Leadless cardiac pacemaker with integral battery and redundant welds

Information

  • Patent Grant
  • 9511236
  • Patent Number
    9,511,236
  • Date Filed
    Monday, November 5, 2012
    11 years ago
  • Date Issued
    Tuesday, December 6, 2016
    7 years ago
Abstract
A leadless cardiac pacemaker that does not require a separate hermetic housing surrounding the battery and electronics compartments is provided. The cardiac pacemaker can include a battery disposed in a battery housing and a set of electronics disposed in an electronics housing. In some embodiments, the battery housing and the electronics housing can comprise an external surface of the pacemaker. The pacemaker can include a first set of welds separating the battery from the set of electronics, and a second set of welds separating the set of electronics and the battery from an exterior of the housing. Various embodiments for achieving dual-redundant welds are also provided.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

The present disclosure relates to leadless cardiac pacemakers, and more particularly, to features and methods for welding and sealing the battery compartment to miniaturize the leadless pacemaker.


BACKGROUND

Cardiac pacing by an artificial pacemaker provides an electrical stimulation of the heart when its own natural pacemaker and/or conduction system fails to provide synchronized atrial and ventricular contractions at rates and intervals sufficient for a patient's health. Such antibradycardial pacing provides relief from symptoms and even life support for hundreds of thousands of patients. Cardiac pacing may also provide electrical overdrive stimulation to suppress or convert tachyarrhythmias, again supplying relief from symptoms and preventing or terminating arrhythmias that could lead to sudden cardiac death.


Cardiac pacing by currently available or conventional pacemakers is usually performed by a pulse generator implanted subcutaneously or sub-muscularly in or near a patient's pectoral region. Pulse generator parameters are usually interrogated and modified by a programming device outside the body, via a loosely-coupled transformer with one inductance within the body and another outside, or via electromagnetic radiation with one antenna within the body and another outside. The generator usually connects to the proximal end of one or more implanted leads, the distal end of which contains one or more electrodes for positioning adjacent to the inside or outside wall of a cardiac chamber. The leads have an insulated electrical conductor or conductors for connecting the pulse generator to electrodes in the heart. Such electrode leads typically have lengths of 50 to 70 centimeters.


Although more than one hundred thousand conventional cardiac pacing systems are implanted annually, various well-known difficulties exist, of which a few will be cited. For example, a pulse generator, when located subcutaneously, presents a bulge in the skin that patients can find unsightly, unpleasant, or irritating, and which patients can subconsciously or obsessively manipulate or “twiddle”. Even without persistent manipulation, subcutaneous pulse generators can exhibit erosion, extrusion, infection, and disconnection, insulation damage, or conductor breakage at the wire leads. Although sub-muscular or abdominal placement can address some concerns, such placement involves a more difficult surgical procedure for implantation and adjustment, which can prolong patient recovery.


A conventional pulse generator, whether pectoral or abdominal, has an interface for connection to and disconnection from the electrode leads that carry signals to and from the heart. Usually at least one male connector molding has at least one terminal pin at the proximal end of the electrode lead. The male connector mates with a corresponding female connector molding and terminal block within the connector molding at the pulse generator. Usually a setscrew is threaded in at least one terminal block per electrode lead to secure the connection electrically and mechanically. One or more O-rings usually are also supplied to help maintain electrical isolation between the connector moldings. A setscrew cap or slotted cover is typically included to provide electrical insulation of the setscrew. This briefly described complex connection between connectors and leads provides multiple opportunities for malfunction.


Other problematic aspects of conventional pacemakers relate to the separately implanted pulse generator and the pacing leads. By way of another example, the pacing leads, in particular, can become a site of infection and morbidity. Many of the issues associated with conventional pacemakers are resolved by the development of a self-contained and self-sustainable pacemaker, or so-called leadless pacemaker, as described in the related applications cited above.


Self-contained or leadless pacemakers or other biostimulators are typically fixed to an intracardial implant site by an actively engaging mechanism such as a screw or helical member that screws into the myocardium.


Prior leadless pacemakers typically include a sealed battery compartment which is then placed inside another hermetically sealed container. Sealing the battery compartment in a separate housing protects the patient from harm in the event that the battery compartment leaks, but increases the total size of the pacemaker by requiring a separate hermetic housing.


SUMMARY OF THE DISCLOSURE

A leadless cardiac pacemaker is provided, comprising a battery disposed in a battery housing, the battery housing configured to operate as an electrode, a set of electronics disposed in an electronics housing, the set of electronics being electrically coupled to the battery and configured to control operation of the electrode, a first set of welds configured to hermetically seal the battery from the set of electronics, a second set of welds configured to hermetically seal the set of electronics and the battery from an exterior of the leadless cardiac pacemaker, and a fixation device configured to attach the leadless cardiac pacemaker to human tissue.


