Leadless cardiac pacemaker configured for over the wire delivery

Information

  • Patent Grant
  • 10668294
  • Patent Number
    10,668,294
  • Date Filed
    Monday, May 8, 2017
    8 years ago
  • Date Issued
    Tuesday, June 2, 2020
    5 years ago
Abstract
Implantable medical devices such as leadless cardiac pacemakers (LCP) may be configured to be delivered to a target location within the heart over a guide wire. In some cases, using a guide wire for delivery facilitates placement of devices in regions not otherwise easily reached. An LCP may include a housing and a wire lumen disposed relative to the housing. The wire lumen may be configured to allow the LCP to slide over a guide wire. In some cases, the guide wire may include a guide wire electrode that may be used to test potential implantation sites.
Description
TECHNICAL FIELD

The disclosure relates generally to implantable medical devices, and more particularly to implantable medical devices such as leadless cardiac pacemakers.


BACKGROUND

Implantable medical devices are commonly used today to monitor a patient and/or deliver therapy to a patient. For example, implantable sensors are often used to monitor one or more physiological parameters of a patient, such as heart beats, heart sounds, ECG, respiration, etc. In another example, pacing devices are often used to treat patients suffering from various heart conditions that may result in a reduced ability of the heart to deliver sufficient amounts of blood to a patient's body. Such heart conditions may lead to slow, rapid, irregular, and/or inefficient heart contractions. To help alleviate some of these conditions, various medical devices (e.g., pacemakers, defibrillators, etc.) can be implanted in a patient's body. Such devices may monitor and in some cases provide electrical stimulation to the heart to help the heart operate in a more normal, efficient and/or safe manner. Under some circumstances, it can be beneficial to sense and/or pace two or more chambers of the heart.


SUMMARY

This disclosure relates generally to implantable medical devices, and relates more particularly to implantable medical devices such as leadless cardiac pacemakers. In some cases, an implantable medical device may be configured to be delivered to a target location within the heart over a guide wire. In some cases, using a guide wire for delivery facilitates placement of such implantable medical devices in regions that are not otherwise easily reached.


In an example of the disclosure, a leadless cardiac pacemaker (LCP) is configured for pacing a patient's heart from within a chamber of the patient's heart. The LCP may be configured for delivery to an implantation site within the patient's heart over an elongated guide wire. The illustrative LCP may include a housing that is configured to be positioned within the chamber of the patient's heart proximate a chamber wall once implanted. Circuitry may be disposed within the housing and operatively coupled to an internal power source. An electrode may be fixed relative to the housing and may be positioned to contact the chamber wall once the LCP is implanted. The circuitry may be configured to pace the patient's heart via the electrode. A wire lumen may be configured to permit the LCP to slide over an elongated guide wire to the implantation site. The illustrative LCP may further include a fixation element for extending into the chamber wall at the implantation site to fix the LCP relative to the chamber wall at the implantation site. The fixation element may be fixed to the LCP and delivered along with the LCP to the implantation site.


Alternatively or additionally to the illustrative embodiment above, the fixation element may be configured to engage the chamber wall once the LCP is at the implantation site and to fix the LCP relative to the chamber wall with the electrode of the LCP in contact with the chamber wall.


Alternatively or additionally to any of the embodiments above, the fixation element may include a helical screw.


Alternatively or additionally to any of the embodiments above, the helical screw may be secured relative to the housing via threads, and the helical screw may be advanced distally relative to the housing by rotating the helical screw relative to the housing.


Alternatively or additionally to any of the embodiments above, the helical screw may be rotated relative to the housing by an LCP pusher that is configured to push the LCP along the elongated guide wire and also rotate the helical screw relative to the housing.


Alternatively or additionally to any of the embodiments above, the fixation element may include one or more tines.


Alternatively or additionally to any of the embodiments above, the one or more tines may be configured to extend distally of the housing and bend outward. In some cases, the one or more tines may be confined by a LCP delivery sheath that extends over the LCP and the one or more tines while the LCP is delivered along the elongated guide wire to the implantation site. In some instances, the one or more tines may be configured to extend into the chamber wall and bend outward when the LCP is pushed out of the LCP delivery sheath at the implantation site.


Alternatively or additionally to any of the embodiments above, the wire lumen may extend concentrically through the LCP along a longitudinal axis of the LCP. In other instances, the LCP may further include a tubular structure secured relative to an outer surface of the housing, wherein the tubular structure forms the wire lumen.


Alternatively or additionally to any of the embodiments above, the electrode may be a right ventricle (RV) electrode, and the LCP may further include an LV electrode support extending distally away from the housing. In some cases, the LV electrode support may include two or more LV electrodes each spaced at a different distance distally from the housing. The two or more LV electrodes may be operatively coupled to the circuitry of the LCP and each may be independently selectable by the circuitry of the LCP. The circuitry may be configured to pace the right ventricle (RV) of the patient's heart via the RV electrode and to pace the left ventricle (LV) of the patient's heart via one or more of the LV electrodes.


In another example of the disclosure, a system for delivering a leadless cardiac pacemaker (LCP) to an implantation site within a chamber of a patient's heart is disclosed. The illustrative system may include an elongated guide wire configured to extend transvascularly to within the chamber of the patient's heart and to the implantation site. The elongated guide wire may include a guide wire electrode at or near its distal end that is usable to test suitability of the implantation site. The illustrative system may further include an LCP that has a housing configured to be positioned within the chamber of the patient's heart proximate a chamber wall once implanted. A power source may be disposed within the housing of the LCP. Circuitry may be disposed within the housing and may be operably coupled to the power source. One or more electrodes may be disposed relative to the housing and positioned to contact the chamber wall once the LCP has been implanted. The circuitry may be configured to pace the patient's heart via the one or more electrodes. The LCP may include a wire lumen configured to permit the LCP to slide over the elongated guide wire to the implantation site, and may further include a fixation element for extending into the chamber wall at the implantation site to fix the LCP relative to the chamber wall at the implantation site. In some cases, the fixation element may be fixed to the LCP and delivered along with the LCP to the implantation site.


Alternatively or additionally to any of the embodiments above, the elongated guide wire is configured to pierce at least partially through the chamber wall at the implantation site with at least part of or the entire guide wire electrode positioned inside of the chamber wall.


Alternatively or additionally to any of the embodiments above, the elongated guide wire may further includes a fixation element for fixing the elongated guide wire to the chamber wall.


Alternatively or additionally to the above embodiment, the fixation element of the elongated guide wire may include a fixation helix, and the guide wire electrode may be disposed proximate a distal end of the fixation helix.


Alternatively or additionally to any of the embodiments above, the wire lumen of the LCP may be configured to be engageable with the elongated guide wire in order to utilize the guide wire electrode of the elongated guide wire as one of the one or more electrodes of the LCP. In some cases, a proximal portion of the elongated guide wire extending proximally from the housing may be subsequently separatable from a distal portion of the guide wire and may be withdrawn from the patient's heart.


Alternatively or additionally to any of the embodiments above, the wire lumen of the LCP may be configured to frictionally engage the elongated guide wire in order to electrically couple and mechanically secure the LCP to the elongated guide wire during implantation.


Alternatively or additionally to any of the embodiments above, the wire lumen of the LCP may include a threaded section that is configured to engage a corresponding threaded section on the elongated guide wire in order to electrically couple and mechanically secure the LCP to the elongated guide wire during implantation.


In another example of the disclosure, a trans-septal implantable medical device (IMD) is configured for deployment within a patient's heart, adjacent a septum within the patient's heart, for pacing and/or sensing the patient's heart. The trans-septal IMD may be configured for delivery over an elongated guide wire and may include a housing that is configured to be positioned adjacent a first side of the septum once implanted. A power source may be disposed within the housing. Circuitry may be disposed within the housing and operably coupled to the power source. A first electrode may be disposed relative to the housing and positioned to contact the first side of the septum. A second electrode may be configured to extend from the housing and into or through the septum once the trans-septal IMD is implanted. The circuitry may be configured to pace the patient's heart and/or sense electrical activity of the patient's heart via the first electrode and the second electrode, and in some cases, may be configured to separately pace and/or sense each of two or more the heart chambers defined by the septum. The septum may be, for example, the ventricle-ventricle septum separating the right and left ventricle chambers, the atrial-atrial septum separating the right and left atrial chambers, or the atrium-ventricle septum separating the right atrial and the left ventricle chambers. The housing may define a wire lumen that is configured to permit the trans-septal IMD to be delivered to a position proximate the septum over an elongated guide wire. A fixation element may be operable to fixate the trans-septal IMD relative to the septum. In some cases, the fixation element may be fixed to the LCP and delivered along with the LCP to the implantation site, but this is not required.


The above summary is not intended to describe each and every disclosed embodiment or every implementation of the present disclosure. The Figures and Description which follow more particularly exemplify these and other illustrative embodiments.





BRIEF DESCRIPTION OF THE FIGURES

The disclosure may be more completely understood in consideration of the following description in connection with the accompanying drawings, in which:



FIG. 1 is a schematic illustration of the lower portion of a human heart, referencing a right ventricle (RV), a left ventricle (LV) and the ventricular septum therebetween;



FIG. 2 is a schematic diagram of an illustrative implantable medical device (IMD) that may be delivered over a wire and disposed relative to the ventricular septum or other septum of a patient's heart;



FIG. 3 is a schematic diagram of an illustrative IMD that may be delivered over a wire and disposed relative to the ventricular or other septum with a portion of the IMD penetrating into the ventricular or other septum;



FIG. 4 is an enlarged view of the LV electrode support of the IMD of FIG. 3;



FIG. 5 is a schematic diagram of an illustrative IMD that may be delivered over a guide wire and disposed relative to the ventricular or other septum with a portion of the IMD penetrating into the ventricular or other septum;



FIG. 6 is an enlarged view of the fixation element of the IMD of FIG. 5;



FIG. 7 is a schematic diagram of an illustrative IMD housing that may be delivered over a guide wire;



FIG. 8 is a schematic diagram of another illustrative IMD housing that may be delivered over a guide wire;



FIG. 9 is a schematic diagram of another illustrative IMD housing that may be delivered over a guide wire;



FIG. 10 is a schematic diagram of another illustrative 1 MB housing that may be delivered over a guide wire:



FIG. 11 is a schematic diagram of the illustrative 1 MB of FIG. 10 disposed within a delivery sheath;



FIG. 12 is a schematic diagram of an illustrative delivery system including an IMD disposed on a guide wire that has a distally-disposed guide wire electrode;



FIG. 13 is a schematic diagram showing a distal portion of an 1 MB disposed on a guide wire that has a distally-disposed guide wire electrode;



FIG. 14 is a schematic diagram showing an illustrative 1 MB disposed on a guide wire that has a distally-disposed guide wire electrode, where the guide wire provides a threaded engagement with the IMD;



FIG. 15 is a schematic diagram showing an illustrative 1 MB disposed on a guide wire, where the guide wire provides a frictional engagement with the IMD;



FIG. 16 is a schematic block diagram of an illustrative leadless cardiac pacemaker (LCP), which may be considered as being an example of one of the IMDs of FIGS. 2 through 15; and



FIGS. 17 through 21 show an illustrative but non-limiting example of delivering and deploying an LCP over a guide wire.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DESCRIPTION

For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.


The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include one or more particular features, structures, and/or characteristics. However, such recitations do not necessarily mean that all embodiments include the particular features, structures, and/or characteristics. Additionally, when particular features, structures, and/or characteristics are described in connection with one embodiment, it should be understood that such features, structures, and/or characteristics may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contrary.


The following description should be read with reference to the drawings in which similar structures in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.



FIG. 1 is a schematic illustration of a lower portion of a human heart H. The heart H includes an RV (right ventricle) and an LV (left ventricle). A ventricular septum 10 separates the RV and the LV. While the heart H also includes, for example, an atrial septum between the right atrium and the left atrium, and an atrioventricular septum between the right atrium and the left ventricular, for simplicity the conversation is centered on the ventricular septum 10. The ventricular septum 10 may be considered as having an RV facing side 12 and an LV facing side 14.


It is known that the ventricular septum 10 includes conduction pathways that are involved in causing contractions in the RV and the LV. In some cases, reaching the RV through the vasculature, such as through the superior vena cava or the inferior vena cava and through the right atrium (not illustrated), may be easier than reaching the LV in an intravascular approach. In some cases, debris may be formed within the heart H as a result of placing and manipulating implantable devices within the heart H. In some cases, debris within the RV may be less problematic for the patient than debris within the LV, as debris within the RV may pass into the patient's lungs which can act as a filter while potential debris within the LV may pass directly into the patient's brain, potentially causing a stroke or other complications. Moreover, in some cases, the presence of a significant foreign object (e.g. an implantable medical device) within the heart H may cause tissue ingrowth and/or clotting to occur as a result of the body's natural response to the presence of the foreign body. Such clots, if released, are less of a concern in the RV than the LV.


In some instances, an Implantable Medical Device (IMD) such as, but not limited to, a Leadless Cardiac Pacemaker (LCP) may be configured to be deployed within the RV, next to or proximate the RV facing side 12 of the ventricular septum 10. A portion of the IMD or LCP may, for example, extend partially into the ventricular septum 10, or even completely through the ventricular septum 10, in order to place one or more electrodes in position to capture the aforementioned conduction pathways through the ventricular septum 10 that control the contraction of the LV, or to otherwise sense or pace within the LV. It will be appreciated that in some cases, the portion or portions of the IMD or LCP that penetrate into the LV may be minimized in size in order to minimize the body's natural response to such a foreign body. In some cases, the portion or portions of the IMD or LCP that penetrate into the LV, and in some instances even the portion or portions of the IMD or LCP that remain within the RV, may be coated with or otherwise include one or more anticoagulant materials.



