Bodner Dec 2002 A1
20020188345 Pacetti Dec 2002 A1
20030009207 Paspa et al. Jan 2003 A1
20030014080 Baudino Jan 2003 A1
20030036776 Foster et al. Feb 2003 A1
20030044623 Sakurai et al. Mar 2003 A1
20030045920 Belden et al. Mar 2003 A1
20030060732 Jacobsen et al. Mar 2003 A1
20030083570 Cho et al. May 2003 A1
20030083723 Wilkinson et al. May 2003 A1
20030083726 Zeijlemaker et al. May 2003 A1
20030093107 Parsonage et al. May 2003 A1
20030109901 Greatbatch Jun 2003 A1
20030117787 Nakauchi Jun 2003 A1
20030120148 Pacetti Jun 2003 A1
20030120197 Kaneko et al. Jun 2003 A1
20030135114 Pacetti et al. Jul 2003 A1
20030139794 Jenney et al. Jul 2003 A1
20030139806 Haverkost et al. Jul 2003 A1
20030140931 Zeijlemaker Jul 2003 A1
20030144704 Terry Jul 2003 A1
20030144705 Funke Jul 2003 A1
20030144716 Reinke et al. Jul 2003 A1
20030144717 Hagele Jul 2003 A1
20030144718 Zeijlemaker Jul 2003 A1
20030144719 Zeijlemaker Jul 2003 A1
20030144720 Villaseca et al. Jul 2003 A1
20030144721 Villaseca et al. Jul 2003 A1
20030167052 Lee et al. Sep 2003 A1
20030204217 Greatbatch Oct 2003 A1
20030225331 Diederich et al. Dec 2003 A1
20040020674 McFadden et al. Feb 2004 A1
20040024442 Sowinski et al. Feb 2004 A1
20040028859 LeGrande et al. Feb 2004 A1
20040068307 Goble Apr 2004 A1
20040071949 Glatkowski et al. Apr 2004 A1
20040088012 Kroll et al. May 2004 A1
20040106958 Mathis et al. Jun 2004 A1
20040162600 Williams Aug 2004 A1
20040167443 Shireman et al. Aug 2004 A1
20040173368 Dickson Sep 2004 A1
20040199069 Connelly et al. Oct 2004 A1
20040220549 Dittman et al. Nov 2004 A1
20040249428 Wang et al. Dec 2004 A1
20040251042 Weiner et al. Dec 2004 A1
20040263172 Gray et al. Dec 2004 A1
20040263173 Gray Dec 2004 A1
20040263174 Gray et al. Dec 2004 A1
20040267328 Duffin Dec 2004 A1
20050065587 Gryzwa Mar 2005 A1
20050070972 Wahlstrand Mar 2005 A1
20050080471 Chitre et al. Apr 2005 A1
20050113876 Weiner May 2005 A1
20050115624 Walak Jun 2005 A1
20050137664 Sommer et al. Jun 2005 A1
20050145307 Shireman et al. Jul 2005 A1
20050159661 Connelly et al. Jul 2005 A1
20050182471 Wang Aug 2005 A1
20050222642 Przybyszewski Oct 2005 A1
20050222647 Wahlstrand Oct 2005 A1
20050222656 Wahlstrand Oct 2005 A1
20050222657 Wahlstrand Oct 2005 A1
20050222658 Hoegh et al. Oct 2005 A1
20050222659 Olsen Oct 2005 A1
20060030918 Chinn et al. Feb 2006 A1
20060036306 Heist et al. Feb 2006 A1
20060079926 Desai et al. Apr 2006 A1
20060089680 Bruchmann et al. Apr 2006 A1
20060095078 Tronnes May 2006 A1
20060135962 Kick et al. Jun 2006 A1
20060155270 Hancock Jul 2006 A1
20060167522 Malinowski Jul 2006 A1
20060167527 Malinowski Jul 2006 A1
20060200218 Wahlstrand Sep 2006 A1