In some embodiments, the first and second sets of welds provide dual-weld redundancy.


In one embodiment, the battery housing is not surrounded by or enclosed in a separate housing.


In another embodiment, an external surface of the battery housing is also an external surface of the pacemaker.


In one embodiment, the first set of welds is disposed on an interior of the pacemaker and the second set of welds is disposed on the exterior of the pacemaker.


In another embodiment, the battery housing and electronics housing combine to form a cylindrical housing of the pacemaker.


In some embodiments, the battery housing further comprises a cylindrical housing and a lid welded to a distal portion of the battery housing with the first set of welds to hermetically seal the battery housing.


In one embodiment, the battery housing further comprises a cylindrical housing and a first lid welded to a distal portion of the battery housing with the first set of welds to hermetically seal the distal portion of the battery housing, and a second lid welded to a proximal portion of the battery housing with a third set of welds to hermetically seal the proximal portion of the battery housing.


In some embodiments, the device further comprises a cap surrounding the second lid and welded to the battery housing with a fourth set of welds to provide dual-weld redundancy for the proximal end of the housing.


In one embodiment, the battery housing further comprises a lip positioned near a distal end of the battery housing, the lip extending inwards and then distally from an external surface of the battery housing. In another embodiment, the battery housing further comprises an indentation positioned near a distal end of the battery housing, the indentation extending inwards from an external surface of the battery housing.


In one embodiment, the battery housing further comprises a first lip positioned near a distal end of the battery housing and a second lip positioned near a proximal end of the batter housing, the first lip extending inwards and distally from an external surface of the battery housing and the second lip extending inwards and proximally from the external surface of the housing.


In another embodiment, the battery housing further comprises a first indentation positioned near a distal end of the battery housing and a second indentation positioned near a proximal end of the battery housing, the first and second indentations extending inwards from an external surface of the housing.


In some embodiments, the first and second sets of welds are laser bead welds. In another embodiment, the first and second sets of welds are deep-penetration seam welds. In some embodiments, the first set of welds are deep-penetration seam welds and the second set of welds are laser bead welds.


An implantable medical device is provided, comprising a battery disposed in a battery housing, the battery housing comprising an external surface of the implantable medical device, a set of electronics disposed in an electronics housing and electrically coupled to the battery, the set of electronics configured to control operation of the implantable medical device, a first set of welds configured to hermetically seal the battery from the set of electronics, and a second set of welds configured to hermetically seal the set of electronics and the battery from an exterior of the implantable medical device.


In some embodiments, the first and second sets of welds provide dual-weld redundancy.


In one embodiment, the battery housing is not surrounded by or enclosed in a separate housing.


In another embodiment, an external surface of the battery housing is also an external surface of the pacemaker.


In one embodiment, the first set of welds is disposed on an interior of the pacemaker and the second set of welds is disposed on the exterior of the pacemaker.


In another embodiment, the battery housing and electronics housing combine to form a cylindrical housing of the pacemaker.


In some embodiments, the battery housing further comprises a cylindrical housing and a lid welded to a distal portion of the battery housing with the first set of welds to hermetically seal the battery housing.


In one embodiment, the battery housing further comprises a cylindrical housing and a first lid welded to a distal portion of the battery housing with the first set of welds to hermetically seal the distal portion of the battery housing, and a second lid welded to a proximal portion of the battery housing with a third set of welds to hermetically seal the proximal portion of the battery housing.


In some embodiments, the device further comprises a cap surrounding the second lid and welded to the battery housing with a fourth set of welds to provide dual-weld redundancy for the proximal end of the housing.


In one embodiment, the battery housing further comprises a lip positioned near a distal end of the battery housing, the lip extending inwards and then distally from an external surface of the battery housing. In another embodiment, the battery housing further comprises an indentation positioned near a distal end of the battery housing, the indentation extending inwards from an external surface of the battery housing.


In one embodiment, the battery housing further comprises a first lip positioned near a distal end of the battery housing and a second lip positioned near a proximal end of the batter housing, the first lip extending inwards and distally from an external surface of the battery housing and the second lip extending inwards and proximally from the external surface of the housing.


In another embodiment, the battery housing further comprises a first indentation positioned near a distal end of the battery housing and a second indentation positioned near a proximal end of the battery housing, the first and second indentations extending inwards from an external surface of the housing.


In some embodiments, the first and second sets of welds are laser bead welds. In another embodiment, the first and second sets of welds are deep-penetration seam welds. In some embodiments, the first set of welds are deep-penetration seam welds and the second set of welds are laser bead welds.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIGS. 1A-1C illustrate one embodiment of an implantable medical device with dual-redundant welds.



