This application claims the priority benefit of China application serial no. 201410729405.9, filed on Dec. 4, 2014. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
Technical Field
The invention relates to a lead screw guide assembly and a printing apparatus, and more particularly to a lead screw guide assembly and a three-dimensional (3D) printing apparatus.
Description of Related Art
As the technology advanced in recent years, many methods that utilize additive manufacturing technology (e.g. layer-by-layer model construction) to build three-dimensional (3D) physical models have been proposed. Typically, the additive manufacturing technology is to convert data of a 3D model, which is constructed by software, such as computer aided design (CAD), into multiple thin (quasi-two-dimensional) cross-sectional layers that are stacked in sequence. In the meantime, many technical means for forming thin cross-sectional layers are also proposed. For example, a printing unit of a printing apparatus is usually configured to move above a printing stand along an XY plane according to spatial coordinates XYZ constructed according to the design data of the 3D model, so as to use a construction material to form shapes of the cross-sectional shapes correctly. Then, by driving the printing unit to move along the Z-axis layer-by-layer, multiple cross-sectional layers can be gradually stacked and cured layer-by-layer; finally, a 3D object is formed.
A 3D printing apparatus is usually provided with a lead screw guide assembly. Through the movement of the lead screw guide, the constructing material in the printing unit is squeezed on the printing stand. To allow sufficient moving path for the lead screw guide, the housing of the 3D printing apparatus is provided with an operating space reserved for the lead screw guide to move therein, which in return causes the housing to be too large. In other words, to adapt to the actuation of the lead screw guide, the housing has to remain in the size that allows the lead screw guide to actuate even when the lead screw guide does not actuate. In that case, a part space of the housing is actually not in use when the lead screw assembly does not actuate. As the housing of the 3D printing apparatus has to be kept in a large size, which makes it difficult to transport or move the 3D printing apparatus.
The invention is directed to a lead screw guide assembly and a 3D printing apparatus adapted to reduce the space required for the 3D printing apparatus.
In the invention, the lead screw guide assembly is adaptable for a 3D printing apparatus. The lead screw guide assembly includes a base, a first guiding member, a second guiding member and a lead screw guide. The first guiding member is disposed on the base and has a first channel extending along an axis. The second guiding member is movably coupled to the first guiding member along the axis. The lead screw guide is movably disposed on the base along the axis and located in the first channel. The lead screw guide is coupled to the second guiding member, so as to drive the second guiding member to move along the axis and hide in the first channel or protrude from the first channel.
In the invention, the 3D printing apparatus includes a printing stand, a lead screw guide assembly and a printing unit. The lead screw guide assembly is movably disposed above the printing stand, including a base, a first guiding member, a second guiding member and a lead screw guide. The first guiding member is disposed on the base and has a first channel extending along an axis. The second guiding member is movably coupled to the first guiding member along the axis. The lead screw guide is movably disposed on the base along the axis and located in the first channel. The lead screw guide is coupled to the second guiding member, so as to drive the second guiding member to move along the axis and hide in the first channel or protrude from the first channel. The printing unit is connected to the lead screw guide assembly and corresponds to the lead screw guide.
In an embodiment of the invention, the second guiding member has a second channel extending along the axis and connected to the first channel, and the lead screw guide is located in the first channel and the second channel.
In an embodiment of the invention, the second guiding member further includes a pair of first guiding tracks extending along the axis and located at two opposite sides of the second channel. Two opposite sides of the first guiding member have a pair of first guiding posts facing the second guiding member. The pair of first guiding posts is correspondingly embedded in the pair of first guiding tracks, so that the second guiding member is coupled to the first guiding member and moves relative to the first guiding member along the axis via the pair of first guiding tracks.
In an embodiment of the invention, the second guiding member further includes a pair of second guiding tracks extending along the axis and located at two opposite sides of the second channel. The lead screw guide has a pair of second guiding posts correspondingly embedded in the pair of second guiding tracks, so that the lead screw guide is coupled to the second guiding member and moves relative to the base along the axis via the pair of second guiding tracks.
In an embodiment of the invention, the second guiding member includes two plates opposite to each other and spaced apart by a distance to construct the second channel.
In an embodiment of the invention, the first guiding member includes two plates opposite to each other and spaced apart by a distance to construct the first channel.
In an embodiment of the invention, the base includes a supporting plate and a linear motor. The linear motor is disposed on the supporting plate and connected to the lead screw guide, so as to drive the lead screw guide to move relative to the base.
In an embodiment of the invention, the lead screw guide has a pressing end and a guiding end opposite to each other. The pressing end is located at one side of the base relative to the second guiding member, and the guiding end is coupled to the second guiding member. When the lead screw guide moves along the axis and causes the pressing end to move away from the base, the lead screw guide drives the second guiding member via the guiding end to move along the axis and hide in the first channel. When the lead screw guide moves along the axis and causes the pressing end to move closer to the base, the lead screw guide drives the second guiding member via the guiding end to move along the axis and protrude from the first channel.
