The invention relates to a system for moving a component part of a motor vehicle. In particular, the invention relates to a regulator used to selectively provide access to an enclosure of a motor vehicle.
Doors of motor vehicles are designed to withstand a hostile environment. The doors have to endure the environment created by the operation of the motor vehicle. And the doors have to be designed to tolerate abrupt movement and jarring engagement with the motor vehicle as they are being closed.
These requirements that the door must withstand result in the design of doors that are heavy and durable. The added weight in the doors due to these design parameters affect the operability of the doors as well as the fuel efficiency of the motor vehicle.
One of the systems found within the door of a motor vehicle is the window regulator. The window regulator must move a window between its open and closed positions. The window regulator must be strong to move the window glass and robust enough to survive the harsh environment of the door. Typically, these parameters result in a window regulator that is large, heavy and powerful. There is a desire to design a window regulator that is strong and powerful, yet lighter in weight and smaller in size.
A window-regulating assembly selectively moves a window of a vehicle door between an open position and a closed position. The window-regulating assembly includes a rail that is fixedly secured to the vehicle door. The rail extends through a radius of curvature. A lift plate is slidably engaged with the rail. The lift plate is also secured to the window. The lift plate moves the window between the open and closed positions. A lead screw is secured to the rail. The lift plate travels along the lead screw to move the window between the open and closed positions. A drive motor is secured to the lift plate. The drive motor receives electrical energy and converts the electrical energy into a selectively bidirectional rotational force to drive the lift plate over the lead screw. A pivot mount extends between the drive motor and the lift plate allowing the drive motor to move through the radius of curvature as the lift plate slides along the rail.
Advantages of the invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Referring to the Figures, wherein like primed reference characters represent similar elements through the different embodiments, a window-regulating assembly is generally indicated at 10. The window-regulating assembly 10 is used in a vehicle door 12 that has a window 14. The window-regulating assembly 10 moves the window 14 between an open position and a closed position. The window 14 slides between these position and does not pivot. While the vehicle door 12 is shown with a frame 16 defining the opening that the window 14 may close, it should be appreciated by those skilled in the art that the vehicle door 12 may not include a frame 16.
The window-regulating assembly 10 includes a rail 18. The rail 18 extends between a top end 20 and a bottom end 22. The top end 20 is spaced apart from an upper edge 24 of a door body 26. The bottom end 22 is disposed adjacent a lower edge 28 of the door body 26.
Referring specifically to
A lift plate 36 slidingly engages the rail 18. The lift plate 36 includes a slide portion 38 and a mount portion 40. The slide portion 38 defines channels 42 that engage the rail 118. The mount portion 40 extends perpendicularly to the slide portion 38. The mount portion 40 receives the window 14 thereon. The window 14 is mounted to the mount portion 40.
A lead screw 44 is secured to the rail 18. The lift plate 36 travels along the lead screw 44 to move the window 14 between its open and closed positions. The lead screw 44 does not rotate. A rotating nut 45 rotates over the lead screw. The rotating nut 45 will be described in greater detail subsequently.
The window-regulating assembly 10 also includes a drive motor 46. The drive motor 46 receives electrical energy and converts the electrical energy into a selectively bidirectional rotational force. The rotational force drives the lift plate 36 over the lead screw 44. The drive motor 46 is mounted to the mount portion 40 of the lift plate 36. Therefore, the drive motor 46 moves as the lift plate 36 moves along the rail 18.
The drive motor 46 is mounted to the mounting portion 40 via a motor bracket 48. The motor bracket 48 is pivotally secured to the mount portion 40 of the lift plate 36. A pivot mount 50, including pivot pins 52 (one shown), defines the axis about which the drive motor 46 and motor bracket 48 pivot. The pivot pins 52 are located along the motor bracket 48 at a location that identifies the center of mass for the drive motor 46. This location of the pivot pins 52 minimizes the forces required to pivot the drive motor 46 through the radius of curvature as the lift plate 36 slides along the rail 18.
The motor bracket 48 houses a transmission 54 within a transmission housing 56. The transmission 54 extends between the drive motor 46 and the lead screw 44 to translate the rotational force generated by the drive motor 46 into a linear force directed along the lead screw 44 to move the lift plate 36 and the window 14 through the curvilinear path defined by the radius of curvature 34. As is shown in
The transmission 54 may include a belt having a width of 3-6 mm in the tooth pitch of approximately 2 mm. The belt drives the rotating nut 45 that engages threads 47 of the lead screw 44. The transmission 54 defines a drive ratio of approximately 1:2 from the drive motor 46 to the nut.
Referring to
Stops 66 at both ends 58, 62 of the lead screw 44 are employed to ensure the drive motor 46 does not rotate beyond the prescribed travel path of the window 14. In
Referring specifically to
The curved lead screw 44′ is designed to have a radius of curvature equal to the radius of curvature of the glass window 14′. The lead screw 44′ is fixed at both ends 58′, 62′ with a fore-aft degree of freedom using keyhole slots in the upper 30′ and lower 32′ brackets. An advantage of the curved lead screw 44′ is that it can be used with steeper glass curvatures and longer travels since cross-car packaging constraints are minimized.
The invention has been described in an illustrative manner. It is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the invention may be practiced other than as specifically described.
This application claims the benefit of Provisional application Ser. No. 60/384,741, filed May 30, 2002.
Number | Name | Date | Kind |
---|---|---|---|
2336530 | Chandler et al. | Dec 1943 | A |
4074463 | Colanzi | Feb 1978 | A |
4167834 | Pickles | Sep 1979 | A |
4170877 | Pickering | Oct 1979 | A |
4182078 | Bartholomew | Jan 1980 | A |
4389818 | Sakamoto | Jun 1983 | A |
4433508 | Carletta | Feb 1984 | A |
4908988 | Yamamura et al. | Mar 1990 | A |
4967510 | Torii et al. | Nov 1990 | A |
4991348 | Yamamura et al. | Feb 1991 | A |
5012613 | Sekine | May 1991 | A |
5309677 | Kunert et al. | May 1994 | A |
5537782 | Klippert et al. | Jul 1996 | A |
5806244 | Tilli | Sep 1998 | A |
6216394 | Fenelon | Apr 2001 | B1 |
6430874 | Korte | Aug 2002 | B1 |
6655089 | Le Gallo | Dec 2003 | B2 |
6655092 | Pacella et al. | Dec 2003 | B2 |
20020007599 | Pacella et al. | Jan 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040045221 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
60384741 | May 2002 | US |