FIGS. 2A-2C illustrate another embodiment of an implantable medical device with dual-redundant welds.



FIGS. 3A-3E illustrate yet another embodiment of an implantable medical device with dual-redundant welds.



FIGS. 4A-4C illustrate one embodiment of an implantable medical device with dual-redundant welds.



FIGS. 5A-5C illustrate yet another embodiment of an implantable medical device with dual-redundant welds.



FIGS. 6A-6B illustrate one embodiment of an implantable medical device with dual-redundant welds.



FIGS. 7A-7B illustrate yet another embodiment of an implantable medical device with dual-redundant welds.





DETAILED DESCRIPTION OF THE INVENTION

Implantable leadless cardiac pacemakers or leadless biostimulators typically include a hermetic housing to contain all the necessary electrical components and to prevent any hazardous materials, such as battery electrolyte, from harming a patient in the event of a leak in the housing and/or battery. The hermetic housing can be used to encapsulate both the power source (e.g., battery) as well as the electronics compartment responsible for pacing/sensing of the pacemaker. However, the addition of a hermetic housing increases the size of a leadless biostimulator, making the biostimulator more difficult to implant and more invasive to the patient.



FIGS. 1A-1C shows a leadless cardiac pacemaker or leadless biostimulator 100. The biostimulator includes a hermetic battery 102, electronics compartment 104, header assembly 106, and fixation device 108. The fixation device 108 can be a fixation helix or other flexible or rigid structure suitable for attaching a distal portion of the housing to tissue, such as to heart tissue. In FIG. 1A, a first electrode can be disposed on or integrated within the fixation device 108, and a second electrode can be disposed on the cylindrical wall or can 112 of battery 102, or on electronics compartment 104. Although the specification and drawings herein refer to the can being of a cylindrical shape, it should be understood that in other embodiments, the can or walls of the device can be any other three-dimensional shape, such as a cube, a cuboid, a pyramid, a cone, a hemisphere, and octahedron, etc. In some embodiments, the first electrode may be independent from the fixation device in various forms and sizes. Further details on the components and function of a leadless biostimulator are found in co-pending U.S. application Ser. Nos. 12/568,513 and 11/549,581, which are both incorporated herein by reference.


Standard active implantable devices, such as pacemakers, defibrillators, neurostimulators, cochlear implants, etc, typically have a hermetic battery that is fully contained within another hermetic enclosure. This can be described as a wall-within-a-wall construction, i.e., there are two walls and two welds separating the internal battery electrolyte from the outer patient body fluid. In this situation, two welds must fail in order for the patient to be exposed to battery electrolyte. The enclosures described herein do not comprise this wall-within-a-wall construction. Biostimulator 100 does not include a separate hermetically sealed housing to contain the hermetic battery 102 and electronics compartment 104. Rather, the cylindrical walls 112 and 114 (also referred to herein as “cans”) of battery 102 and electronics compartment 104, respectively, make up the outer surface of the biostimulator. Thus, the battery 102 and electronics compartment 104 are not disposed within a separate hermetic housing, so the walls 112 and 114 of the battery and electronics compartment also comprise the outermost surface of the pacemaker.


In some embodiments, lid 116 hermetically separates the battery 102 from the electronics compartment 104. The battery can be coupled to the electronics within the electronics compartment through the battery's hermetic feedthrough 110A, and the electronics can be coupled to the header assembly through the hermetic feedthrough 110B. Constructing the biostimulator 100 without requiring an additional hermetic enclosure to fully enclose the battery and electronics compartment allows the biostimulator to be smaller and lighter than a conventional leadless biostimulator. The resulting biostimulator can then be smaller, thinner, lighter, and less invasive when implanted.


During construction of the biostimulator 100, the various walls/compartments of the biostimulator must be hermetically joined together. Since the walls of the biostimulator are typically made from a conductive, biocompatible, inert, and anodically safe material such as titanium, 316L stainless steel, or other similar materials, welding is an effective technique for joining and sealing the biostimulator. FIGS. 1B-1C show two techniques for welding the cylindrical walls 112 and 114 together with lid 116. In FIG. 1B, weld bead 101A joins walls 112 to 116, and subsequently weld bead 101B joins 112 to 114. In some embodiments, the thickness of wall 112 can be slightly more than the thickness of wall 114 to aid in aligning the cylindrical walls during manufacture. The weld beads can be formed via a laser into a hermetic seam weld, as known in the art. Similarly, in FIG. 1C, a deep-penetration seam weld 103A can be used to join wall 112 to lid 116.