20060224207 Dublin Oct 2006 A1
20060247747 Olsen Nov 2006 A1
20060247748 Wahlstrand Nov 2006 A1
20070021811 D'Aquanni et al. Jan 2007 A1
20070106332 Denker May 2007 A1
20070123805 Shireman et al. May 2007 A1
20070129779 Ayre Jun 2007 A1
20070168008 Olsen Jul 2007 A1
20070185556 Williams Aug 2007 A1
20070208383 Williams Sep 2007 A1
20070293924 Belden et al. Dec 2007 A1
20080033497 Bulkes Feb 2008 A1
20080039709 Karmarkar Feb 2008 A1
20080058715 Houser et al. Mar 2008 A1
20080154326 Clyne Jun 2008 A1
20080183263 Alexander Jul 2008 A1
20080195186 Li Aug 2008 A1
20080195187 Li Aug 2008 A1
20080215008 Nance et al. Sep 2008 A1
20080242944 Sharma Oct 2008 A1
20080243081 Nance et al. Oct 2008 A1
20080243218 Bottomley Oct 2008 A1
20080262582 Alexander Oct 2008 A1
20080262584 Bottomley Oct 2008 A1
20080269863 Alexander Oct 2008 A1
20080287804 Nita Nov 2008 A1
20090204192 Carlton Aug 2009 A1
20090221970 Spinoza Sep 2009 A1
20090228074 Edgell et al. Sep 2009 A1
20090234402 Marshall Sep 2009 A1
20090240235 Murata Sep 2009 A1
20090259272 Reddy Oct 2009 A1
20090270956 Vase Oct 2009 A1
20090287189 Suwito Nov 2009 A1
20100069743 Sheetz et al. Mar 2010 A1
20100100164 Johnson et al. Apr 2010 A1
20100137957 Eckerdal Jun 2010 A1
20100145426 Stone Jun 2010 A1
20100198327 Helland Aug 2010 A1
20100256528 Lippert et al. Oct 2010 A1
20100256604 Lippert et al. Oct 2010 A1
20100268310 Bonde et al. Oct 2010 A1
20100331938 Sommer Dec 2010 A1
20110015713 Min Jan 2011 A1
20110034983 Min Feb 2011 A1
20110071599 Olsen Mar 2011 A1
20110071604 Wahlstrand Mar 2011 A1
20110071605 Wahlstrand Mar 2011 A1
20110112615 Hoegh et al. May 2011 A1
20110230943 Johnson et al. Sep 2011 A1
20110251487 Magnin et al. Oct 2011 A1
20110319905 Palme et al. Dec 2011 A1
20120010689 Wahlstrand Jan 2012 A1
20120035616 Olsen et al. Feb 2012 A1
20120035694 Olsen Feb 2012 A1
20120035695 Olsen et al. Feb 2012 A1
20120035696 Kern Feb 2012 A1
20120035697 Stone Feb 2012 A1
20120035951 Goetz Feb 2012 A1
20120041528 Mehdizadeh et al. Feb 2012 A1
20120041529 Olsen Feb 2012 A1
20120046722 Olsen Feb 2012 A1
20120053664 Hegland Mar 2012 A1
20120059467 Drew Mar 2012 A1
20120130461 Olsen May 2012 A1
20120330383 Wahlstrand Dec 2012 A1
20130296991 Alexander et al. Nov 2013 A1
20140107746 Alexander et al. Apr 2014 A1
20140200643 Wahlstrand Jul 2014 A1
20140288626 Alexander et al. Sep 2014 A1
20140345132 Mehdizadeh et al. Nov 2014 A1
20140350654 Olsen et al. Nov 2014 A1
20150082618 Hegland Mar 2015 A1
20150170792 Alford Jun 2015 A1
Foreign Referenced Citations (82)
Number Date Country
0617978 May 1994 EP
0624383 Nov 1994 EP
0713714 May 1996 EP
0760196 Mar 1997 EP