FIG. 2 is a highly schematic diagram of an illustrative IMD 20 that may be utilized within the heart H. In some cases, the IMD 20 may be configured to be deployed proximate the RV facing side 12 of the ventricular septum 10, but this is merely illustrative. In some cases, the IMD 20 may include a housing 22 that is configured to be disposed at least partially within the RV, next to or proximate the RV facing side 12 of the ventricular septum 10, for example. A power source 24 may be disposed within the housing 22. In some cases, the power source 24 may be a battery. In some instances, the power source 24 may be a rechargeable power source, such as a rechargeable battery, a capacitor such as a super-capacitor and/or any other suitable rechargeable power source. Circuitry 26 may be disposed within the housing 22 and may be operatively coupled to the power source 24 such that the power source 24 can power operation of the circuitry 26. In some cases, if the power source 24 is rechargeable, the circuitry 26 may also regulate recharging operations of the power source 24. In some cases, the circuitry 26 may include or be coupled to an antenna, inductive loop and/or other energy receiving element for wirelessly receiving energy to recharge the battery.


The circuitry 26 may be operably coupled with one or more electrodes that are configured to provide pacing pulses to cardiac tissue and/or to sense electrical activity within the cardiac tissue. In some cases, for example, the IMD 20 may include two or more of electrode 28a, an electrode 28b and/or an electrode 28c. In some cases, the IMD 20 may include additional electrodes. In some cases, one or more of the electrodes 28a, 28b, 28c may be disposed relative to the housing 22 such that one or more of the electrodes 28a, 28b, 28c may contact tissue, such as but not limited to the RV facing side 12 of the ventricular septum 10 (FIG. 1) and thus may function as an RV electrode. In some cases, one or more of the electrodes 28a, 28b, 28c may function as an anode, and one or more of the electrodes 28a, 28b, 28c may function as a cathode.


In the example shown, a wire lumen 30 extends through the housing or body 22 from a first lumen end 30a to a second lumen end 30b. The wire lumen 30 may be configured to permit the IMD 20 to be advanced over a guide wire. In some cases, the wire lumen 30 may pass through a center of the housing 22, as will be discussed for example with respect to FIG. 7. In some cases, the wire lumen 30 may be offset from the center or longitudinal axis of the housing 22. In some instances, the wire lumen 30 may extend through a tube or other structure mounted to an exterior of the housing 22, as will be discussed for example with respect to FIG. 8.


In some cases, the IMD 20 may be configured to engage the guide wire in order to secure the IMD 20 in place relative to the guide wire. In some cases, for example, a distal portion of the guide wire may be used by the IMD 20 as an electrode after implantation. In one example, a threaded engagement may be used, as will be discussed in greater detail with respect to FIG. 14. A frictional engagement mechanism will be discussed in greater detail with respect to FIG. 15.


In some cases, as will be discussed, being able to deliver the IMD 20 over a guide wire may facilitate placement of the IMD 20 in particular locations within the heart H that may otherwise be difficult to reach via traditional delivery methods such as placing the IMD 20 in a distal cavity or sheath of a catheter-based delivery system. In some cases, as will be discussed, the guide wire itself may be configured to permit use of the guide wire in testing possible implantation sites for suitable capture and other desired electrical properties. For example, the guide wire may include one or more electrodes at or near its distal end. If more than one electrode is provided, each electrode may be separately addressable. Such electrode(s) may be used, for example, to test various locations on the chamber wall (such as but not limited to the ventricular septum 10 (FIG. 1)) capture and other desired electrical properties. In some cases, particularly if there are multiple addressable electrodes disposed at different spaced locations along the length of the distal end of the guide wire, the addressable electrodes may be used to test for capture and other properties at different depths within the ventricular septum 10, including the capture threshold of the LV.


The illustrative IMD 20 includes a fixation element 32 that may be configured to extend into a heart chamber wall in order to secure the IMD 20 relative to the chamber wall at a desired implantation site. The fixation element 32 is fixed or secured to the IMD 20, and in some cases is delivered to the implantation site with the IMD 20. In some instances, the fixation element 32 may be configured to engage the chamber wall (such as the ventricular septum 10) once the IMD 20 is at the implantation site, and to fix the IMD 20 relative to the chamber wall with one or more of the electrodes 28a, 28b, 28c (or others) in contact with the chamber wall.


In some cases, the fixation element 32 may include one or more tines that are configured to extend distally from the IMD 20 and engage cardiac tissue. In some cases, the tines may be movable between a straight configuration for delivery and extending into the cardiac tissue and a curved or hooked configuration for securing the IMD 20 relative to the cardiac tissue, as will be discussed further with respect to FIGS. 10 and 11. In some cases, the fixation element 32 includes a helical screw, as will be discussed further with respect to FIGS. 9 and 13.



FIG. 3 is a highly schematic diagram of an illustrative IMD 34 that may be utilized within the heart H. In some cases, the IMD 34 may be configured to be deployed proximate the RV facing side 12 of the ventricular septum 10, but this is merely illustrative. In some cases, the IMD 34 may include a housing 22 that is configured to be disposed at least partially within the RV, next to or proximate the RV facing side 12 of the ventricular septum 10, for example. The IMD 34 may be similar in structure to the IMD 20 (FIG. 2), but further includes an LV electrode support 36 that extends distally from the housing 22, and in some cases, may be configured to extend into and/or through the ventricular septum 10 (FIG. 1) in order to reach at or near the LV facing side 14 of the ventricular septum 10.


In the example shown, the LV electrode support 36 may include an LV electrode 36a and an LV electrode 36b. In some cases, there may only be one LV electrode. In some cases, there may be additional LV electrodes. In some cases, the LV electrodes 36a, 36b are individually addressable by the circuitry 26 and may, in some cases, be spaced at different distances distally from the housing 22. The LV electrodes 36a, 36b may be positioned relative to the LV electrode support 36 to place one or both of the LV electrodes 36a, 36b within the ventricular septum 10. In some cases, the LV electrodes 36a, 36b may be positioned relative to the LV electrode support 36 to place one or both of the LV electrodes 36a, 36b on the LV facing side 14 of the ventricular septum 10. In some cases, the LV electrode 36a and the LV electrode 36b are operably coupled with the circuitry 26. In some cases, as shown for example in FIG. 4, an electrical connection 38a extends from the LV electrode 36a to the circuitry 26, and an electrical connection 38b extends from the LV electrode 36b to the circuitry 26. It will be appreciated that one or more of the electrodes 28a, 28b, 28c may function as an RV electrode. In some cases, the circuitry 26 may pace the right ventricle RV of the heart H via one or more of the electrodes 28a, 28b, 28c, and may pace the left ventricle LV of the heart H via one or more of the LV electrodes 36a, 36b.



FIG. 5 is a highly schematic diagram of an illustrative IMD 40 that may be utilized within the heart H. In some cases, the IMD 40 may be configured to be deployed proximate the RV facing side 12 of the ventricular septum 10, but this is merely illustrative. In some cases, the IMD 40 may include a housing 22 that is configured to be disposed at least partially within the RV, next to or proximate the RV facing side 12 of the ventricular septum 10, for example. The IMD 34 may be similar in structure to the IMD 20 (FIG. 2), but includes a fixation element 42 that extends distally from the housing 22 and that may be configured to extend into and/or through the ventricular septum 10 (FIG. 1) in order to anchor the IMD 40 as well as to reach at or near the LV facing side 14 of the ventricular septum 10. In some cases, as illustrated, the fixation element 42 may include one or more LV electrodes.


In FIG. 5, the fixation element 42 may include an LV electrode 42a and an LV electrode 42b. In some cases, there may only be one LV electrode. In some cases there may be additional LV electrodes. In some cases, the LV electrodes 42a, 42b may be individually addressable by the circuitry 26 and may, in some cases, be spaced different distances distally from the housing 22. The LV electrodes 42a, 42b may be positioned relative to the fixation element 42 to place one or both of the LV electrodes 42a, 42b within the ventricular septum 10. In some cases, the LV electrodes 42a, 42b may be positioned relative to the fixation element 42 to place one or both of the LV electrodes 42a, 42b on the LV facing side 14 of the ventricular septum 10. In some cases, the LV electrode 42a and the LV electrode 42b are operably coupled with the circuitry 26. In some cases, as shown for example in FIG. 6, an electrical connection 44a may extend from the LV electrode 42a to the circuitry 26 and an electrical connection 44b may extend from the LV electrode 42b to the circuitry 26. It will be appreciated that one or more of the electrodes 28a, 28b, 28c may function as an RV electrode. In some cases, the circuitry 26 may pace the right ventricle RV of the heart H via one or more of the electrodes 28a, 28b, 28c, and may pace the left ventricle LV of the heart H via one or more of the LV electrodes 42a, 42b.


As referenced above, a wire lumen 30 may extend through the housing 22. The wire lumen 30 may take a variety of forms. For example, FIG. 7 shows an IMD 48 including a housing 50 that extends from a first end 50a to a second end 50b. A wire lumen 52 is shown extending through the housing 50 from the first end 50a to the second end 50b. In some cases, as illustrated, the wire lumen 52 is concentric with the housing 50, and the wire lumen 52 traverses along a longitudinal axis 54 of the housing 50. In other cases, the wire lumen 52 may be parallel with the longitudinal axis 54 but radially offset from the longitudinal axis 54. In some cases, as shown in FIG. 8 for example, an IMD 56 may include a tubular structure 58 that is secured to an outer surface 50c of the housing 50. As illustrated, the tubular structure 58 extends from the first end 50a to the second end 50b of the housing 50. In some cases, the tubular structure 58 may be shorter or longer than the length of the housing 50. The tubular structure 58 defines a wire lumen 60 for receiving a guide wire.



FIG. 9 is a schematic diagram of another IMD 62 that may be deployed within the heart H. The IMD 62 includes a helical screw 64 as a fixation element. In some cases, the helical screw 64 is fixed relative to the housing 50, and may be screwed into cardiac tissue by rotating the entire housing 50. In some instances, the helical screw 64 may be rotatable relative to the housing 50, and may be screwed into cardiac tissue by engaging the helical screw 64 with a tool extending through or around the housing 50. The helical screw 64 may be aligned with the longitudinal axis 54 and a wire lumen 51 may be radially offset (not shown) from the longitudinal axis 54. In some cases, the helical screw 64 may be aligned with the longitudinal axis 54 and a wire lumen 51 may extend along the longitudinal axis 54. When so provided, a guide wire passing through the wire lumen 51 may pass through the helical screw 64 as shown in FIG. 13. In some cases, the helical screw 64 may be radially offset from the longitudinal axis 54 while the wire lumen 51 may align with the longitudinal axis 54. In some instances, the helical screw 64 and the wire lumen may both be radially offset from the longitudinal axis 54.



FIG. 10 is a schematic diagram of another illustrative IMD 66 that may be deployed within the heart H. The IMD 66 includes tines 68a and 68b that together function as a fixation element. While two tines 68a, 68b are shown, it will be appreciated that in some cases there may be three, four or more distinct tines. FIG. 11 shows the IMD 66 disposed within a delivery sheath 70 that holds the tines 68a, 68b in a substantially linear or straight configuration that may facilitate being able to penetrate cardiac tissue. In some cases, the curved configuration of the tines 68a, 68b as shown in FIG. 10 represents a relaxed or biased configuration, and the straight configuration shown in FIG. 11 represents a temporarily altered or deformed configuration.



FIG. 12 is a schematic diagram of an illustrative system 70 for delivering an IMD such as an LCP to an implantation site within the heart H. The illustrative system 70 includes an elongated guide wire 72 extending from a proximal end 72a to a distal end 72b. While not illustrated, the proximal end 72a may be configured with equipment that electrically couples with the guide wire 72 and/or with one or electrical conductors extending within the guide wire 72. In some cases, the guide wire 72 may include a guide wire electrode 74 that is located at or near the distal end 72b and that may, for example, be used to test suitability of an implantation site. The guide wire 72 may include an electrical conductor extending within the guidewire 72 and electrically coupled with the guide wire electrode 72. In some cases, the guide wire 72 may include two or more guide wire electrodes 74, each individually addressable and each being spaced at different locations along the length of the distal end of the guide wire 72. In such cases, the guide wire 72 may include several distinct electrical conductors, each electrically isolated from each other and each electrically coupled with a particular guide wire electrode. As a result, it may be possible to sequentially test an implantation site at different relative depths within the ventricular septum 10 (FIG. 1) without having to move the guide wire 72. In some cases, for example, the proximal end 72a of the guidewire 72 may be connected with a PSA or programmer in order to map thresholds and other electrical measurements within the ventricular septum 10 and/or on the LV facing side 14 of the ventricular septum 10 prior to delivering the IMD.


An IMD 76, that may for example represent any of the IMDs discussed here, including but not limited to the IMD 20 (FIG. 2), the IMD 34 (FIG. 3), the IMD 40 (FIG. 5), the IMD 48 (FIG. 7), the IMD 56 (FIG. 8), the IMD 62 (FIG. 9), or the IMD 66 (FIG. 10), may include a wire lumen 78 that enables the IMD 76 to be advanced over the guide wire 72. The IMD 76 may, for example, include any of the components discussed previously with respect to the other IMDs, including internal components, fixation elements, RV and LV electrodes, LV electrode supports, and the like. In some cases, for example as shown in FIG. 13, the wire lumen 78 may be aligned with a fixation helix 64a.