Referring back to FIG. 1A, the proximal portion 118 of the biostimulator 100 can comprise the end of a deep drawn cylinder or machined cylinder so as not to require additional welds at that end. However, any of the welding techniques discussed herein can be used at the proximal portion of the biostimulator if a deep drawn cylinder is not used. A docking assembly 126 may be attached to the proximal portion 118 of the biostimulator.



FIGS. 2A-2C illustrate an alternative embodiment of a biostimulator 200 that provides a dual-weld redundancy. Constructing a biostimulator with dual or redundant welds increases the safety of the device within a patient since more than one weld must fail for the patient to be exposed to toxic or harmful components contained within the hermetic battery. The biostimulator 200 can include many of the features described above in FIGS. 1A-1C, including battery 202, electronics compartment 204, header assembly 206, fixation device 208, feedthroughs 210A and 210B, cylindrical walls 212 and 214, and lid 216.


In FIGS. 2A-2C, the walls 212 of the battery 202 can include a lip 220 at the distal (FIG. 2B) and/or proximal (FIG. 2C) portions of the battery. Referring to FIG. 2B, lid 216 can be welded to walls 212 at the inner portion of lip 220 with welds 201 a to separate the battery 202 from the electronics compartment 204. Similarly, walls 212 and 214 can be welded together at the outer portion of lip 220 with welds 201b. The proximal portion of the battery may be sealed in a similar manner to the distal portion. In FIG. 2C, lid 222 and walls 212 can be welded together at the inner portion of lip 220 with welds 201c. Similarly, walls 212 and proximal cap 224 can be welded together at the outer portion of lip 220 with welds 201d. Welding the biostimulator in this fashion ensures dual-weld redundancy, requiring failure of the 201 a and 201b welds for electrolyte from battery 202 to reach a patient at the distal portion of the battery, or failure of the 201c and 201d welds for electrolyte from battery 202 to reach a patient at the proximal portion of the battery.


The proximal portion 218 of biostimulator 200, as shown in FIGS. 2A and 2C, includes a proximal cap 224 and docking assembly 226. The docking assembly can be configured to engage or be grabbed by a delivery and/or retrieval catheter system for delivery and extraction of the biostimulator to and from tissue. In other embodiments, as described above, the proximal portion 218 of the biostimulator may be formed from a deep drawn enclosure, thus eliminating the need for a lid 222 and proximal cap 224.


In FIGS. 3A-3C, the walls 312 of the battery 302 can include an indentation 328 at the distal (FIG. 3B) and/or proximal (FIG. 3C) portions of the battery. In some embodiments, the proximal portion of the battery can alternatively be constructed from a deep drawn enclosure. Referring to FIG. 3B, lid 316 can be welded to cylindrical walls 312 at the inner portion of indentation 328 with welds 301a to separate the battery 302 from the electronics compartment 304. Similarly, walls 312 and 314 can be welded together at the outer portion of indentation 328 with welds 301b. The proximal portion of the battery may be sealed in a similar manner to the distal portion. In FIG. 3C, lid 322 and walls 312 can be welded together at the inner portion of indentation 328 with welds 301c. Similarly, walls 312 and proximal cap 324 can be welded together at the outer portion of indentation 328 with welds 301d. Welding the biostimulator in this fashion creates a dual-weld redundancy, which would require failure of the 301a and 301b welds for electrolyte from battery 302 to reach a patient at the distal portion of the battery, or failure of the 301c and 301d welds for electrolyte from battery 302 to reach a patient at the proximal portion of the battery.



FIGS. 3D-3E illustrate an alternate embodiment of the biostimulator 300 shown in FIGS. 3A-3C. In FIGS. 3D-3E, the proximal cap 324 is only big enough to enclose the lid 322, instead of being welded to the outer portion of indentation 328 as in FIGS. 3A-3C. The proximal cap therefore has a diameter less than the total diameter of walls 312. This provides for a smaller and more compact proximal end cap while still retaining the features of a dual-weld redundancy.



FIGS. 4A-4C illustrate another embodiment of a biostimulator 400 with a dual-weld failure mode. In FIG. 4A, lid 416 is recessed a distance d from the end of walls 412 into the battery compartment. Lid 416 can be recessed inside walls 412 at a distance d and welded in place with weld 401a to separate the battery 402 from the electronics compartment 404. The proximal portion of the battery may be sealed in a similar manner to the distal portion. Lid 422 can be recessed inside at a distance d to the inner portion of walls 412 and welded in place with weld 401c. Proximal cap 424 can then be welded to walls 412 with welds 401d to provide a redundant weld. In some embodiments, lid 422 and proximal cap 424 are not used, but rather, walls 412 are formed from a deep drawn enclosure.