0920239 Jun 1999 EP
1273922 Jan 2003 EP
1424095 Jun 2004 EP
1466576 Oct 2004 EP
1625875 Feb 2006 EP
1632265 Mar 2006 EP
1935449 Jun 2008 EP
2429154 Feb 2007 GB
07255863 Oct 1995 JP
11086641 Mar 1999 JP
11-086641 Mar 1999 JP
WO0200292 Jan 2002 JP
WO9532673 Dec 1995 WO
WO9616694 Jun 1996 WO
WO9628951 Sep 1996 WO
WO9741923 Nov 1997 WO
WO9848896 Nov 1998 WO
WO9910035 Mar 1999 WO
WO9919020 Apr 1999 WO
WO9960370 Nov 1999 WO
WO0027279 May 2000 WO
WO0180940 Nov 2001 WO
WO02083236 Oct 2002 WO
WO03037429 May 2003 WO
WO03061755 Jul 2003 WO
WO03063946 Aug 2003 WO
WO03063948 Aug 2003 WO
WO03063952 Aug 2003 WO
WO03063953 Aug 2003 WO
WO03063954 Aug 2003 WO
WO03063955 Aug 2003 WO
WO03063956 Aug 2003 WO
WO03063957 Aug 2003 WO
WO03075797 Sep 2003 WO
WO03092326 Nov 2003 WO
WO03095022 Nov 2003 WO
WO2004012809 Feb 2004 WO
WO2004052448 Jun 2004 WO
WO2004073040 Aug 2004 WO
WO2005030322 Apr 2005 WO
WO2005032654 Apr 2005 WO
WO2005102444 Nov 2005 WO
WO2005102445 Nov 2005 WO
WO2005102446 Nov 2005 WO
WO2005102447 Nov 2005 WO
WO2006031317 Mar 2006 WO
WO2006093685 Sep 2006 WO
WO2006093686 Sep 2006 WO
WO2006118640 Nov 2006 WO
WO2006118641 Nov 2006 WO
WO2007047966 Apr 2007 WO
WO2007124273 Nov 2007 WO
WO2007126657 Nov 2007 WO
WO2007149757 Dec 2007 WO
WO2008088568 Jul 2008 WO
WO2008100839 Aug 2008 WO
WO2008100840 Aug 2008 WO
WO2008111986 Sep 2008 WO
WO2008130409 Oct 2008 WO
WO2008134196 Nov 2008 WO
WO2008140376 Nov 2008 WO
WO2009011440 Sep 2009 WO
WO2009134901 Nov 2009 WO
WO2010062988 Jun 2010 WO
WO2010126871 Nov 2010 WO
WO2010126877 Nov 2010 WO
WO2010126884 Nov 2010 WO
WO2010126887 Nov 2010 WO
WO2010126935 Nov 2010 WO
WO2010126939 Nov 2010 WO
WO2010126943 Nov 2010 WO
WO2010126946 Nov 2010 WO
WO2010126949 Nov 2010 WO
WO2010126975 Nov 2010 WO
WO2010135440 Nov 2010 WO
WO2011019416 Feb 2011 WO
WO2012103419 Aug 2012 WO
WO2013158189 Oct 2013 WO
Non-Patent Literature Citations (33)
Entry
PCT/US2004/042081: Search Report and Written Opinion.
PCT/US2005/000322: Search Report and Written Opinion.
PCT/US2008/053540: Search Report and Written Opinion.
PCT/US2008/053541: Search Report and Written Opinion.
PCT/US2008/059358: Search Report and Written Opinion.
PCT/US2009/036461: Search Report and Written Opinion.
PCT/US2010/032516: Search Report and Written Opinion.
PCT/US2010/032526: Search Report and Written Opinion.
PCT/US2010/032543: Search Report and Written Opinion.
PCT/US2010/032560: Search Report and Written Opinion.
PCT/US2010/032567: Search Report and Written Opinion.
PCT/US2010/032666: Search Report and Written Opinion.
PCT/US2010/032671: Search Report and Written Opinion.
PCT/US2010/032675: Search Report and Written Opinion.