In some cases, the guide wire electrode 74 on the guide wire 72, when provided, may be used not only for testing implantation sites prior to deploying the IMD 76, but may also be used as an electrode for the IMD 76 itself. In some cases, the IMD 76 may be mechanically and/or electrically coupled with the guide wire 72, and a proximal portion of the guide wire 72 may subsequently be removed. In some cases, for example, the guide wire 72 may include a narrowed or otherwise weakened portion that may be severed by applying a particular current to the guide wire 72. In some cases, a tool may be advanced over the guide wire 72 to simply cut off the proximal portion of the guide wire 72. In some cases, a distal region of the guide wire 72 may serve as a fixation element for the IMD 76, particularly if the rest of the guide wire 72 is subsequently separated and removed. FIGS. 14 and 15 provide illustrative but non-limiting ways to mechanically and/or electrically connect the IMD 76 to the guide wire 72.


In FIG. 14, an IMD 80 includes a wire lumen 84a defining a threaded portion 84b. The guide wire 72 includes a corresponding threaded portion 86 that engages the threaded portion 84b of the IMD 80 to provide an adjustable mechanical connection between the IMD 80 and the guide wire 72. In some cases, the threaded portion 84b may be electrically coupled with circuitry within the IMD 80 (such as the circuitry 26), and the threaded portion 86 may similarly be electrically coupled with an electrical connection extending through the guide wire 72 to a guide wire electrode 74. By rotating the guide wire 72 relative to the IMD 80 during implantation, the depth that the guide wire electrode 74 is placed within the septum may be controlled. It is contemplated that the IMD 80 may include a separate fixation element (not shown) to fix the IMD 80 to the septum. Alternatively, or in addition, the distal end of the guide wire 72 may be include a fixation element (e.g. helical screw) that can secure the guide wire 72 and thus the IMD 80 to the septum.



FIG. 15 shows a portion of an illustrative IMD 90 that includes a wire lumen 92 extending through the IMD 90, accommodating a guide wire 72. In some cases, the guide wire 72 may include a more proximal portion 72c having a first diameter and a more distal portion 72d having a second diameter that is greater than the first diameter. In some cases, the wire lumen 92 includes reduced diameter portion 94. In some cases, as the IMD 90 is moved distally relative to the guide wire 72, in a direction indicated by an arrow 96, the reduced diameter portion 94 will bottom out on the larger diameter more distal portion 72d of the guide wire 72. In some cases, this creates a frictional connection between the IMD 90 and the guide wire 72. In some cases, this may also provide an electrical connection between the IMD 90 and the guide wire 72.


Other structures and techniques for forming a mechanical and/or electrical connection between an IMD and the guide wire 72 are contemplated. For example, in some cases, the IMD may include a wire lumen extending therethrough that is adjustable in diameter. Once the IMD is properly positioned, the IMD may simply clamp down onto the guide wire 72, sometimes using a set screw or the like. In some cases, the IMD may include an inflatable portion that can squeeze down onto the guide wire 72. In some cases, the guide wire and the wire lumen of the IMD may provide for a bayonet style connection. These are just examples.



FIG. 16 is a conceptual schematic block diagram of an illustrative IMD, and more specifically a leadless cardiac pacemaker (LCP) that may operate to sense physiological signals and parameters and deliver one or more types of electrical stimulation therapy to the heart of the patient. Example electrical stimulation therapy may include bradycardia pacing, rate responsive pacing therapy, cardiac resynchronization therapy (CRT), anti-tachycardia pacing (ATP) therapy and/or the like. As can be seen in FIG. 16, the LCP 100 may be a compact device with all components housed within the LCP 100 or directly on a housing 120. In some instances, the LCP 100 may include one or more of a communication module 102, a pulse generator module 104, an electrical sensing module 106, a mechanical sensing module 108, a processing module 110, an energy storage module 112, and electrodes 114. The LCP 100 may, for example, be considered as being an example of the IMD 20 (FIG. 2), the IMD 34 (FIG. 3), the IMD 40 (FIG. 5), the IMD 48 (FIG. 7), the IMD 56 (FIG. 8), the IMD 62 (FIG. 9), the IMD 66 (FIG. 10), the IMD 76 (FIG. 12), the IMD 80 (FIG. 14) an/or the IMD 90 (FIG. 15).


As depicted in FIG. 16, the LCP 100 may include electrodes 114, which can be secured relative to the housing 120 and electrically exposed to tissue and/or blood surrounding the LCP 100. The electrodes 114 may generally conduct electrical signals to and from the LCP 100 and the surrounding tissue and/or blood. Such electrical signals can include communication signals, electrical stimulation pulses, and intrinsic cardiac electrical signals, to name a few. Intrinsic cardiac electrical signals may include electrical signals generated by the heart and may be represented by an electrocardiogram (ECG).


The electrodes 114 may include one or more biocompatible conductive materials such as various metals or alloys that are known to be safe for implantation within a human body. In some instances, the electrodes 114 may be generally disposed on either end of the LCP 100 and may be in electrical communication with one or more of modules the 102, 104, 106, 108, and 110. In embodiments where the electrodes 114 are secured directly to the housing 120, an insulative material may electrically isolate the electrodes 114 from adjacent electrodes, the housing 120, and/or other parts of the LCP 100. In some instances, some or all of the electrodes 114 may be spaced from the housing 120 and may be connected to the housing 120 and/or other components of the LCP 100 through connecting wires. In such instances, the electrodes 114 may be placed on a tail (not shown) that extends out away from the housing 120. As shown in FIG. 16, in some embodiments, the LCP 100 may include electrodes 114′. The electrodes 114′ may be in addition to the electrodes 114, or may replace one or more of the electrodes 114. The electrodes 114′ may be similar to the electrodes 114 except that the electrodes 114′ are disposed on the sides of the LCP 100. In some cases, the electrodes 114′ may increase the number of electrodes by which the LCP 100 may deliver communication signals and/or electrical stimulation pulses, and/or may sense intrinsic cardiac electrical signals, communication signals, and/or electrical stimulation pulses.


The electrodes 114 and/or 114′ may assume any of a variety of sizes and/or shapes, and may be spaced at any of a variety of spacings. For example, the electrodes 114 may have an outer diameter of two to twenty millimeters (mm). In other embodiments, the electrodes 114 and/or 114′ may have a diameter of two, three, five, seven millimeters (mm), or any other suitable diameter, dimension and/or shape. Example lengths for the electrodes 114 and/or 114′ may include, for example, one, three, five, ten millimeters (mm), or any other suitable length. As used herein, the length is a dimension of the electrodes 114 and/or 114′ that extends away from the outer surface of the housing 120. In some instances, at least some of the electrodes 114 and/or 114′ may be spaced from one another by a distance of twenty, thirty, forty, fifty millimeters (mm), or any other suitable spacing. The electrodes 114 and/or 114′ of a single device may have different sizes with respect to each other, and the spacing and/or lengths of the electrodes on the device may or may not be uniform.


In some instances, an LV electrode 114″ may also be provided. The LV electrode 114″ may be supported by an LV electrode support 156 that extends away from the housing 120. In some cases, the LV electrode support 156 is configured to place the LV electrode 114″ within the ventricular septum 10, and in electrical communication with conduction pathways extending through the ventricular septum 10 that control the contraction of the LV. In some instances, the LV electrode support 156 may extend entirely through the ventricular septum 10 in order to place an LV electrode 114″ within the LV and in contact with the LV facing side 14 of the ventricular septum 10.


In some cases, a wire lumen 123 may be provided. The wire lumen 123 may take a variety of forms. For example, the wire lumen 123 may extend through the housing of the LCP 100 from the first end to the second end. In some cases, as discussed herein, the wire lumen 123 may be concentric with the housing of the LCP 100, and the wire lumen 123 may traverse along a longitudinal axis of the housing of the LCP 100. In other cases, the wire lumen 123 may be parallel with the longitudinal axis of the LCP 100 but radially offset from the longitudinal axis. In some cases, as shown in FIG. 16 for example, an LCP 100 may include a tubular structure 125 that is secured to an outer surface of the housing of the LCP 100. The tubular structure 125 may define the wire lumen 123 for receiving a guide wire.


In the embodiment shown, the communication module 102 may be electrically coupled to two or more of the electrodes 114, 114′ and/or 114″ and may be configured to deliver communication pulses to tissues of the patient for communicating with other devices such as sensors, programmers, other medical devices, and/or the like. Communication signals, as used herein, may be any modulated signal that conveys information to another device, either by itself or in conjunction with one or more other modulated signals. In some embodiments, communication signals may be limited to sub-threshold signals that do not result in capture of the heart yet still convey information. The communication signals may be delivered to another device that is located either external or internal to the patient's body. In some instances, the communication may take the form of distinct communication pulses separated by various amounts of time. In some of these cases, the timing between successive pulses may convey information. The communication module 102 may additionally be configured to sense for communication signals delivered by other devices, which may be located external or internal to the patient's body.


The communication module 102 may communicate to help accomplish one or more desired functions. Some example functions include delivering sensed data, using communicated data for determining occurrences of events such as arrhythmias, coordinating delivery of electrical stimulation therapy, and/or other functions. In some cases, the LCP 100 may use communication signals to communicate raw information, processed information, messages and/or commands, and/or other data. Raw information may include information such as sensed electrical signals (e.g. a sensed ECG), signals gathered from coupled sensors, and the like. In some embodiments, the processed information may include signals that have been filtered using one or more signal processing techniques. Processed information may also include parameters and/or events that are determined by the LCP 100 and/or another device, such as a determined heart rate, timing of determined heartbeats, timing of other determined events, determinations of threshold crossings, expirations of monitored time periods, accelerometer signals, activity level parameters, blood-oxygen parameters, blood pressure parameters, heart sound parameters, and the like. In some cases, processed information may, for example, be provided by a chemical sensor or an optically interfaced sensor. Messages and/or commands may include instructions or the like directing another device to take action, notifications of imminent actions of the sending device, requests for reading from the receiving device, requests for writing data to the receiving device, information messages, and/or other messages commands.


In at least some embodiments, the communication module 102 (or the LCP 100) may further include switching circuitry to selectively connect one or more of the electrodes 114, 114′ and/or 114″ to the communication module 102 in order to select which of the electrodes 114, 114′ and/or 114″ that the communication module 102 delivers communication pulses with. It is contemplated that the communication module 102 may be communicating with other devices via conducted signals, radio frequency (RF) signals, optical signals, acoustic signals, inductive coupling, and/or any other suitable communication methodology. Where the communication module 102 generates electrical communication signals, the communication module 102 may include one or more capacitor elements and/or other charge storage devices to aid in generating and delivering communication signals. In the embodiment shown, the communication module 102 may use energy stored in the energy storage module 112 to generate the communication signals. In at least some examples, the communication module 102 may include a switching circuit that is connected to the energy storage module 112 and, with the switching circuitry, may connect the energy storage module 112 to one or more of the electrodes 114/114′/114″ to generate the communication signals.


As shown in FIG. 16, a pulse generator module 104 may be electrically connected to one or more of the electrodes 114, 114′ and/or 114″. The pulse generator module 104 may be configured to generate electrical stimulation pulses and deliver the electrical stimulation pulses to tissues of a patient via one or more of the electrodes 114, 114′ and/or 114″ in order to effectuate one or more electrical stimulation therapies. Electrical stimulation pulses as used herein are meant to encompass any electrical signals that may be delivered to tissue of a patient for purposes of treatment of any type of disease or abnormality. For example, when used to treat heart disease, the pulse generator module 104 may generate electrical stimulation pacing pulses for capturing the heart of the patient, i.e. causing the heart to contract in response to the delivered electrical stimulation pulse. In some of these cases, the LCP 100 may vary the rate at which the pulse generator module 104 generates the electrical stimulation pulses, for example in rate adaptive pacing. In other embodiments, the electrical stimulation pulses may include defibrillation/cardioversion pulses for shocking the heart out of fibrillation or into a normal heart rhythm. In yet other embodiments, the electrical stimulation pulses may include anti-tachycardia pacing (ATP) pulses. It should be understood that these are just some examples. The pulse generator module 104 may include one or more capacitor elements and/or other charge storage devices to aid in generating and delivering appropriate electrical stimulation pulses. In at least some embodiments, the pulse generator module 104 may use energy stored in the energy storage module 112 to generate the electrical stimulation pulses. In some particular embodiments, the pulse generator module 104 may include a switching circuit that is connected to the energy storage module 112 and may connect the energy storage module 112 to one or more of the electrodes 114/114′/114″ to generate electrical stimulation pulses. In some cases, the pulse generator module 104 may provide pacing pulses to pace the RV of the heart H using electrode 114, and may provide pacing pulses to the LV of the heart H using electrode 114″. In some cases, the pacing pulses generated for pacing the RV of the heart H by the pulse generator module 104 may be offset in time, have a different duration, have a different amplitude and/or have a different shape from the pacing pulses generated by the pulse generator module 104 for pacing the LV of the heart H, if desired.


The LCP 100 may further include an electrical sensing module 106 and a mechanical sensing module 108. The electrical sensing module 106 may be configured to sense intrinsic cardiac electrical signals conducted from the electrodes 114, 114′ and/or 114″ to the electrical sensing module 106. For example, the electrical sensing module 106 may be electrically connected to one or more of the electrodes 114, 114′ and/or 114″ and the electrical sensing module 106 may be configured to receive cardiac electrical signals conducted through the electrodes 114, 114′ and/or 114″ via a sensor amplifier or the like. In some embodiments, the cardiac electrical signals from electrodes 114 and/or 114′ may represent local information from the RV, while the cardiac electrical signals from LV electrode 114″ may represent local information from the LV of the heart H.