FIGS. 5A-5C illustrate another embodiment of a biostimulator 500 with a dual-weld failure mode. Biostimulator 500 is similar to the biostimulator 400 of FIGS. 4A-4C in that lids 516, 530, 522, and proximal cap 524 are recessed and welded within the cylindrical walls to form the battery 502 and electronics compartment 504. However, in contrast to biostimulator 400 of FIGS. 4A-4C, which included two sets of cylindrical walls or cans 412 and 414, the biostimulator 500 of FIGS. 5A-5C comprises a single cylindrical wall 512 to form both the battery and electrical compartments. The battery and electrical compartments are contained by lids 530, 516, 522, and proximal cap 524. In other embodiments, proximal cap 524 and lid 522 may not be necessary if the can 512 is a deep drawn enclosure, as described above.


In FIG. 5A, lid 516 is recessed a distance d from the end of cylindrical walls 512 into the battery compartment. Lid 516 can be recessed inside walls 512 and welded in place with welds 501a to separate the battery 502 from the electronics compartment 504. Lid 530 can also be recessed inside walls 512 and welded in place with welds 501b to provide a redundant weld.


A feedthrough 510A can pass through lid 516 to couple the battery 502 to the electronics compartment 504, and feedthrough 510B can couple the electronics to the header assembly, as described above. The proximal portion of the battery may be sealed in a similar manner to the distal portion. Lid 522 can be recessed inside cylindrical walls 512 and welded together with welds 501c. Proximal cap 524 can then be welded to walls 512 with welds 501d to provide a redundant weld. In some embodiments, lid 522 and proximal cap 524 are not used, but rather, cylindrical walls or can 512 are formed from a deep drawn enclosure.



FIGS. 6A-6B illustrate another embodiment of a biostimulator 600, which is a variation of biostimulator 300 illustrated above in FIGS. 3A-3C. In FIGS. 6A-6B, lid 616 and feedthrough 610A can be inserted from the bottom (or proximal end of the biostimulator) and welded to the proximal facing surface of cylindrical walls 612 with weld 601a. Dual weld redundancy may be achieved by welding walls 614 to walls 612 with weld 601b. This is in contrast to biostimulator 300 in which the lid is mounted flush against the inner portion of cylindrical walls.


In another embodiment, shown in FIGS. 7A-7B, a similar concept is used except lid 716 contacts both the inner surface of cylindrical walls 712 at welds 701 as well as the proximal surface of the cylindrical walls. In this embodiment, the lid is thicker and is shaped with a flange to seat in the opening created in 712. This flange will provide self-centering as well as provide a backstop against weld penetration into the battery.


