This application claims priority to European Patent Application No. 21194593.6 filed Sep. 2, 2021, the entire contents of which is incorporated herein by reference.
The present disclosure relates to a lead screw assembly.
Lead screws are used in many applications for translating rotary motion e.g. from a motor, to linear motion for a load, or from thrust to torque, and vice versa. A lead screw assembly consists of a screw and a nut, each with matching helical grooves. Rotation of one of the screw and the nut relative to the other causes relative linear motion of the other.
The suitability of a particular lead screw to an application is determined, at least in part, by a) load capacity, b) wear capacity c) fundamental efficiency.
Unlike ballscrews, in which screw efficiency is a constant, lead screw efficiency is a variable, with dependencies on lead angle, flank angle and friction coefficient.
Dynamic efficiency of a lead screw will typically range between 45% and 75% depending upon these variables, which in comparison with a ballscrew efficiency in the order of 95%, appear to render the lead screw an unfavourable choice in systems where power consumption is a major discriminator.
However, in some applications, the load and duty characteristics may identify a lead screw to offer a favourable choice when considering the associated cost savings, in the order of 66%, in comparison with a ball screw.
Electrically driven Thrust Reverser Actuation Systems (TRAS), for example, have particular requirements that lend themselves to a potential lead screw; including low operating drive torque compared to initial system acceleration torque and engine spool-up loading of the lead screw when fully deployed and in a static condition.
Spool-up loads can however be two to three times the maximum dynamic operating loads, which can cause damage to the screw parts. Therefore, in order to render a lead screw even more favourable for an electric TRAS application, it is desirable to actively limit the peak loads reacted by the lead screw nut and associated premature failure. By limiting the peak loads reacted by the lead screw nut, more materials of choice, with lower mechanical properties, become available for the manufacture of the nut, for example polymers and composites.
The present disclosure provides a lead screw assembly that is designed to effectively reduce or limit the static loads reacted by the lead screw nut.
According to one aspect, there is provided a lead screw assembly comprising: a screw shaft along which is formed a first helical groove; a primary nut along which is formed a second helical groove; the first helical groove and the second helical groove cooperating to define a track; a secondary nut along which is formed a third helical groove; the first and third helical grooves co-operating to define a track with axial clearance; a machined spring arranged to provide an axial preloading X of the primary nut; wherein when a load applied to the screw exceeds the predetermined preload X, the secondary nut engages with the track such that additional load of the screw is transferred via the secondary nut.
According to another aspect, there is provided a TRAS having such a lead screw assembly to move the actuated surface(s).
With reference to
Nevertheless, because these high forces can occur, the screw needs to be designed to cope with them if/when they do occur. Where ball screws are used, these are designed with materials hard enough to provide the required static load capacity for such loads. Such materials, e.g. Chronidur 30™, or martensitic alloys with high chromium content are generally very expensive. As mentioned above, though, there are also advantages in using lead screws provided they are able to handle such high forces.
To avoid damage to the screw parts under potential high loads, e.g. on spool-up, and/or to increase the range of applications where lead screws can be used, the present disclosure provides an assembly in which high loads do not act on the primary nut.
The lead screw according to this disclosure is designed such that a static load that exceeds a predetermined threshold, based on the normal operating dynamic loads with an error margin factored in, effectively bypasses the screw/primary nut track so that the screw only needs to be designed to handle static loads up to the predetermined threshold.
The bypass function according to this disclosure will now be described in more detail with reference to
The bypass function is provided, according to the disclosure, by introducing a pre-loading system between the screw primary nut and where the nut attaches to an actuator.
The assembly comprises a lead screw 1 provided with an outer helical thread 10 around which is provided a primary nut 2. The primary nut 2 has an inner helical thread 20 that engages with the outer helical thread of the screw 1.
The screw assembly translates rotation of the lead screw 1, by means of a driver (not shown) to linear motion of the primary nut 2 which moves along the screw thread ad the screw rotates. Linear movement of the primary nut 2 causes corresponding linear movement of a torque tube 3 with which the primary nut engages. A transfer member 4 is provided between the primary nut 2 and the torque tube 3 to transfer the movement of the nut to the torque tube 3. The torque tube may be connected to a surface or component to be moved e.g. the TRAS (not shown).
The assembly also includes a secondary nut 5 located between the transfer member 4 and the torque tube 3. The secondary nut 5 is provided with an inner thread 30 configured to cooperate with the outer thread of the lead screw 1.
The primary nut 3 is arranged with a pre-load X such that for forces F acting on the screw assembly up to the value X, the primary nut 2 is biased to the left in the drawings such that the primary nut 2 engages the torque tube 3 via the transfer member 4 so that axial loads F up to the value of the pre-load X are transferred to the torque tube via the primary nut 2. While the pre-load X is not exceeded by the actual axial load F, the secondary nut 5 is held to be spaced from engaging with the screw thread by a gap g, as shown in
When the axial load F exceeds the pre-load X, as shown in
overcomes the bias and pulls the primary nut and transfer member to the right in the drawings which, in turn, pushes against the secondary nut 5 and causes the secondary nut thread 30 to engage with the screw thread 10 to create a track between the screw and the secondary nut threads. Then, as can be seen in
The bypass function has particular benefits in relation to TRAS applications, but the design of this disclosure is not limited to such applications and can provide advantages in many lead screw applications.
Number | Name | Date | Kind |
---|---|---|---|
4795172 | Brande | Jan 1989 | A |
4821592 | Rousselot | Apr 1989 | A |
5732596 | Erikson et al. | Mar 1998 | A |
8267656 | Carvalho et al. | Sep 2012 | B2 |
20030029258 | Davies | Feb 2003 | A1 |
20100077879 | Davies | Apr 2010 | A1 |
20180334239 | Moulon | Nov 2018 | A1 |
20190101196 | Lu et al. | Apr 2019 | A1 |
20200393027 | Ricard | Dec 2020 | A1 |
20210404524 | Al-Mahshi | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
1283384 | Feb 2003 | EP |
1283384 | Feb 2003 | EP |
2005036026 | Apr 2005 | WO |
2005036026 | Apr 2005 | WO |
Entry |
---|
European Search Report for Application No. 21194593.6, dated Jan. 21, 2022, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20230069566 A1 | Mar 2023 | US |