PCT/US2010/032682: Search Report and Written Opinion.
PCT/US2010/032719: Search Report and Written Opinion.
PCT/US2013/023637: Search Report and Written Opinion.
Baker et al., “Evaluation of Specific Absorption Rates as a Dosimeter of MRI-Related Implant Heating”, Journal of Magnetic Resonance Imaging 20:315-320 (2004).
Baker, K., et al., “Neurostimulation Systems: Assessment of Magnetic Field Interactions Associated with 1.5 and 3-Tesla MR Systems”, J. Magn. Reson. Imaging, Jan. 2005, 21(1);72-7.
Chung, D.D.L., “Carbon Fiber Composites”, 1994, chapter 1, p. 8, table 1.2, Elsevier, ISBN: 978-0/7506-9169-7.
Chung, D.D.L., Comparison of Submicron-Diameter Carbon Filaments and Conventional Carbon Fibers as Fillers in Composite Materials, Carbon 39 (2001) pp. 1119-1125, Elsevier Science Ltd.
Chung, D.D.L., Electromagnetic Interference Shielding Effectiveness of Carbon Materials, Carbon 29 (2001) pp. 279-285, Elsevier Science Ltd.
Engdahl, Tomi, “Ground Loop Basics.” Web Jan. 4, 2009, ePanorama.net www.cpanorama.net/documents/groundloop/basics.html 28052.00 11/739,787.
Finelli, D., et al., “MRI Imaging-Related Heating of Deep Brain Stimulation Electrodes: In Vitro Study”, AJNR Am. J. Neuroadiol 23:1, Nov./Dec. 2002.
Jou, W.S. “A Novel Structure of Woven Continuous-Carbon Fiber Composites with High Electromagnetic Shielding”, Journal of Electronic Materials, vol. 33, No. 3, Mar. 1, 2004, pp. 162-170(9), Minerals, Metals and Materials Society, http://findarticles.com/p/articles/mi—ati3776/is 200403/ai—n9405—582/print.
Kolin, et al., “An Electromagnetic Catheter Flow Meter for Determination of Blood Flow in Major Arteries,” Department of Biophysics, Physiology, and Radiology, University of California School of Medicine (Los Angeles) Jan. 19, 1988, Proc. N.A.S. vol. 59, pp. 808-815.
Kolin, et al., “An Electromagnetic Intravascular Blood-Flow Sensor”, Department of Biophysics, University of California School of Medicine (Los Angeles), Mar. 20, 1967, Proc. N.A.S., vol. 57, pp. 1331-1337.
Kolin, et al., “Miniaturization of the Electromagnetic Blood Flow Meter and Its Use for the Recording of Circulatory Responses of Conscious Animals to Sensory Stimuli”, Department of Biophysics, University of California at Los Angeles, Aug. 1959, Proc. N.A.S. vol. 45(8), pp. 1312-1321.
Medtronic Activa Product Family and Procedure Solution Brochure, Medtronic, Inc, 2001.
Medtronic Neurostimulation Systems Brochure, Medtronic, Inc., 2002.
Quick et al., “Endourethral MRI”, Magnetic Resonance in Medicine, 45:138-146, 2001.
Rezai, A., et al., “Neurostimulation System Used for Deep Brain Stimulation (DBS): MR Safety Issues and Implications of Failing to Follow Safety Recommendations” Investigative Radiology, May 2004, vol. 39, Issue 5, pp. 300-303.
Rezai, A., et al., “Neurostimulation Systems for Deep Brain Stimulation In Vitro Evaluation of Magnetic Resonance Imaging-Related Healing at 1.5 Tesla”, Journal of Magnetic Reson. Imaging 2002; 15:241-50.
Related Publications (1)
Number Date Country
20140288626 A1 Sep 2014 US
Continuations (3)
Number Date Country
Parent 14108757 Dec 2013 US
Child 14294067 US
Parent 13932878 Jul 2013 US
Child 14108757 US
Parent 11739787 Apr 2007 US
Child 13932878 US