As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims
  • 1. An implantable medical device, comprising: a battery disposed in a battery housing, the battery housing comprising a battery wall and a first lid, and the battery housing configured to operate as an electrode;a set of electronics disposed in an electronics housing, the set of electronics being electrically coupled to the battery and configured to control operation of the electrode;a first set of welds configured to hermetically join the battery wall, the first lid, and the electronics housing so as to hermetically seal the battery from the set of electronics; anda second set of welds configured to hermetically join the battery wall and electronics housing so as to seal the set of electronics and the battery from an exterior of the implantable medical device, wherein the first set of welds is disposed only on an interior of the implantable medical device and the second set of welds is disposed on the exterior of the implantable medical device.
  • 2. The implantable medical device of claim 1, wherein the battery comprises a toxic component and wherein the first set of welds is configured to prevent the toxic component of the battery from leaking to the exterior of the implantable medical device when the second set of welds fails.
  • 3. The implantable medical device of claim 1, wherein the battery housing is not surrounded by or enclosed in a separate housing.
  • 4. The implantable medical device of claim 1, wherein the implantable medical device is a leadless cardiac pacemaker and wherein an external surface of the battery housing is also an external surface of the pacemaker.
  • 5. The implantable medical device of claim 1, wherein the implantable medical device is a leadless cardiac pacemaker and the battery wall and electronics housing combine to form a cylindrical housing of the pacemaker.
  • 6. The implantable medical device of claim 1, wherein: the first lid is welded to a distal portion of the battery wall,the battery housing further comprises a second lid welded to a proximal portion of the battery wall with a third set of welds to hermetically seal the proximal portion of the battery housing.
  • 7. The implantable medical device of claim 6, further comprising a cap surrounding the second lid and welded to the battery housing with a fourth set of welds to provide dual-weld redundancy for the proximal end of the housing.
  • 8. The implantable medical device of claim 1, wherein the first and second sets of welds are laser bead welds.
  • 9. An implantable medical device, comprising: a battery disposed in a battery housing, the battery housing comprising a battery wall and a first lid, the battery wall comprising an external surface of the implantable medical device;a set of electronics disposed in an electronics housing and electrically coupled to the battery, the set of electronics configured to control operation of the implantable medical device;a first set of welds configured to join the battery wall to the first lid to hermetically seal the battery from the set of electronics; anda second set of welds configured to join the battery wall to the electronics housing to hermetically seal the set of electronics and the battery from an exterior of the implantable medical device, wherein the first set of welds is disposed only on an interior of the implantable medical device and the second set of welds is disposed on the exterior of the implantable medical device.
  • 10. The device of claim 9, wherein the battery comprises a toxic component and wherein the first set of welds is configured to prevent the toxic component of the battery from leaking to an exterior of the implantable medical device when the second set of welds fails and the second set of welds is configured to prevent the toxic component of the battery from leaking to the exterior of the implantable medical device when the first set of welds fails.
  • 11. The device of claim 9, wherein the battery housing is not surrounded by or enclosed in a separate housing.
  • 12. The device of claim 9, wherein: the battery wall comprises a lip, the lip comprising an inner portion disposed only on an interior of the implantable medical device and an outer portion disposed on an exterior of the implantable medical device,the first lid is welded to the battery wall at the inner portion of the lip with the first set of welds to join the battery wall to the first lid and hermetically seal the battery from the set of electronics, andthe second set of welds is disposed on the exterior of the implantable medical device, wherein the second set of welds weld the battery wall and the electronics housing together at the outer portion of the lip.
  • 13. The device of claim 9, wherein the battery wall and electronics housing combine to form a cylindrical housing of the device.
  • 14. The device of claim 9, wherein the first set of welds is configured to hermetically seal the distal portion of the battery housing, wherein the device further comprises a second lid welded to a proximal portion of the battery housing only on the interior of the medical device with a third set of welds to hermetically seal the proximal portion of the battery housing.
  • 15. The device of claim 14, further comprising a cap surrounding the second lid and welded to the battery housing with a fourth set of welds to provide dual-weld redundancy for the proximal end of the housing.
  • 16. The device of claim 9, the battery housing further comprising a lip positioned near a distal end of the battery housing, the lip extending inwards from the external surface of the implantable medical device and then distally.
  • 17. The device of claim 9, the battery housing further comprising an indentation positioned near a distal end of the battery housing, the indentation extending inwards from the external surface of the battery housing.
  • 18. The device of claim 9, the battery housing further comprising a first lip positioned near a distal end of the battery housing and a second lip positioned near a proximal end of the battery housing, the first lip extending inwards from the external surface of the implantable medical device and then distally and the second lip extending inwards from the external surface of the implantable medical device and then proximally.
  • 19. The device of claim 9, the battery housing further comprising a first indentation positioned near a distal end of the battery housing and a second indentation positioned near a proximal end of the battery housing, the first and second indentations extending inwards from the external surface of the housing.
  • 20. The device of claim 9, wherein the first and second sets of welds are laser bead welds.
  • 21. The device of claim 9, wherein the implantable medical device is an implantable cardiac device.
  • 22. A leadless cardiac pacemaker, comprising: a battery disposed in a battery housing, the battery housing comprising a battery wall and a lid, the battery housing configured to operate as an electrode;a set of electronics disposed in an electronics housing, the set of electronics being electrically coupled to the battery and configured to control operation of the electrode, wherein: the battery wall is welded to the lid and the electronics housing with a first set of welds, wherein the first set of welds is disposed only on an interior of the leadless cardiac pacemaker,the electronics housing is welded to the battery wall with a second set of welds disposed on the exterior of the leadless cardiac pacemaker; anda fixation device configured to attach the leadless cardiac pacemaker to human tissue.
  • 23. The leadless cardiac pacemaker of claim 22, wherein the battery comprises an electrolyte, wherein the first set of welds is configured to hermetically seal the battery from the set of electronics, wherein the second set of welds is configured to hermetically seal the set of electronics and the battery from an exterior of the leadless cardiac pacemaker, and wherein the first and second welds are configured so that both the first and second set of welds must fail for the electrolyte to leak to the exterior of the leadless cardiac pacemaker.
  • 24. The leadless cardiac pacemaker of claim 22, wherein first and second sets of welds are laser bead welds.
  • 25. The leadless cardiac pacemaker of claim 22, wherein the battery wall is thicker than the electronics housing.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 61/555,988, filed Nov. 4, 2011, titled “Leadless Cardiac Pacemaker with Integral Battery and Redundant Welds”, which application is incorporated herein by reference in its entirety.