The mechanical sensing module 108 may include, or be electrically connected to, various sensors, such as accelerometers, including multi-axis accelerometers such as two- or three-axis accelerometers, gyroscopes, including multi-axis gyroscopes such as two- or three-axis gyroscopes, blood pressure sensors, heart sound sensors, piezoelectric sensors, blood-oxygen sensors, and/or other sensors which measure one or more physiological parameters of the heart and/or patient. Mechanical sensing module 108, when present, may gather signals from the sensors indicative of the various physiological parameters. The electrical sensing module 106 and the mechanical sensing module 108 may both be connected to the processing module 110 and may provide signals representative of the sensed cardiac electrical signals and/or physiological signals to the processing module 110. Although described with respect to FIG. 16 as separate sensing modules, in some embodiments, the electrical sensing module 106 and the mechanical sensing module 108 may be combined into a single module. In at least some examples, the LCP 100 may only include one of the electrical sensing module 106 and the mechanical sensing module 108. In some cases, any combination of the processing module 110, the electrical sensing module 106, the mechanical sensing module 108, the communication module 102, the pulse generator module 104 and/or the energy storage module may be considered a controller of the LCP 100.


The processing module 110 may be configured to direct the operation of the LCP 100 and may, in some embodiments, be termed a controller. For example, the processing module 110 may be configured to receive cardiac electrical signals from the electrical sensing module 106 and/or physiological signals from the mechanical sensing module 108. Based on the received signals, the processing module 110 may determine, for example, occurrences and types of arrhythmias and other determinations such as whether the LCP 100 has become dislodged. The processing module 110 may further receive information from the communication module 102. In some embodiments, the processing module 110 may additionally use such received information to determine occurrences and types of arrhythmias and/or and other determinations such as whether the LCP 100 has become dislodged. In still some additional embodiments, the LCP 100 may use the received information instead of the signals received from the electrical sensing module 106 and/or the mechanical sensing module 108—for instance if the received information is deemed to be more accurate than the signals received from the electrical sensing module 106 and/or the mechanical sensing module 108 or if the electrical sensing module 106 and/or the mechanical sensing module 108 have been disabled or omitted from the LCP 100.


After determining an occurrence of an arrhythmia, the processing module 110 may control the pulse generator module 104 to generate electrical stimulation pulses in accordance with one or more electrical stimulation therapies to treat the determined arrhythmia. For example, the processing module 110 may control the pulse generator module 104 to generate pacing pulses with varying parameters and in different sequences to effectuate one or more electrical stimulation therapies. As one example, in controlling the pulse generator module 104 to deliver bradycardia pacing therapy, the processing module 110 may control the pulse generator module 104 to deliver pacing pulses designed to capture the heart of the patient at a regular interval to help prevent the heart of a patient from falling below a predetermined threshold. In some cases, the rate of pacing may be increased with an increased activity level of the patient (e.g. rate adaptive pacing). For instance, the processing module 110 may monitor one or more physiological parameters of the patient which may indicate a need for an increased heart rate (e.g. due to increased metabolic demand). The processing module 110 may then increase the rate at which the pulse generator module 104 generates electrical stimulation pulses. Adjusting the rate of delivery of the electrical stimulation pulses based on the one or more physiological parameters may extend the battery life of the LCP 100 by only requiring higher rates of delivery of electrical stimulation pulses when the physiological parameters indicate there is a need for increased cardiac output. Additionally, adjusting the rate of delivery of the electrical stimulation pulses may increase a comfort level of the patient by more closely matching the rate of delivery of electrical stimulation pulses with the cardiac output need of the patient.


For ATP therapy, the processing module 110 may control the pulse generator module 104 to deliver pacing pulses at a rate faster than an intrinsic heart rate of a patient in attempt to force the heart to beat in response to the delivered pacing pulses rather than in response to intrinsic cardiac electrical signals. Once the heart is following the pacing pulses, the processing module 110 may control the pulse generator module 104 to reduce the rate of delivered pacing pulses down to a safer level. In CRT, the processing module 110 may control the pulse generator module 104 to deliver pacing pulses in coordination with another device to cause the heart to contract more efficiently. In cases where the pulse generator module 104 is capable of generating defibrillation and/or cardioversion pulses for defibrillation/cardioversion therapy, the processing module 110 may control the pulse generator module 104 to generate such defibrillation and/or cardioversion pulses. In some cases, the processing module 110 may control the pulse generator module 104 to generate electrical stimulation pulses to provide electrical stimulation therapies different than those examples described above.


Aside from controlling the pulse generator module 104 to generate different types of electrical stimulation pulses and in different sequences, in some embodiments, the processing module 110 may also control the pulse generator module 104 to generate the various electrical stimulation pulses with varying pulse parameters. For example, each electrical stimulation pulse may have a pulse width and a pulse amplitude. The processing module 110 may control the pulse generator module 104 to generate the various electrical stimulation pulses with specific pulse widths and pulse amplitudes. For example, the processing module 110 may cause the pulse generator module 104 to adjust the pulse width and/or the pulse amplitude of electrical stimulation pulses if the electrical stimulation pulses are not effectively capturing the heart (e.g. RV or LV capture). Such control of the specific parameters of the various electrical stimulation pulses may help the LCP 100 provide more effective delivery of electrical stimulation therapy.


In some embodiments, the processing module 110 may further control the communication module 102 to send information to other devices. For example, the processing module 110 may control the communication module 102 to generate one or more communication signals for communicating with other devices of a system of devices. For instance, the processing module 110 may control the communication module 102 to generate communication signals in particular pulse sequences, where the specific sequences convey different information. The communication module 102 may also receive communication signals for potential action by the processing module 110.


In further embodiments, the processing module 110 may control switching circuitry by which the communication module 102 and the pulse generator module 104 deliver communication signals and/or electrical stimulation pulses to tissue of the patient. As described above, both the communication module 102 and the pulse generator module 104 may include circuitry for connecting one or more of the electrodes 114, 114′ and/or 114″ to the communication module 102 and/or the pulse generator module 104 so those modules may deliver the communication signals and electrical stimulation pulses to tissue of the patient. The specific combination of one or more electrodes by which the communication module 102 and/or the pulse generator module 104 deliver communication signals and electrical stimulation pulses may influence the reception of communication signals and/or the effectiveness of electrical stimulation pulses. Although it was described that each of the communication module 102 and the pulse generator module 104 may include switching circuitry, in some embodiments, the LCP 100 may have a single switching module connected to the communication module 102, the pulse generator module 104, and the electrodes 114, 114′ and/or 114″. In such embodiments, processing module 110 may control the switching module to connect the modules 102/104 and the electrodes 114/114′/114″ as appropriate. In some cases, the LV electrode 114″ may also be coupled to the switching module and may be used for communication.


In some embodiments, the processing module 110 may include a pre-programmed chip, such as a very-large-scale integration (VLSI) chip or an application specific integrated circuit (ASIC). In such embodiments, the chip may be pre-programmed with control logic in order to control the operation of the LCP 100. By using a pre-programmed chip, the processing module 110 may use less power than other programmable circuits while able to maintain basic functionality, thereby potentially increasing the battery life of the LCP 100. In other instances, the processing module 110 may include a programmable microprocessor or the like. Such a programmable microprocessor may allow a user to adjust the control logic of the LCP 100 after manufacture, thereby allowing for greater flexibility of the LCP 100 than when using a pre-programmed chip. In still other embodiments, the processing module 110 may not be a single component. For example, the processing module 110 may include multiple components positioned at disparate locations within the LCP 100 in order to perform the various described functions. For example, certain functions may be performed in one component of the processing module 110, while other functions are performed in a separate component of the processing module 110.


The processing module 110, in additional embodiments, may include a memory circuit and the processing module 110 may store information on and read information from the memory circuit. In other embodiments, the LCP 100 may include a separate memory circuit (not shown) that is in communication with the processing module 110, such that the processing module 110 may read and write information to and from the separate memory circuit. The memory circuit, whether part of the processing module 110 or separate from the processing module 110, may be volatile memory, non-volatile memory, or a combination of volatile memory and non-volatile memory.


The energy storage module 112 may provide a power source to the LCP 100 for its operations. In some embodiments, the energy storage module 112 may be a non-rechargeable lithium-based battery. In other embodiments, the non-rechargeable battery may be made from other suitable materials. In some embodiments, the energy storage module 112 may be considered to be a rechargeable power supply, such as but not limited to, a rechargeable battery. In still other embodiments, the energy storage module 112 may include other types of energy storage devices such as capacitors or super capacitors. In some cases, as will be discussed, the energy storage module 112 may include a rechargeable primary battery and a non-rechargeable secondary battery. In some cases, the primary battery and the second battery, if present, may both be rechargeable.


In some cases, to implant the LCP 100 inside a patient's body, an operator (e.g., a physician, clinician, etc.) may move the LCP 100 to a desired implantation site and fix the LCP 100 to the cardiac tissue of the patient's heart. To facilitate fixation, the LCP 100 may include one or more anchors schematically shown at 116. The one or more anchors 116 may include any number of fixation or anchoring mechanisms. For example, one or more anchors 116 may include one or more pins, staples, threads, screws, helix, tines, and/or the like. In some embodiments, although not shown, one or more anchors 116 may include threads on its external surface that may run along at least a partial length of an anchor member. The threads may provide friction between the cardiac tissue and the anchor to help fix the anchor member within the cardiac tissue. In some cases, the one or more anchors 116 may include an anchor member that has a cork-screw shape that can be screwed into the cardiac tissue. In other embodiments, the anchor 116 may include other structures such as barbs, spikes, or the like to facilitate engagement with the surrounding cardiac tissue. In some cases, the LV electrode support 156 may anchor the LCP 100.



FIGS. 17 through 21 provide an illustrative but non-limiting example of a procedure for implanting an IMD within the heart. While the illustrated procedure shows implantation of an LCP within the right ventricle RV, it will be appreciated that this procedure could be used to place an LCP elsewhere within the heart. As shown in FIG. 17, a guide wire 200 has been advanced within a catheter 202 that has reached a position within the right ventricle RV, proximate the RV facing side 12 of the ventricular septum 10. In the example shown, the guide wire 200 has been advanced into and through the ventricular septum 10 such that a guide wire electrode 204 at a distal end of the guide wire 200 is within the left ventricle LV proximate the LV facing side 14 of the ventricular septum 10. In some cases, it is contemplated that the guide wire electrode 204 may instead only penetrate part way through the ventricular septum 10 and still be effective at pacing the LV. In some cases, the guide wire 200 may include a fixation element to at least temporarily secure the guide wire 200 in this position, but this is not required. Once the guide wire 200 is in position, the catheter 202 may be withdrawn, as shown for example in FIG. 18.


Moving to FIG. 19, an LCP 206 is being advanced over the guide wire 200 with the assistance of an LCP pusher 208. The LCP pusher 208 may in some cases include a sheath that extends around and houses the LCP during delivery, but this is not required or even desired in all embodiments. In some cases, the LCP 206 may include a feature 207 that enables a corresponding grasping feature 209 on the LCP pusher 208 to hold onto the LCP 206 while the LCP 206 and the LCP pusher 208 are advanced over the guide wire 200. In any event, the LCP 206 is advanced over the guide wire 200 until the LCP 206 reaches a position proximate the RV facing side 12 of the ventricular septum 10, as shown in FIG. 20. It will be appreciated that in some cases, a guide wire lumen extending through the LCP 206 may extend concentrically through the feature 207. In some instances, the guide wire lumen extending through the LCP 206, to accommodate the guide wire 200, may be radially offset from the feature 207.


At this point, a fixation element such as the fixation element 32 (FIG. 3) or the fixation element 42 (FIG. 5) may be advanced into the ventricular septum 10. In some cases, the distal end of the guidewire 200, including the guide wire electrode 204, may serve as an anchoring mechanism for the LCP 206. In some cases, the distal end of the guide wire 200 may include a hook or other shape to facilitate fixation. In some instances, the guide wire electrode 204 may serve as an LV electrode for the LCP 206. In some cases, an LV electrode support such as the LV electrode support 36 (FIG. 3) may be advanced into the ventricular septum 10. In some cases, the LCP pusher 208 may be used to advance a fixation element and/or an LV electrode support. In some cases, the LCP pusher 208 may be used to actuate a fixation helix. In some cases, particularly of the distal end of the guide wire 200 is to be used as a fixation element for the LCP 206, and/or if the distal end of the guide wire 200, including the guide wire electrode 204, is to be used as an LV electrode for the LCP 200, a tool may be advanced over the guide wire 204 in order to snip off a proximal portion of the guide wire 200, leaving a distal portion of the guide wire 200, including the guide wire electrode 204, in place. FIG. 21 illustrates the LCP 206 after implantation.


It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments.