In an embodiment of the invention, a barrel is disposed at one side of the lead screw guide, and the lead screw guide corresponds to the barrel via the pressing end.
In an embodiment of the invention, the lead screw guide assembly further includes a detecting unit disposed at one side of the first guiding member and adjacent to the second guiding member, so as to detect a position of the lead screw guide.
As indicated above, in the lead screw guide assembly and the 3D printing apparatus of the invention, the lead screw guide is movably disposed on the base and coupled to the second guiding member. The second guiding member is movably coupled to the first guiding member and adaptable for moving relative to the first guiding member. In that case, when the 3D printing apparatus is in the operating state, the lead screw guide that is coupled to the second guiding member may move relative to the base and drive the second guiding member to move and hide in the first channel or protrude from the first channel. Accordingly, when the 3D printing apparatus is in the transporting state in which the lead screw guide assembly does not actuate, the overall height of the lead screw guide assembly can be reduced. Therefore, the housing adopted by the 3D printing apparatus does not need to have an additional operating space reserved for the lead screw guide assembly. Thus, the lead screw guide assembly and the 3D printing apparatus of the invention can reduce the space required for the 3D printing apparatus.
In order to make the aforementioned features and advantages of the invention more comprehensible, embodiments accompanying figures are described in detail below.
In such manner, when the 3D printing apparatus 50 is in the transporting state in which the lead screw guide assembly 100 does not actuate, the overall height of the lead screw guide assembly 100 can be reduced. Specifically, the 3D printing apparatus further includes a housing 58 which, for example, consists of a plurality of assembling frames, wherein the above-mentioned components are disposed in the housing 58. When the 3D printing apparatus 50 is in the transporting state in which the lead screw guide assembly 100 does not actuate, the lead screw guide 140 and the second guiding member 130 of the lead screw guide assembly 100 may hide in the first channel 122. In other words, when the lead screw guide 140 and the second guiding member 130 of the lead screw guide assembly 100 hide in the first channel 122, the overall height of the 3D printing apparatus 50 is the distance between the printing stand 52 and the bottom of the first guiding member 120. When the 3D printing apparatus 50 is in the operating state, the second guiding member 130 and the lead screw guide 140 protruding from the first channel 122 may extend outward from an opening of the housing depending on the operation. In that case, the housing adopted by the 3D printing apparatus 50 does not need to have an additional operating space reserved for the lead screw guide assembly 100 when actuating, thereby reducing the space required for the 3D printing apparatus 50. In such manner, the lead screw guide assembly 100 and the 3D printing apparatus 50 of the invention can reduce the space required for the 3D printing apparatus 50.
Specifically, in the embodiment, the base 110 includes a supporting plate 112 and a linear motor 114. The supporting plate 112 is disposed on the moving unit 56 (shown by
In addition, in the embodiment, the lead screw guide 140 has the pressing end 142 and the guiding end 144 opposite to each other. The pressing end 142 (shown by
On the other hand, in the embodiment, the first guiding member 120 includes two plates 120a and 120b fixed on the base 110. The two plates 120a and 120b are opposite to each other and spaced apart by a distance to construct the first channel 122, and the lead screw guide 140 may hide in the first channel 122. Likewise, the second guiding member 130 in the embodiment has a second channel 132 extending along the Z-axis and connected to the first channel 122. Meanwhile, the lead screw guide 140 is located in the first channel 122 and the second channel 132, wherein the second guiding member 130 may include two plates 130a and 130b movably coupled to the first guiding member 120. The two plates 130a and 130b are opposite to each other and spaced apart by a distance to construct the second channel 132. Specifically, the plate 130a is coupled to the plate 120a, and the plate 130b is coupled to the plate 120b, such that the first channel 122 and the second channel 132 are connected to each other. In such manner, the first guiding member 120 and the second guiding member 130 provide the first channel 122 and the second channel 132 as an accommodating space and moving path for the lead screw guide 140, so that the lead screw guide 140 may move relative to the base 110 in the first channel 122 and the second channel 132 along the Z-axis. In addition, the second guiding member 130 may move relative to the base 110 in the first channel 122 along the Z-axis.
Furthermore, in the embodiment, the second guiding member 130 further includes a pair of first guiding tracks 134 (
Likewise, the lead screw guide 140 in the embodiment may be movably coupled to the second guiding member 130 via the above means. Specifically, in the embodiment, the second guiding member 130 further includes a pair of second guiding tracks 136 (
In light of the above, in the embodiment, the first guiding member 120 is fixed on the base 110. The second guiding member 130 may move relative to the first guiding member 120 and the base 110 along the Z-axis via the embedding relation between the first guiding tracks 134 and the first guiding posts. The lead screw guide 140 may move relative to the second guiding member 130, the first guiding member 120 and the base 110 along the Z-axis via the embedding relation between the second guiding posts 146 and the second guiding tracks 136. When the lead screw guide 140 moves relative to the base 110, the guiding end 144 of the lead screw guide 140 moves along the Z-axis by being guided via the second guiding member 130 and the first guiding member 120. Besides, the pressing end 142 of the lead screw guide 140 moves away from or closer to the bottom of the base 110, so as to move correspondingly closer or away from the printing unit 54 under the lead screw guide assembly 100.