US Referenced Citations (567)
Number Name Date Kind
3199508 Roth Aug 1965 A
3212496 Preston Oct 1965 A
3218638 Honig Nov 1965 A
3241556 Zacouto Mar 1966 A
3478746 Greatbatch Nov 1969 A
3603881 Thornton Sep 1971 A
3727616 Lenzkes Apr 1973 A
3757778 Graham Sep 1973 A
3823708 Lawhorn Jul 1974 A
3830228 Foner Aug 1974 A
3835864 Rasor et al. Sep 1974 A
3836798 Greatbatch Sep 1974 A
3870051 Brindley Mar 1975 A
3872251 Auerbach et al. Mar 1975 A
3905364 Cudahy et al. Sep 1975 A
3940692 Neilson et al. Feb 1976 A
3943926 Barragan Mar 1976 A
3946744 Auerbach Mar 1976 A
3952750 Mirowski et al. Apr 1976 A
4027663 Fischler et al. Jun 1977 A
4072154 Anderson et al. Feb 1978 A
4083366 Gombrich et al. Apr 1978 A
4102344 Conway et al. Jul 1978 A
4146029 Ellinwood, Jr. Mar 1979 A
4151513 Menken et al. Apr 1979 A
4151540 Sander et al. Apr 1979 A
4152540 Duncan et al. May 1979 A
4173221 McLaughlin et al. Nov 1979 A
4187854 Hepp et al. Feb 1980 A
4210149 Heilman et al. Jul 1980 A
RE30366 Rasor et al. Aug 1980 E
4223678 Langer et al. Sep 1980 A
4250888 Grosskopf Feb 1981 A
4256115 Bilitch Mar 1981 A
4296756 Dunning et al. Oct 1981 A
4310000 Lindemans Jan 1982 A
4318412 Stanly et al. Mar 1982 A
4336810 Anderson et al. Jun 1982 A
4350169 Dutcher et al. Sep 1982 A
4374382 Markowitz Feb 1983 A
4406288 Horwinski et al. Sep 1983 A
4411271 Markowitz Oct 1983 A
4418695 Buffet Dec 1983 A
4424551 Stevenson et al. Jan 1984 A
4428378 Anderson et al. Jan 1984 A
4440173 Hudziak et al. Apr 1984 A
4442840 Wojciechowicz, Jr. Apr 1984 A
4453162 Money et al. Jun 1984 A
4458692 Simson Jul 1984 A
4481950 Duggan Nov 1984 A
4513743 van Arragon et al. Apr 1985 A
4516579 Irnich May 1985 A
4522208 Buffet Jun 1985 A
4524774 Hildebrandt Jun 1985 A
4531527 Reinhold, Jr. et al. Jul 1985 A
4543955 Schroeppel Oct 1985 A
4550370 Baker Oct 1985 A
4552127 Schiff Nov 1985 A
4552154 Hartlaub Nov 1985 A
4562846 Cox et al. Jan 1986 A
4586508 Batina et al. May 1986 A
4606352 Geddes et al. Aug 1986 A
4607639 Tanagho et al. Aug 1986 A
4612934 Borkan Sep 1986 A
4625730 Fountain et al. Dec 1986 A
4679144 Cox et al. Jul 1987 A
4681111 Silvian Jul 1987 A
4681117 Brodman et al. Jul 1987 A
4702253 Nappholz et al. Oct 1987 A
4719920 Alt et al. Jan 1988 A
4722342 Amundson Feb 1988 A
4750495 Moore et al. Jun 1988 A
4763340 Yoneda et al. Aug 1988 A
4763655 Wirtzfeld et al. Aug 1988 A
4787389 Tarjan Nov 1988 A
4791931 Slate Dec 1988 A
4793353 Borkan Dec 1988 A
4794532 Leckband et al. Dec 1988 A
4802481 Schroeppel Feb 1989 A
4809697 Causey, III et al. Mar 1989 A
4827940 Mayer et al. May 1989 A
4830006 Haluska et al. May 1989 A
4844076 Lesho et al. Jul 1989 A
4846195 Alt Jul 1989 A
4858610 Callaghan et al. Aug 1989 A
4860750 Frey et al. Aug 1989 A
4875483 Vollmann et al. Oct 1989 A
4880004 Baker, Jr. et al. Nov 1989 A
4883064 Olson et al. Nov 1989 A
4886064 Strandberg Dec 1989 A
4896068 Nilsson Jan 1990 A
4903701 Moore et al. Feb 1990 A
4905708 Davies Mar 1990 A
4926863 Alt May 1990 A
4974589 Sholder Dec 1990 A
4987897 Funke Jan 1991 A
4995390 Cook et al. Feb 1991 A
5010887 Thornander Apr 1991 A
5012806 De Bellis May 1991 A
5014701 Pless et al. May 1991 A
5040533 Fearnot Aug 1991 A
5040534 Mann et al. Aug 1991 A
5040536 Riff Aug 1991 A
5042497 Shapland Aug 1991 A