Claims
  • 1. A leadless cardiac pacemaker (LCP) system for pacing a patient's heart from within a right ventricle of a patient's heart, the patient's heart including a ventricular septum dividing the right ventricle from a left ventricle, the LCP configured for delivery to an implantation site on the right ventricle side of the ventricle septum, the LCP system comprising: a guide wire including a guide wire electrode, the guide wire configured to be deployed within the right ventricle and penetrating the ventricle septum sufficiently far to allow the guide wire electrode to capture conduction pathways of the left ventricle;a housing configured to be positioned within the right ventricle of the patient's heart proximate the ventricular septum once the LCP is implanted at the implantation site on a right ventricle side of the ventricle septum, the housing configured to be advanced over the guide wire during implantation;a power source disposed within the housing;circuitry disposed within the housing and operatively coupled to the power source;a right ventricle (RV) electrode fixed to the housing and positioned to contact the right ventricular side of the ventricular septum once the LCP is implanted at the implantation site on the right ventricle side of the ventricle septum, the circuitry is configured to pace the patient's right ventricle via the RV electrode;the guide wire electrode operably coupled to the circuitry, the circuitry further configured to pace the patient's left ventricle via the guide wire electrode;wherein a proximal portion of the guide wire is removed after the housing is advanced over the guide wire during implantation of the LCP.
  • 2. The LCP system of claim 1, further comprising a fixation element for extending into the ventricular septum at the implantation site on the right ventricle side of the ventricle septum to fix the LCP relative to the ventricular septum at the implantation site, wherein the fixation element is fixed to the housing of the LCP and delivered along with the LCP to the implantation site; and wherein the fixation element is configured to engage the ventricular septum once the LCP is at the implantation site on the right ventricle side of the ventricle septum and to fix the LCP relative to the ventricular septum with the RV electrode of the LCP positioned to allow the RV electrode to capture conduction pathways of the right ventricle within the ventricular septum.
  • 3. The LCP system of claim 2, wherein the fixation element comprises a helical screw.
  • 4. The LCP system of claim 3, wherein the helical screw is secured relative to the housing via threads, and the helical screw is advanced distally relative to the housing by rotating the helical screw relative to the housing.
  • 5. The LCP system of claim 4, wherein the helical screw is rotated relative to the housing by an LCP pusher that is configured to push the LCP along the guide wire to the implantation site and also rotate the helical screw relative to the housing.
  • 6. The LCP system of claim 2, wherein the fixation element comprises one or more tines.
  • 7. The LCP system of claim 6, wherein the one or more tines are configured to extend distally of the housing and bend outward, and wherein the one or more tines are confined by a LCP delivery sheath that extends over the LCP and the one or more tines while the LCP is delivered over the guide wire to the implantation site.
  • 8. The LCP system of claim 7, wherein the one or more tines are configured to extend into the ventricular septum and bend outward when the LCP is pushed out of the LCP delivery sheath at the implantation site.
  • 9. The LCP system of claim 1, further comprising a wire lumen configured to permit the LCP to slide over the guide wire to the implantation site, wherein the wire lumen is offset from a central axis of the housing.
  • 10. The LCP system of claim 1, further comprising a left ventricle electrode support extending distally away from the housing and configured to penetrate the septum of the patient's heart; and the left ventricle electrode support includes one or more LV electrodes supported by the LV electrode support each spaced at a different distance distally from the housing, the two or more LV electrodes operatively coupled with the circuitry that is disposed within the housing with each independently selectable by the circuitry.
  • 11. The LCP system of claim 10, further comprising: one or more additional left ventricle (LV) electrodes supported by a fixation element each spaced at a different distance distally from the housing, the one or more additional LV electrodes operatively coupled with the circuitry that is disposed within the housing with each independently selectable by the circuitry.
  • 12. A system for delivering a leadless cardiac pacemaker (LCP) to an implantation site within a right ventricle of a patient's heart, the patient's heart including a ventricular septum dividing the right ventricle from a left ventricle, the system comprising: an elongated guide wire configured to extend transvascularly to within the chamber of the patient's heart and to the implantation site on the right ventricle side of the ventricle septum, the elongated guide wire including a guide wire electrode at or near its distal end that is usable to test suitability of the implantation site and to serve as a left ventricle (LV) electrode after implantation; andan LCP comprising: a housing configured to be positioned within the right ventricle of the patient's heart proximate the right ventricle side of the ventricular septum once implanted at the implantation site;a power source disposed within the housing;circuitry disposed within the housing and operably coupled to the power source;two or more electrodes disposed relative to the housing including one or more right ventricle (RV) electrodes positioned to contact the right ventricle side of the ventricular septum once the LCP has been implanted at the implantation site, and the LV electrode configured to sufficiently penetrate the ventricular septum to allow the LV electrode to capture conduction pathways of the left ventricle within the ventricular septum;wherein the circuitry is configured to pace the right ventricle via the one or more RV electrodes and the left ventricle via the LV electrode;a wire lumen configured to permit the LCP to slide over the elongated guide wire to the implantation site; anda fixation element for extending into the chamber wall at the implantation site to fix the LCP relative to the ventricular septum at the implantation site, wherein the fixation element is fixed to the LCP and delivered along with the LCP to the implantation site.
  • 13. The system of claim 12, wherein the wire lumen extends through the LCP along a longitudinal axis of the LCP.
  • 14. The system of claim 12, wherein the elongated guide wire is configured to pierce at least partially through the ventricular septum at the implantation site with the entire guide wire electrode positioned inside of the ventricular septum.
  • 15. The system of claim 12, wherein the elongated guide wire further comprises a fixation element for fixing the elongated guide wire to the ventricular septum.
  • 16. The system of claim 15, wherein the fixation element of the elongated guide wire comprises a fixation helix, and the guide wire electrode is disposed proximate a distal end of the fixation helix.
  • 17. The system of claim 12, wherein a proximal portion of the elongated guide wire extending proximally from the housing being subsequently separable from a distal portion of the elongated guide wire and withdrawn from the patient's heart.
  • 18. The system of claim 17, wherein the wire lumen is configured to frictionally engage the elongated guide wire in order to electrically couple and mechanically secure the LCP to the elongated guide wire.
  • 19. The system of claim 17, wherein the wire lumen includes a threaded section that is configured to engage a corresponding threaded section on the elongated guide wire in order to electrically couple and mechanically secure the LCP to the elongated guide wire.
  • 20. A trans-septal implantable medical device (IMD) system configured for deployment within a patient's heart, adjacent a septum within the patient's heart, for pacing and/or sensing a patient's heart, the trans-septal IMD system comprising: a guide wire that includes a guide wire electrode disposed at or near a distal end of the guide wire;a housing configured to be positioned adjacent a first side of the septum and not extending through the septum once the trans-septal IMD is implanted;a power source disposed within the housing;circuitry disposed within the housing and operably coupled to the power source;a first electrode disposed relative to the housing and positioned to contact the first side of the septum once implanted;a second electrode configured to be spaced away from the housing and into or through the septum once the trans-septal IMD is implanted, the second electrode comprising the guide wire electrode disposed at or near a distal end of the elongated guide wire;the circuitry configured to pace the patient's heart and/or sense electrical activity of the patient's heart via the first electrode and the second electrode;the housing defining a wire lumen that is configured to permit the trans-septal IMD to be delivered to a position proximate the septum over the elongated guide wire; anda fixation element operable to fixate the trans-septal IMD relative to the septum.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/334,193 filed on May 10, 2016, the disclosure of which is incorporated herein by reference.