Thereafter, when the 3D printing apparatus 50 is in the operating state, the lead screw guide 140 of the lead screw guide assembly 100 is driven by the linear motor 114 (shown by
Meanwhile, in the embodiment, when the lead screw guide 140 in the above-mentioned state moves relative to the base 110 along the Z-axis and causes the pressing end 142 to move away from the base 110, the lead screw guide 140 actually moves relative to the base 110 by being guided via the second guiding member 130 and the first guiding member 120. The guiding end 144 of the lead screw guide 140 moves downward relative to the second guiding member 130 first along the Z-axis via the embedding relation between the second guiding posts 146 and the second guiding tracks 136. After the guiding end 144 of the lead screw guide 140 moves to the bottom of the second guiding member 130, the lead screw guide 140 drives the second guiding member 130 to move downward relative to the first guiding member 120 along the Z-axis via the embedding relation between the first guiding tracks 134 and the first guiding posts, so that the lead screw guide 140 continually moves downward relative to the base 110 along the Z-axis. In the process, the second guiding member 130 and the guiding end 144 continually move downward toward the first guiding member 120 along the Z-axis, and then hide in the first channel 122 of the first guiding member 120. However, in the other embodiments, the second guiding member 130 may move toward the first guiding member 120 by being driven via the lead screw guide 140 when the guiding end 144 of the lead screw guide 140 moves to the middle of the second guiding member 130, which should not be construed as a limitation to the invention.
As indicated above, when the 3D printing apparatus 50 is in the operating state, the 3D printing apparatus 50 uses the lead screw assembly guide 100 to drive the printing unit 54 to perform printing in the actuation manner described above, as shown by
Likewise, when the 3D printing apparatus 50 needs to replace the barrel 54a, the lead screw guide 140 of the lead screw guide assembly 100 may move upward relative to the base 110 along the Z-axis, so that the pressing end 142 of the lead screw guide 140 moves away from the printing unit 54 and returns to the bottom of the base 110. In that case, a suitable distance can be kept between the pressing end 142 and the moving rack 54b, such that the barrel 54a can be easily retrieved from the moving rack 54b and another barrel 54b can be easily disposed on the moving rack 54b. At this time, the guiding end 144 of the lead screw guide 140 moves upward along the Z-axis away from the top portion of the base 110. When the guiding end 144 moves to the top portion of the first guiding member 120, the second guiding member 130 may move upward relative to the first guiding member 120 along the Z-axis to extend out of the first channel 122 as shown by
As indicated above, in the lead screw guide assembly and 3D printing apparatus of the invention, the lead screw guide is movably disposed on the base and coupled to the second guiding member. The second guiding member is movably coupled to the first guiding member and adaptable for moving relative to the first guiding member. In such manner, when the 3D printing apparatus is in the operating state, the lead screw guide that is coupled to the second guiding member may move relative to the base and drive the second guiding member to move and hide in the first channel or protrude from the first channel. Accordingly, when the 3D printing apparatus is in the transporting state in which the lead screw guide assembly does not actuate, the overall height of the lead screw guide assembly can be reduced. Therefore, the housing adopted by the 3D printing apparatus does not need to have an additional operating space reserved for the lead screw guide assembly. In other words, the two retractable guiding members used by the lead screw guide assembly replace conventional one-piece guiding member, so as to reduce the space required for the lead screw guide assembly. In such configuration, the lead screw guide assembly and the 3D printing apparatus of the invention can reduce the space required for the 3D printing apparatus.
Finally, it should be indicated that the above-mentioned embodiments are provided only to exemplify the technical solution of the invention rather than to be restrictive to the invention. Although the invention has been disclosed by the above embodiments, the embodiments are not intended to limit the invention. It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosed embodiments without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the invention cover modifications and variations of this invention provided they fall in the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0729405 | Dec 2014 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5290503 | Katayama | Mar 1994 | A |
5902611 | Stegmaier | May 1999 | A |
6572362 | Boyd | Jun 2003 | B2 |
7114940 | Ickinger | Oct 2006 | B2 |
7798798 | Boyd | Sep 2010 | B2 |
7819655 | Schulz | Oct 2010 | B2 |
20030026866 | Boyd | Feb 2003 | A1 |
20080174048 | Boyd et al. | Jul 2008 | A1 |
20090297655 | Schulz | Dec 2009 | A1 |
20120251689 | Batchelder | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
I433747 | Apr 2014 | TW |
Entry |
---|
“Office Action of China Counterpart Application,” dated Aug. 8, 2017, p. 1-p. 8. |
Number | Date | Country | |
---|---|---|---|
20160159008 A1 | Jun 2016 | US |