US Referenced Citations (1136)
Number Name Date Kind
3835864 Rasor et al. Sep 1974 A
3943936 Rasor et al. Mar 1976 A
4142530 Wittkampf Mar 1979 A
4151513 Menken et al. Apr 1979 A
4157720 Greatbatch Jun 1979 A
RE30366 Rasor et al. Aug 1980 E
4243045 Maas Jan 1981 A
4250884 Hartlaub et al. Feb 1981 A
4256115 Bilitch Mar 1981 A
4263919 Levin Apr 1981 A
4310000 Lindemans Jan 1982 A
4312354 Walters Jan 1982 A
4323081 Wiebusch Apr 1982 A
4357946 Dutcher et al. Nov 1982 A
4365639 Goldreyer Dec 1982 A
4440173 Hudziak et al. Apr 1984 A
4476868 Thompson Oct 1984 A
4522208 Buffet Jun 1985 A
4537200 Widrow Aug 1985 A
4556063 Thompson et al. Dec 1985 A
4562841 Brockway et al. Jan 1986 A
4593702 Kepski et al. Jun 1986 A
4593955 Leiber Jun 1986 A
4630611 King Dec 1986 A
4635639 Hakala et al. Jan 1987 A
4674508 DeCote Jun 1987 A
4712554 Garson Dec 1987 A
4729376 DeCote Mar 1988 A
4754753 King Jul 1988 A
4759366 Callaghan Jul 1988 A
4776338 Lekholm et al. Oct 1988 A
4787389 Tarjan Nov 1988 A
4793353 Borkan Dec 1988 A
4819662 Heil et al. Apr 1989 A
4858610 Callaghan et al. Aug 1989 A
4886064 Strandberg Dec 1989 A
4887609 Cole Dec 1989 A
4928688 Mower May 1990 A
4967746 Vandegriff Nov 1990 A
4987897 Funke Jan 1991 A
4989602 Sholder et al. Feb 1991 A
5012806 De Bellis May 1991 A
5036849 Hauck et al. Aug 1991 A
5040534 Mann et al. Aug 1991 A
5058581 Silvian Oct 1991 A
5078134 Heilman et al. Jan 1992 A
5109845 Yuuchi et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5117824 Keimel et al. Jun 1992 A
5127401 Grevious et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144950 Stoop et al. Sep 1992 A
5170784 Ramon et al. Dec 1992 A
5179945 Van Hofwegen et al. Jan 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5241961 Henry Sep 1993 A
5243977 Trabucco et al. Sep 1993 A
5259387 DePinto Nov 1993 A
5269326 Verrier Dec 1993 A
5284136 Hauck et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5300108 Rebell Apr 1994 A
5301677 Hsung Apr 1994 A
5305760 McKown et al. Apr 1994 A
5312439 Loeb May 1994 A
5313953 Yomtov et al. May 1994 A
5314459 Swanson et al. May 1994 A
5318597 Hauck et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5334222 Salo et al. Aug 1994 A
5342408 deCoriolis et al. Aug 1994 A
5370667 Alt Dec 1994 A
5372606 Lang et al. Dec 1994 A
5376106 Stahmann et al. Dec 1994 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5411031 Yomtov May 1995 A
5411525 Swanson et al. May 1995 A
5411535 Fujii et al. May 1995 A
5456691 Snell Oct 1995 A
5458622 Alt Oct 1995 A
5466246 Silvian Nov 1995 A
5468254 Hahn et al. Nov 1995 A
5472453 Alt Dec 1995 A
5522866 Fernald Jun 1996 A
5540727 Tockman et al. Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5571146 Jones et al. Nov 1996 A
5591214 Lu Jan 1997 A
5620466 Haefner et al. Apr 1997 A
5634938 Swanson et al. Jun 1997 A
5649968 Alt et al. Jul 1997 A
5662688 Haefner et al. Sep 1997 A
5674259 Gray Oct 1997 A
5683426 Greenhut et al. Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5706823 Wodlinger Jan 1998 A
5709215 Perttu et al. Jan 1998 A
5720770 Nappholz et al. Feb 1998 A
5728154 Crossett et al. Mar 1998 A
5741314 Daly et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grevious et al. May 1998 A
5755736 Gillberg et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5774501 Halpern et al. Jun 1998 A
5792195 Carlson et al. Aug 1998 A
5792202 Rueter Aug 1998 A
5792203 Schroeppel Aug 1998 A
5792205 Alt et al. Aug 1998 A
5792208 Gray Aug 1998 A
5814089 Stokes et al. Sep 1998 A
5827216 Igo et al. Oct 1998 A
5836985 Rostami et al. Nov 1998 A
5836987 Baumann et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5855593 Olson et al. Jan 1999 A
5873894 Vandegriff et al. Feb 1999 A
5891184 Lee et al. Apr 1999 A
5897586 Molina Apr 1999 A
5899876 Flower May 1999 A
5899928 Sholder et al. May 1999 A
5919214 Ciciarelli et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5941906 Barreras, Sr. et al. Aug 1999 A
5944744 Paul et al. Aug 1999 A
5954757 Gray Sep 1999 A
5978713 Prutchi et al. Nov 1999 A
5991660 Goyal Nov 1999 A
5991661 Park et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
5999857 Weijand et al. Dec 1999 A
6016445 Baura Jan 2000 A
6026320 Carlson et al. Feb 2000 A
6029085 Olson et al. Feb 2000 A
6041250 DePinto Mar 2000 A
6044298 Salo et al. Mar 2000 A
6044300 Gray Mar 2000 A
6055454 Heemels Apr 2000 A
6073050 Griffith Jun 2000 A
6076016 Feierbach Jun 2000 A
6077236 Cunningham Jun 2000 A
6080187 Alt et al. Jun 2000 A
6083248 Thompson Jul 2000 A
6106551 Crossett et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6141581 Olson et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144879 Gray Nov 2000 A
6162195 Igo et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6211799 Post et al. Apr 2001 B1
6221011 Bardy Apr 2001 B1
6240316 Richmond et al. May 2001 B1
6240317 Villaseca et al. May 2001 B1
6256534 Dahl Jul 2001 B1
6259947 Olson et al. Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6273856 Sun et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6285907 Kramer et al. Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6295473 Rosar Sep 2001 B1
6297943 Carson Oct 2001 B1
6298271 Weijand Oct 2001 B1
6307751 Bodony et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6336903 Bardy Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6351667 Godie Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6361780 Ley et al. Mar 2002 B1
6368284 Bardy Apr 2002 B1
6371922 Baumann et al. Apr 2002 B1
6398728 Bardy Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6400990 Silvian Jun 2002 B1
6408208 Sun Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6424865 Ding Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6438421 Stahmann et al. Aug 2002 B1
6440066 Bardy Aug 2002 B1
6441747 Khair et al. Aug 2002 B1
6442426 Kroll Aug 2002 B1
6442432 Lee Aug 2002 B2
6443891 Grevious Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6453200 Koslar Sep 2002 B1
6459929 Hopper et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6480745 Nelson et al. Nov 2002 B2
6487443 Olson et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6507755 Gozani et al. Jan 2003 B1
6507759 Prutchi et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6526311 Begemann Feb 2003 B2
6539253 Thompson et al. Mar 2003 B2
6542775 Ding et al. Apr 2003 B2
6553258 Stahmann et al. Apr 2003 B2
6561975 Pool et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6574506 Kramer et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6597948 Rockwell et al. Jul 2003 B1
6597951 Kramer et al. Jul 2003 B2
6622046 Fraley et al. Sep 2003 B2
6628985 Sweeney et al. Sep 2003 B2
6647292 Bardy et al. Nov 2003 B1
6666844 Igo et al. Dec 2003 B1
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694189 Begemann Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6718212 Parry et al. Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6738670 Almendinger et al. May 2004 B1
6746797 Benson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6763269 Cox Jul 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788971 Sloman et al. Sep 2004 B1
6788974 Bardy et al. Sep 2004 B2
6804558 Haller et al. Oct 2004 B2
6807442 Myklebust et al. Oct 2004 B1
6847844 Sun et al. Jan 2005 B2
6871095 Stahmann et al. Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6885889 Chinchoy Apr 2005 B2
6892094 Ousdigian et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6904315 Panken et al. Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6931282 Esler Aug 2005 B2
6934585 Schloss et al. Aug 2005 B1
6957107 Rogers et al. Oct 2005 B2
6978176 Lattouf Dec 2005 B2
6985773 Von Arx et al. Jan 2006 B2
6990375 Kloss et al. Jan 2006 B2
7001366 Ballard Feb 2006 B2
7003350 Denker et al. Feb 2006 B2
7006864 Echt et al. Feb 2006 B2
7013178 Reinke et al. Mar 2006 B2
7027871 Burnes et al. Apr 2006 B2
7050849 Echt et al. May 2006 B2
7060031 Webb et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7082336 Ransbury et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092758 Sun et al. Aug 2006 B2
7110824 Amundson et al. Sep 2006 B2
7120504 Osypka Oct 2006 B2
7130681 Gebhardt et al. Oct 2006 B2
7139613 Reinke et al. Nov 2006 B2
7142912 Wagner et al. Nov 2006 B2
7146225 Guenst et al. Dec 2006 B2
7146226 Lau et al. Dec 2006 B2
7149581 Goedeke Dec 2006 B2
7149588 Lau et al. Dec 2006 B2
7158839 Lau Jan 2007 B2
7162307 Patrias Jan 2007 B2
7164952 Lau et al. Jan 2007 B2
7177700 Cox Feb 2007 B1
7181505 Haller et al. Feb 2007 B2
7184830 Echt et al. Feb 2007 B2
7186214 Ness Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7206423 Feng et al. Apr 2007 B1
7209785 Kim et al. Apr 2007 B2
7209790 Thompson et al. Apr 2007 B2
7211884 Davis et al. May 2007 B1
7212871 Morgan May 2007 B1
7226440 Gelfand et al. Jun 2007 B2
7228183 Sun et al. Jun 2007 B2
7236821 Cates et al. Jun 2007 B2
7236829 Farazi et al. Jun 2007 B1
7254448 Almendinger et al. Aug 2007 B2
7260436 Kilgore et al. Aug 2007 B2
7270669 Sra Sep 2007 B1
7272448 Morgan et al. Sep 2007 B1
7277755 Falkenberg et al. Oct 2007 B1
7280872 Mosesov et al. Oct 2007 B1
7288096 Chin Oct 2007 B2
7289847 Gill et al. Oct 2007 B1
7289852 Helfinstine et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7289855 Nghiem et al. Oct 2007 B2
7302294 Kamath et al. Nov 2007 B2
7305266 Kroll Dec 2007 B1
7310556 Bulkes Dec 2007 B2
7319905 Morgan et al. Jan 2008 B1
7321798 Muhlenberg et al. Jan 2008 B2
7333853 Mazar et al. Feb 2008 B2
7336994 Hettrick et al. Feb 2008 B2
7347819 Lebel et al. Mar 2008 B2
7366572 Heruth et al. Apr 2008 B2
7373207 Lattouf May 2008 B2
7384403 Sherman Jun 2008 B2
7386342 Falkenberg et al. Jun 2008 B1
7392090 Sweeney et al. Jun 2008 B2
7406105 DelMain et al. Jul 2008 B2
7406349 Seeberger et al. Jul 2008 B2
7410497 Hastings et al. Aug 2008 B2
7425200 Brockway et al. Sep 2008 B2
7433739 Salys et al. Oct 2008 B1
7496409 Greenhut et al. Feb 2009 B2
7496410 Heil Feb 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7512448 Malick et al. Mar 2009 B2
7515969 Tockman et al. Apr 2009 B2
7526342 Chin et al. Apr 2009 B2
7529589 Williams et al. May 2009 B2
7532933 Hastings et al. May 2009 B2
7536222 Bardy et al. May 2009 B2
7536224 Ritscher et al. May 2009 B2
7539541 Quiles et al. May 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7558631 Cowan et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7584002 Burnes et al. Sep 2009 B2
7590455 Heruth et al. Sep 2009 B2
7606621 Brisken et al. Oct 2009 B2
7610088 Chinchoy Oct 2009 B2
7610092 Cowan et al. Oct 2009 B2
7610099 Almendinger et al. Oct 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7616991 Mann et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7617007 Williams et al. Nov 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7637867 Zdeblick Dec 2009 B2
7640060 Zdeblick Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7650186 Hastings et al. Jan 2010 B2
7657311 Bardy et al. Feb 2010 B2
7668596 Von Arx et al. Feb 2010 B2
7682316 Anderson et al. Mar 2010 B2
7691047 Ferrari Apr 2010 B2
7702392 Echt et al. Apr 2010 B2
7713194 Zdeblick May 2010 B2
7713195 Zdeblick May 2010 B2
7729783 Michels et al. Jun 2010 B2
7734333 Ghanem et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7738958 Zdeblick et al. Jun 2010 B2
7738964 Von Arx et al. Jun 2010 B2
7742812 Ghanem et al. Jun 2010 B2
7742816 Masoud et al. Jun 2010 B2
7742822 Masoud et al. Jun 2010 B2
7743151 Vallapureddy et al. Jun 2010 B2
7747335 Williams Jun 2010 B2
7751881 Cowan et al. Jul 2010 B2
7758521 Morris et al. Jul 2010 B2
7761150 Ghanem et al. Jul 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7765001 Echt et al. Jul 2010 B2
7769452 Ghanem et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7792588 Harding Sep 2010 B2
7797059 Bornzin et al. Sep 2010 B1
7801596 Fischell et al. Sep 2010 B2
7809438 Echt et al. Oct 2010 B2
7840281 Kveen et al. Nov 2010 B2
7844331 Li et al. Nov 2010 B2
7844348 Swoyer et al. Nov 2010 B2
7846088 Ness Dec 2010 B2
7848815 Brisken et al. Dec 2010 B2
7848823 Drasler et al. Dec 2010 B2
7860455 Fukumoto et al. Dec 2010 B2
7871433 Lattouf Jan 2011 B2
7877136 Moffitt et al. Jan 2011 B1
7877142 Moaddeb et al. Jan 2011 B2
7881786 Jackson Feb 2011 B2
7881798 Miesel et al. Feb 2011 B2
7881810 Chitre et al. Feb 2011 B1
7890173 Brisken et al. Feb 2011 B2
7890181 Denzene et al. Feb 2011 B2
7890192 Kelsch et al. Feb 2011 B1
7894885 Bartal et al. Feb 2011 B2
7894894 Stadler et al. Feb 2011 B2
7894907 Cowan et al. Feb 2011 B2
7894910 Cowan et al. Feb 2011 B2
7894915 Chitre et al. Feb 2011 B1
7899537 Kroll et al. Mar 2011 B1
7899541 Cowan et al. Mar 2011 B2
7899542 Cowan et al. Mar 2011 B2
7899554 Williams et al. Mar 2011 B2
7901360 Yang et al. Mar 2011 B1
7904170 Harding Mar 2011 B2
7907993 Ghanem et al. Mar 2011 B2
7920928 Yang et al. Apr 2011 B1
7925343 Min et al. Apr 2011 B1
7930022 Zhang et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7937135 Ghanem et al. May 2011 B2
7937148 Jacobson May 2011 B2
7937161 Hastings et al. May 2011 B2
7941214 Kleckner et al. May 2011 B2
7945333 Jacobson May 2011 B2
7946997 Hübinette May 2011 B2
7949404 Hill May 2011 B2
7949405 Feher May 2011 B2
7953486 Daum et al. May 2011 B2
7953493 Fowler et al. May 2011 B2
7962202 Bhunia Jun 2011 B2
7974702 Fain et al. Jul 2011 B1
7979136 Young et al. Jul 2011 B2
7983753 Severin Jul 2011 B2
7991467 Markowitz et al. Aug 2011 B2
7991471 Ghanem et al. Aug 2011 B2
7996087 Cowan et al. Aug 2011 B2
8000791 Sunagawa et al. Aug 2011 B2
8000807 Morris et al. Aug 2011 B2
8001975 DiSilvestro et al. Aug 2011 B2
8002700 Ferek-Petric et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8019419 Panescu et al. Sep 2011 B1
8019434 Quiles et al. Sep 2011 B2
8027727 Freeberg Sep 2011 B2
8027729 Sunagawa et al. Sep 2011 B2
8032219 Neumann et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8046079 Bange et al. Oct 2011 B2
8046080 Von Arx et al. Oct 2011 B2
8050297 DelMain et al. Nov 2011 B2
8050759 Stegemann et al. Nov 2011 B2
8050774 Kveen et al. Nov 2011 B2
8055345 Li et al. Nov 2011 B2
8055350 Roberts Nov 2011 B2
8060212 Rios et al. Nov 2011 B1
8065018 Haubrich et al. Nov 2011 B2
8073542 Doerr Dec 2011 B2
8078278 Penner Dec 2011 B2
8078283 Cowan et al. Dec 2011 B2
8095123 Gray Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103359 Reddy Jan 2012 B2
8103361 Moser Jan 2012 B2
8112148 Giftakis et al. Feb 2012 B2
8114021 Robertson et al. Feb 2012 B2
8121680 Falkenberg et al. Feb 2012 B2
8123684 Zdeblick Feb 2012 B2
8126545 Flach et al. Feb 2012 B2
8131334 Lu et al. Mar 2012 B2
8140161 Willerton et al. Mar 2012 B2
8150521 Crowley et al. Apr 2012 B2
8160672 Kim et al. Apr 2012 B2
8160702 Mann et al. Apr 2012 B2
8160704 Freeberg Apr 2012 B2
8165694 Carbanaru et al. Apr 2012 B2
8175715 Cox May 2012 B1
8180451 Hickman et al. May 2012 B2
8185213 Kveen et al. May 2012 B2
8187161 Li et al. May 2012 B2
8195293 Limousin et al. Jun 2012 B2
8204595 Pianca et al. Jun 2012 B2
8204605 Hastings et al. Jun 2012 B2
8209014 Doerr Jun 2012 B2
8214043 Matos Jul 2012 B2
8224244 Kim et al. Jul 2012 B2
8229556 Li Jul 2012 B2
8233985 Bulkes et al. Jul 2012 B2
8262578 Bharmi et al. Sep 2012 B1
8265748 Liu et al. Sep 2012 B2
8265757 Mass et al. Sep 2012 B2
8280521 Haubrich et al. Oct 2012 B2
8285387 Utsi et al. Oct 2012 B2
8290598 Boon et al. Oct 2012 B2
8290600 Hastings et al. Oct 2012 B2
8295939 Jacobson Oct 2012 B2
8301254 Mosesov et al. Oct 2012 B2
8315701 Cowan et al. Nov 2012 B2
8315708 Berthelsdorf et al. Nov 2012 B2
8321021 Kisker et al. Nov 2012 B2
8321036 Brockway et al. Nov 2012 B2
8332036 Hastings et al. Dec 2012 B2
8335563 Stessman Dec 2012 B2
8335568 Heruth et al. Dec 2012 B2
8340750 Prakash et al. Dec 2012 B2
8340780 Hastings et al. Dec 2012 B2
8352025 Jacobson Jan 2013 B2
8352028 Wenger Jan 2013 B2
8352038 Mao et al. Jan 2013 B2
8359098 Lund et al. Jan 2013 B2
8364261 Stubbs et al. Jan 2013 B2
8364276 Willis Jan 2013 B2
8369959 Meskens Feb 2013 B2
8369962 Abrahamson Feb 2013 B2
8380320 Spital Feb 2013 B2
8386051 Rys Feb 2013 B2
8391981 Mosesov Mar 2013 B2
8391990 Smith et al. Mar 2013 B2
8406874 Liu et al. Mar 2013 B2
8406879 Shuros et al. Mar 2013 B2
8406886 Gaunt et al. Mar 2013 B2
8412352 Griswold et al. Apr 2013 B2
8417340 Goossen Apr 2013 B2
8417341 Freeberg Apr 2013 B2
8423149 Hennig Apr 2013 B2
8428722 Verhoef et al. Apr 2013 B2
8433402 Ruben et al. Apr 2013 B2
8433409 Johnson et al. Apr 2013 B2
8433420 Bange et al. Apr 2013 B2
8447412 Dal Molin et al. May 2013 B2
8452413 Young et al. May 2013 B2
8457740 Osche Jun 2013 B2
8457742 Jacobson Jun 2013 B2
8457744 Janzig et al. Jun 2013 B2
8457761 Wariar Jun 2013 B2
8478407 Demmer et al. Jul 2013 B2
8478408 Hastings et al. Jul 2013 B2
8478431 Griswold et al. Jul 2013 B2
8494632 Sun et al. Jul 2013 B2
8504156 Bonner et al. Aug 2013 B2
8509910 Sowder et al. Aug 2013 B2
8515559 Roberts et al. Aug 2013 B2
8525340 Eckhardt et al. Sep 2013 B2
8527068 Ostroff Sep 2013 B2
8532790 Griswold Sep 2013 B2
8538526 Stahmann et al. Sep 2013 B2
8541131 Lund et al. Sep 2013 B2
8543205 Ostroff Sep 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8548605 Ollivier Oct 2013 B2
8554333 Wu et al. Oct 2013 B2
8565882 Matos Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8571678 Wang Oct 2013 B2
8577327 Makdissi et al. Nov 2013 B2
8588926 Moore et al. Nov 2013 B2
8612002 Faltys et al. Dec 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8626280 Allavatam et al. Jan 2014 B2
8626294 Sheldon et al. Jan 2014 B2
8634908 Cowan Jan 2014 B2
8634912 Bornzin et al. Jan 2014 B2
8634919 Hou et al. Jan 2014 B1
8639335 Peichel et al. Jan 2014 B2
8644934 Hastings et al. Feb 2014 B2
8649859 Smith et al. Feb 2014 B2
8670842 Bornzin et al. Mar 2014 B1
8676319 Knoll Mar 2014 B2
8676335 Katoozi et al. Mar 2014 B2
8700173 Edlund Apr 2014 B2
8700181 Bornzin et al. Apr 2014 B2
8705599 dal Molin et al. Apr 2014 B2
8718766 Wahlberg May 2014 B2
8718773 Willis et al. May 2014 B2
8725260 Shuros et al. May 2014 B2
8738133 Shuros et al. May 2014 B2
8738147 Hastings et al. May 2014 B2
8744555 Allavatam et al. Jun 2014 B2
8744572 Greenhut et al. Jun 2014 B1
8747314 Stahmann et al. Jun 2014 B2
8755884 Demmer et al. Jun 2014 B2
8758365 Bonner et al. Jun 2014 B2
8768483 Schmitt et al. Jul 2014 B2
8774572 Hamamoto Jul 2014 B2
8781605 Bornzin et al. Jul 2014 B2
8788035 Jacobson Jul 2014 B2
8788053 Jacobson Jul 2014 B2
8798740 Samade et al. Aug 2014 B2
8798745 Jacobson Aug 2014 B2
8798762 Fain et al. Aug 2014 B2
8798770 Reddy Aug 2014 B2
8805505 Roberts Aug 2014 B1
8805528 Corndorf Aug 2014 B2
8812109 Blomqvist et al. Aug 2014 B2
8818504 Bodner et al. Aug 2014 B2
8827913 Havel et al. Sep 2014 B2
8831747 Min et al. Sep 2014 B1
8855789 Jacobson Oct 2014 B2
8868186 Kroll Oct 2014 B2
8886339 Faltys et al. Nov 2014 B2
8903473 Rogers et al. Dec 2014 B2
8903500 Smith et al. Dec 2014 B2
8903513 Ollivier Dec 2014 B2
8909336 Navarro-Paredes et al. Dec 2014 B2
8914131 Bornzin et al. Dec 2014 B2
8923795 Makdissi et al. Dec 2014 B2
8923963 Bonner et al. Dec 2014 B2
8938300 Rosero Jan 2015 B2
8942806 Sheldon et al. Jan 2015 B2
8958892 Khairkhahan et al. Feb 2015 B2
8977358 Ewert et al. Mar 2015 B2
8989873 Locsin Mar 2015 B2
8996109 Karst et al. Mar 2015 B2
9002467 Smith et al. Apr 2015 B2
9008776 Cowan et al. Apr 2015 B2
9008777 Dianaty et al. Apr 2015 B2
9014818 Deterre et al. Apr 2015 B2
9017341 Bornzin et al. Apr 2015 B2
9020611 Khairkhahan et al. Apr 2015 B2
9037262 Regnier et al. May 2015 B2
9042984 Demmer et al. May 2015 B2
9072911 Hastings et al. Jul 2015 B2
9072913 Jacobson Jul 2015 B2
9155882 Grubac et al. Oct 2015 B2
9168372 Fain Oct 2015 B2
9168380 Greenhut et al. Oct 2015 B1
9168383 Jacobson et al. Oct 2015 B2
9180285 Moore et al. Nov 2015 B2
9192774 Jacobson Nov 2015 B2
9205225 Khairkhahan et al. Dec 2015 B2
9216285 Boling et al. Dec 2015 B1
9216293 Berthiaume et al. Dec 2015 B2
9216298 Jacobson Dec 2015 B2
9227077 Jacobson Jan 2016 B2
9238145 Wenzel et al. Jan 2016 B2
9242102 Khairkhahan et al. Jan 2016 B2
9242113 Smith et al. Jan 2016 B2
9248300 Rys et al. Feb 2016 B2
9265436 Min et al. Feb 2016 B2
9265962 Dianaty et al. Feb 2016 B2
9272155 Ostroff Mar 2016 B2
9278218 Karst et al. Mar 2016 B2
9278229 Reinke et al. Mar 2016 B1
9283381 Grubac et al. Mar 2016 B2
9283382 Berthiaume et al. Mar 2016 B2
9289612 Sambelashvili et al. Mar 2016 B1
9302115 Molin et al. Apr 2016 B2
9333364 Echt et al. May 2016 B2
9358387 Suwito et al. Jun 2016 B2
9358400 Jacobson Jun 2016 B2
9364675 Deterre et al. Jun 2016 B2
9370663 Moulder Jun 2016 B2
9375580 Bonner et al. Jun 2016 B2
9375581 Baru et al. Jun 2016 B2
9381365 Kibler et al. Jul 2016 B2
9393424 Demmer et al. Jul 2016 B2
9393436 Doerr Jul 2016 B2
9399139 Demmer et al. Jul 2016 B2
9399140 Cho et al. Jul 2016 B2
9409033 Jacobson Aug 2016 B2
9427594 Bornzin et al. Aug 2016 B1
9433368 Stahmann et al. Sep 2016 B2
9433780 Régnier et al. Sep 2016 B2
9457193 Klimovitch et al. Oct 2016 B2
9492668 Sheldon et al. Nov 2016 B2
9492669 Demmer et al. Nov 2016 B2
9492674 Schmidt et al. Nov 2016 B2
9492677 Greenhut et al. Nov 2016 B2
9511233 Sambelashvili Dec 2016 B2
9511236 Varady et al. Dec 2016 B2
9511237 Deterre et al. Dec 2016 B2
9522276 Shen et al. Dec 2016 B2
9522280 Fishler et al. Dec 2016 B2
9526522 Wood et al. Dec 2016 B2
9526891 Eggen et al. Dec 2016 B2
9526909 Stahmann et al. Dec 2016 B2
9533163 Klimovitch et al. Jan 2017 B2
9561382 Persson et al. Feb 2017 B2
9566012 Greenhut et al. Feb 2017 B2
9636511 Carney et al. May 2017 B2
9731138 Stadler Aug 2017 B1
20020032470 Linberg Mar 2002 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035380 Rissmann et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042630 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020091414 Bardy et al. Jul 2002 A1
20020095196 Linberg Jul 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020103510 Bardy et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20020107546 Ostroff et al. Aug 2002 A1
20020107547 Erlinger et al. Aug 2002 A1
20020107548 Bardy et al. Aug 2002 A1
20020107549 Bardy et al. Aug 2002 A1
20020107559 Sanders et al. Aug 2002 A1
20020120299 Ostroff et al. Aug 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030009203 Lebel et al. Jan 2003 A1
20030028082 Thompson Feb 2003 A1
20030040779 Engmark et al. Feb 2003 A1
20030041866 Linberg et al. Mar 2003 A1
20030045805 Sheldon et al. Mar 2003 A1
20030088278 Bardy et al. May 2003 A1
20030097153 Bardy et al. May 2003 A1
20030105497 Zhu et al. Jun 2003 A1
20030114908 Flach Jun 2003 A1
20030144701 Mehra et al. Jul 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20040024435 Leckrone et al. Feb 2004 A1
20040068302 Rodgers et al. Apr 2004 A1
20040087938 Leckrone et al. May 2004 A1
20040088035 Guenst et al. May 2004 A1
20040102830 Williams May 2004 A1
20040127959 Amundson et al. Jul 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167558 Igo et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172071 Bardy et al. Sep 2004 A1
20040172077 Chinchoy Sep 2004 A1
20040172104 Berg et al. Sep 2004 A1
20040176817 Wahlstrand et al. Sep 2004 A1
20040176818 Wahlstrand et al. Sep 2004 A1
20040176830 Fang Sep 2004 A1
20040186529 Bardy et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040210292 Bardy et al. Oct 2004 A1
20040210293 Bardy et al. Oct 2004 A1
20040210294 Bardy et al. Oct 2004 A1
20040215308 Bardy et al. Oct 2004 A1
20040220624 Ritscher et al. Nov 2004 A1
20040220626 Wagner Nov 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20040230283 Prinzen et al. Nov 2004 A1
20040249431 Ransbury et al. Dec 2004 A1
20040260348 Bakken et al. Dec 2004 A1
20040267303 Guenst Dec 2004 A1
20050043765 Williams Feb 2005 A1
20050061320 Lee et al. Mar 2005 A1
20050070962 Echt et al. Mar 2005 A1
20050102003 Grabek et al. May 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050182465 Ness Aug 2005 A1
20050203410 Jenkins Sep 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060042830 Maghribi et al. Mar 2006 A1
20060052829 Sun et al. Mar 2006 A1
20060052830 Spinelli et al. Mar 2006 A1
20060064135 Brockway Mar 2006 A1
20060064149 Belacazar et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060095078 Tronnes May 2006 A1
20060106442 Richardson et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161061 Echt et al. Jul 2006 A1
20060200002 Guenst Sep 2006 A1
20060206151 Lu Sep 2006 A1
20060212079 Routh et al. Sep 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060259088 Pastore et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20070004979 Wojciechowicz et al. Jan 2007 A1
20070016098 Kim et al. Jan 2007 A1
20070027508 Cowan Feb 2007 A1
20070078490 Cowan et al. Apr 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088405 Jacobson Apr 2007 A1
20070088418 Jacobson Apr 2007 A1
20070135882 Drasler et al. Jun 2007 A1
20070135883 Drasler et al. Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070156190 Cinbis Jul 2007 A1
20070219525 Gelfand et al. Sep 2007 A1
20070219590 Hastings et al. Sep 2007 A1
20070225545 Ferrari Sep 2007 A1
20070233206 Frikart et al. Oct 2007 A1
20070239244 Morgan et al. Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293900 Sheldon et al. Dec 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20080004663 Jorgenson Jan 2008 A1
20080021505 Hastings et al. Jan 2008 A1
20080021519 De Geest et al. Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080065183 Whitehurst et al. Mar 2008 A1
20080065185 Worley Mar 2008 A1
20080071318 Brooke et al. Mar 2008 A1
20080109054 Hastings et al. May 2008 A1
20080119911 Rosero May 2008 A1
20080130670 Kim et al. Jun 2008 A1
20080154139 Shuros et al. Jun 2008 A1
20080154322 Jackson et al. Jun 2008 A1
20080228234 Stancer Sep 2008 A1
20080234771 Chinchoy et al. Sep 2008 A1
20080243217 Wildon Oct 2008 A1
20080269814 Rosero Oct 2008 A1
20080269825 Chinchoy et al. Oct 2008 A1
20080275518 Ghanem et al. Nov 2008 A1
20080275519 Ghanem et al. Nov 2008 A1
20080288039 Reddy Nov 2008 A1
20080294208 Willis et al. Nov 2008 A1
20080294210 Rosero Nov 2008 A1
20080294229 Friedman et al. Nov 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090024180 Kisker et al. Jan 2009 A1
20090036941 Corbucci Feb 2009 A1
20090048646 Katoozi et al. Feb 2009 A1
20090062895 Stahmann et al. Mar 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090088813 Brockway et al. Apr 2009 A1
20090131907 Chin et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090143835 Pastore et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20090171414 Kelly et al. Jul 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210024 M. Aug 2009 A1
20090216292 Pless et al. Aug 2009 A1
20090234407 Hastings et al. Sep 2009 A1
20090234411 Sambelashvili et al. Sep 2009 A1
20090266573 Engmark et al. Oct 2009 A1
20090275998 Burnes et al. Nov 2009 A1
20090275999 Burnes et al. Nov 2009 A1
20090299447 Jensen et al. Dec 2009 A1
20100013668 Kantervik Jan 2010 A1
20100016911 Willis et al. Jan 2010 A1
20100023085 Wu et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100030327 Chatel Feb 2010 A1
20100042108 Hibino Feb 2010 A1
20100056871 Govari et al. Mar 2010 A1
20100063375 Kassab et al. Mar 2010 A1
20100063562 Cowan et al. Mar 2010 A1
20100069983 Peacock, III et al. Mar 2010 A1
20100094367 Sen Apr 2010 A1
20100114209 Krause et al. May 2010 A1
20100114214 Morelli et al. May 2010 A1
20100125281 Jacobson et al. May 2010 A1
20100168761 Kassab et al. Jul 2010 A1
20100168819 Freeberg Jul 2010 A1
20100198288 Ostroff Aug 2010 A1
20100198304 Wang Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100228308 Cowan et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100234924 Willis Sep 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100249729 Morris et al. Sep 2010 A1
20100286744 Echt et al. Nov 2010 A1
20100298841 Prinzen et al. Nov 2010 A1
20100312309 Harding Dec 2010 A1
20110022113 Zdeblick et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110112600 Cowan et al. May 2011 A1
20110118588 Komblau et al. May 2011 A1
20110118810 Cowan et al. May 2011 A1
20110137187 Yang et al. Jun 2011 A1
20110144720 Cowan et al. Jun 2011 A1
20110152970 Jollota et al. Jun 2011 A1
20110160558 Rassatt et al. Jun 2011 A1
20110160565 Stubbs et al. Jun 2011 A1
20110160801 Markowitz et al. Jun 2011 A1
20110160806 Lyden et al. Jun 2011 A1
20110166620 Cowan et al. Jul 2011 A1
20110166621 Cowan et al. Jul 2011 A1
20110184491 Kivi Jul 2011 A1
20110190835 Brockway et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110218587 Jacobson Sep 2011 A1
20110230734 Fain et al. Sep 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110245890 Brisben et al. Oct 2011 A1
20110251660 Griswold Oct 2011 A1
20110251662 Griswold et al. Oct 2011 A1
20110270099 Ruben et al. Nov 2011 A1
20110270339 Murray, III et al. Nov 2011 A1
20110270340 Pellegrini Nov 2011 A1
20110270341 Ruben et al. Nov 2011 A1
20110276102 Cohen Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20120004527 Thompson et al. Jan 2012 A1
20120029323 Zhao Feb 2012 A1
20120041508 Rousso et al. Feb 2012 A1
20120059433 Cowan et al. Mar 2012 A1
20120059436 Fontaine et al. Mar 2012 A1
20120065500 Rogers et al. Mar 2012 A1
20120078322 Dal Molin et al. Mar 2012 A1
20120089198 Ostroff Apr 2012 A1
20120093245 Makdissi et al. Apr 2012 A1
20120095521 Hintz Apr 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120101540 O'Brien et al. Apr 2012 A1
20120101553 Reddy Apr 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner et al. May 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120109259 Bond et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120150251 Giftakis et al. Jun 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac et al. Jul 2012 A1
20120172942 Berg Jul 2012 A1
20120197350 Roberts et al. Aug 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120215285 Tahmasian et al. Aug 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120245665 Friedman et al. Sep 2012 A1
20120277600 Greenhut Nov 2012 A1
20120277606 Ellingson et al. Nov 2012 A1
20120283795 Stancer et al. Nov 2012 A1
20120283807 Deterre et al. Nov 2012 A1
20120289776 Keast et al. Nov 2012 A1
20120289815 Keast et al. Nov 2012 A1
20120290021 Saurkar et al. Nov 2012 A1
20120290025 Keimel Nov 2012 A1
20120296381 Matos Nov 2012 A1
20120303082 Dong et al. Nov 2012 A1
20120316613 Keefe et al. Dec 2012 A1
20130012151 Hankins Jan 2013 A1
20130023975 Locsin Jan 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130041422 Jacobson Feb 2013 A1
20130053908 Smith et al. Feb 2013 A1
20130053915 Holmstrom et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130060298 Splett et al. Mar 2013 A1
20130066169 Rys et al. Mar 2013 A1
20130072770 Rao et al. Mar 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130085350 Schugt et al. Apr 2013 A1
20130085403 Gunderson et al. Apr 2013 A1
20130085550 Polefko et al. Apr 2013 A1
20130096649 Martin et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103109 Jacobson Apr 2013 A1
20130110008 Bourget et al. May 2013 A1
20130110127 Bornzin et al. May 2013 A1
20130110192 Tran et al. May 2013 A1
20130110219 Bornzin et al. May 2013 A1
20130116529 Min et al. May 2013 A1
20130116738 Samade et al. May 2013 A1
20130116740 Bornzin et al. May 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123872 Bornzin May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131591 Berthiaume et al. May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130138006 Bornzin et al. May 2013 A1
20130150695 Biela et al. Jun 2013 A1
20130150911 Perschbacher et al. Jun 2013 A1
20130150912 Perschbacher et al. Jun 2013 A1
20130184776 Shuros et al. Jul 2013 A1
20130192611 Taepke, II et al. Aug 2013 A1
20130196703 Masoud et al. Aug 2013 A1
20130197609 Moore et al. Aug 2013 A1
20130231710 Jacobson Sep 2013 A1
20130238072 Deterre et al. Sep 2013 A1
20130238073 Makdissi et al. Sep 2013 A1
20130253309 Allan et al. Sep 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Waldhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130265144 Banna et al. Oct 2013 A1
20130268042 Hastings et al. Oct 2013 A1
20130274828 Willis Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130282070 Cowan et al. Oct 2013 A1
20130282073 Cowan et al. Oct 2013 A1
20130296727 Sullivan et al. Nov 2013 A1
20130303872 Taff et al. Nov 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20130325081 Karst et al. Dec 2013 A1
20130345770 Dianaty et al. Dec 2013 A1
20140012344 Hastings et al. Jan 2014 A1
20140018876 Ostroff Jan 2014 A1
20140018877 Demmer et al. Jan 2014 A1
20140031836 Ollivier Jan 2014 A1
20140039570 Carroll et al. Feb 2014 A1
20140039591 Drasler et al. Feb 2014 A1
20140043146 Makdissi et al. Feb 2014 A1
20140046395 Regnier et al. Feb 2014 A1
20140046420 Moore et al. Feb 2014 A1
20140058240 Mothilal et al. Feb 2014 A1
20140058494 Ostroff et al. Feb 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140074186 Faltys et al. Mar 2014 A1
20140094891 Pare et al. Apr 2014 A1
20140100624 Ellingson Apr 2014 A1
20140100627 Min Apr 2014 A1
20140107723 Hou et al. Apr 2014 A1
20140121719 Bonner et al. May 2014 A1
20140121720 Bonner et al. May 2014 A1
20140121722 Sheldon et al. May 2014 A1
20140128935 Kumar et al. May 2014 A1
20140135865 Hastings et al. May 2014 A1
20140142648 Smith et al. May 2014 A1
20140148675 Nordstrom et al. May 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140155950 Hastings et al. Jun 2014 A1
20140169162 Romano et al. Jun 2014 A1
20140172060 Bornzin et al. Jun 2014 A1
20140180306 Grubac et al. Jun 2014 A1
20140180366 Edlund Jun 2014 A1
20140207149 Hastings et al. Jul 2014 A1
20140207210 Willis et al. Jul 2014 A1
20140214104 Greenhut et al. Jul 2014 A1
20140222015 Keast et al. Aug 2014 A1
20140222098 Baru et al. Aug 2014 A1
20140222109 Moulder Aug 2014 A1
20140228913 Molin et al. Aug 2014 A1
20140236172 Hastings et al. Aug 2014 A1
20140243848 Auricchio et al. Aug 2014 A1
20140255298 Cole et al. Sep 2014 A1
20140257324 Fain Sep 2014 A1
20140257422 Herken Sep 2014 A1
20140257444 Cole et al. Sep 2014 A1
20140276929 Foster et al. Sep 2014 A1
20140303704 Suwito et al. Oct 2014 A1
20140309706 Jacobson Oct 2014 A1
20140343348 Kaplan et al. Nov 2014 A1
20140371818 Bond et al. Dec 2014 A1
20140378992 Ollivier Dec 2014 A1
20140379041 Foster Dec 2014 A1
20150025612 Haasl et al. Jan 2015 A1
20150039041 Smith et al. Feb 2015 A1
20150045868 Bonner et al. Feb 2015 A1
20150051609 Schmidt et al. Feb 2015 A1
20150051610 Schmidt et al. Feb 2015 A1
20150051611 Schmidt et al. Feb 2015 A1
20150051612 Schmidt et al. Feb 2015 A1
20150051613 Schmidt et al. Feb 2015 A1
20150051614 Schmidt et al. Feb 2015 A1
20150051615 Schmidt et al. Feb 2015 A1
20150051616 Haasl et al. Feb 2015 A1
20150051682 Schmidt et al. Feb 2015 A1
20150057520 Foster et al. Feb 2015 A1
20150057558 Stahmann et al. Feb 2015 A1
20150057721 Stahmann et al. Feb 2015 A1
20150088155 Stahmann et al. Mar 2015 A1
20150105836 Bonner et al. Apr 2015 A1
20150126854 Keast et al. May 2015 A1
20150157861 Aghassian Jun 2015 A1
20150157866 Demmer et al. Jun 2015 A1
20150173655 Demmer et al. Jun 2015 A1
20150190638 Smith et al. Jul 2015 A1
20150196756 Stahmann et al. Jul 2015 A1
20150196757 Stahmann et al. Jul 2015 A1
20150196758 Stahmann et al. Jul 2015 A1
20150196769 Stahmann et al. Jul 2015 A1
20150217119 Nikolski et al. Aug 2015 A1
20150221898 Chi et al. Aug 2015 A1
20150224315 Stahmann Aug 2015 A1
20150224320 Stahmann Aug 2015 A1
20150230699 Berul et al. Aug 2015 A1
20150238769 Demmer et al. Aug 2015 A1
20150258345 Smith et al. Sep 2015 A1
20150290468 Zhang Oct 2015 A1
20150297905 Greenhut et al. Oct 2015 A1
20150297907 Zhang Oct 2015 A1
20150305637 Greenhut et al. Oct 2015 A1
20150305638 Zhang Oct 2015 A1
20150305639 Greenhut et al. Oct 2015 A1
20150305640 Reinke et al. Oct 2015 A1
20150305641 Stadler et al. Oct 2015 A1
20150305642 Reinke et al. Oct 2015 A1
20150306374 Seifert et al. Oct 2015 A1
20150306375 Marshall et al. Oct 2015 A1
20150306401 Demmer et al. Oct 2015 A1
20150306406 Crutchfield et al. Oct 2015 A1
20150306407 Crutchfield et al. Oct 2015 A1
20150306408 Greenhut et al. Oct 2015 A1
20150321016 O'Brien et al. Nov 2015 A1
20150328459 Chin et al. Nov 2015 A1
20150335884 Khairkhahan et al. Nov 2015 A1
20160015322 Anderson et al. Jan 2016 A1
20160023000 Cho et al. Jan 2016 A1
20160030757 Jacobson Feb 2016 A1
20160033177 Barot et al. Feb 2016 A1
20160121127 Klimovitch et al. May 2016 A1
20160121128 Fishler et al. May 2016 A1
20160121129 Persson et al. May 2016 A1
20160213919 Suwito et al. Jul 2016 A1
20160213937 Reinke et al. Jul 2016 A1
20160213939 Carney et al. Jul 2016 A1
20160228026 Jackson Aug 2016 A1
20160279423 Kelly Sep 2016 A1
20160317825 Jacobson Nov 2016 A1
20160367823 Cowan et al. Dec 2016 A1
20170014629 Ghosh et al. Jan 2017 A1
20170035315 Jackson Feb 2017 A1
20170043173 Sharma et al. Feb 2017 A1
20170043174 Greenhut et al. Feb 2017 A1
20170304624 Friedman Oct 2017 A1
Foreign Referenced Citations (45)
Number Date Country
2008279789 Oct 2011 AU
2008329620 May 2014 AU
2014203793 Jul 2014 AU
1003904 Jan 1977 CA
202933393 May 2013 CN
0362611 Apr 1990 EP
503823 Sep 1992 EP
1702648 Sep 2006 EP
1904166 Jun 2011 EP
2433675 Jan 2013 EP
2441491 Jan 2013 EP
2452721 Nov 2013 EP
1948296 Jan 2014 EP
2662113 Jan 2014 EP
2471452 Dec 2014 EP
2760541 May 2016 EP
2833966 May 2016 EP
2000051373 Feb 2000 JP
2002502640 Jan 2002 JP
2004512105 Apr 2004 JP
2005508208 Mar 2005 JP
2005245215 Sep 2005 JP
2008540040 Nov 2008 JP
5199867 Feb 2013 JP
9500202 Jan 1995 WO
9636134 Nov 1996 WO
9724981 Jul 1997 WO
9826840 Jun 1998 WO
9939767 Aug 1999 WO
0234330 Jan 2003 WO
02098282 May 2003 WO
2005000206 Jan 2005 WO
2005042089 May 2005 WO
2006065394 Jun 2006 WO
2006086435 Aug 2006 WO
2006113659 Oct 2006 WO
2006124833 Nov 2006 WO
2007073435 Jun 2007 WO
2007075974 Jul 2007 WO
2009006531 Jan 2009 WO
2012054102 Apr 2012 WO
2013080038 Jun 2013 WO
2013098644 Jul 2013 WO
2013184787 Dec 2013 WO
2014120769 Aug 2014 WO
Non-Patent Literature Citations (10)
Entry
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn)
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013.
Asirvatham et al., “Intramyocardial Pacing and Sensing for the Enhancement of Cardiac Stimulation and Sensing Specificity,” PACE, vol. 30, pp. 748-754, Jun. 2007.
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003.
Henz et al., “Synchronous Ventricular Pacing without Crossing the Tricuspid Valve or Entering the Coronary Sinus-Preliminary Results,” Journal of Cardiovascular Electrophysiology, vol. 20(12):1391-1397, Dec. 2009.doi: 10.1111/j.1540-8167.2009.01556.x.
Hyde et al., Beneficial Effect on Cardiac Resynchronization From Left Ventricular Endocardial Pacing Is Mediated by Early Access to High Conduction Velocity Tissue Electrophysiological Simulation Study, Circ Arrhythm Electrophysiol, 8, 1164-1172, 2015, DOI: 10.1161/CIRCEP.115.002677.
Rad et al., Left ventricular septum pacing by transvenous approach through the interventricular septum, Maastricht University Medical Center.
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering,vol. 60(8): 2067-2079, 2013.
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970.
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007.
Related Publications (1)
Number Date Country
20170326372 A1 Nov 2017 US
Provisional Applications (1)
Number Date Country
62334193 May 2016 US