5052399 Olive et al. Oct 1991 A
5058581 Silvian Oct 1991 A
5065759 Begemann Nov 1991 A
5076270 Stutz, Jr. Dec 1991 A
5076272 Ferek-Petric Dec 1991 A
5085224 Galen et al. Feb 1992 A
5086772 Larnard et al. Feb 1992 A
5088488 Markowitz et al. Feb 1992 A
5095903 DeBellis Mar 1992 A
5109845 Yuuchi et al. May 1992 A
5111816 Pless et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5133350 Duffin Jul 1992 A
5135004 Adams et al. Aug 1992 A
5170784 Ramon et al. Dec 1992 A
5170802 Mehra Dec 1992 A
5179947 Meyerson et al. Jan 1993 A
5184616 Weiss Feb 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5193550 Duffin Mar 1993 A
5217010 Tsitlik et al. Jun 1993 A
5247945 Heinze et al. Sep 1993 A
5259394 Bens Nov 1993 A
5267150 Wilkinson Nov 1993 A
5282841 Szyszkowski Feb 1994 A
5284136 Hauck et al. Feb 1994 A
5291902 Carman Mar 1994 A
5300093 Koestner et al. Apr 1994 A
5304206 Baker, Jr. et al. Apr 1994 A
5304209 Adams et al. Apr 1994 A
5313953 Yomtov et al. May 1994 A
5318596 Barreras et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5333095 Stevenson et al. Jul 1994 A
5336244 Weijand Aug 1994 A
5342401 Spano et al. Aug 1994 A
5354317 Alt Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5373852 Harrison et al. Dec 1994 A
5383912 Cox et al. Jan 1995 A
5383915 Adams Jan 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5406444 Selfried et al. Apr 1995 A
5411532 Mortazavi May 1995 A
5411535 Fujii May 1995 A
5411537 Munshi et al. May 1995 A
5417222 Dempsey et al. May 1995 A
5419337 Dempsey et al. May 1995 A
5431171 Harrison et al. Jul 1995 A
5446447 Carney et al. Aug 1995 A
5456261 Luczyk Oct 1995 A
5466246 Silvian Nov 1995 A
5469857 Laurent et al. Nov 1995 A
5480415 Cox et al. Jan 1996 A
5481262 Urbas et al. Jan 1996 A
5522876 Rusink Jun 1996 A
5531779 Dahl et al. Jul 1996 A
5531781 Alferness et al. Jul 1996 A
5531783 Giele et al. Jul 1996 A
5539775 Tuttle et al. Jul 1996 A
5549654 Powell Aug 1996 A
5549659 Johansen et al. Aug 1996 A
5551427 Altman Sep 1996 A
5556421 Prutchi et al. Sep 1996 A
5562717 Tippey et al. Oct 1996 A
5571143 Hoegnelid et al. Nov 1996 A
5571148 Loeb et al. Nov 1996 A
5579775 Dempsey et al. Dec 1996 A
5586556 Spivey et al. Dec 1996 A
5591217 Barreras Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5649952 Lam Jul 1997 A
5650759 Hittman et al. Jul 1997 A
5654984 Hershbarger et al. Aug 1997 A
5662689 Elsberry et al. Sep 1997 A
5669391 Williams Sep 1997 A
5674259 Gray Oct 1997 A
5676153 Smith et al. Oct 1997 A
5693076 Kaemmerer Dec 1997 A
5694940 Unger et al. Dec 1997 A
5694952 Lidman et al. Dec 1997 A
5697958 Paul et al. Dec 1997 A
5702427 Ecker et al. Dec 1997 A
5725559 Alt et al. Mar 1998 A
5728154 Crossett et al. Mar 1998 A
5730143 Schwarzberg Mar 1998 A
5735880 Prutchi et al. Apr 1998 A
5738102 Lemelson Apr 1998 A
5740811 Hedberg et al. Apr 1998 A
5741314 Daly et al. Apr 1998 A
5766231 Erickson et al. Jun 1998 A
5792205 Alt et al. Aug 1998 A
5810735 Halperin et al. Sep 1998 A
5814076 Brownlee Sep 1998 A
5814087 Renirie Sep 1998 A
5814089 Stokes et al. Sep 1998 A
5824016 Ekwall Oct 1998 A
5871451 Unger et al. Feb 1999 A
5876353 Riff Mar 1999 A
5876425 Gord et al. Mar 1999 A
5891178 Mann et al. Apr 1999 A
5899928 Sholder et al. May 1999 A
5935079 Swanson et al. Aug 1999 A
5954761 Machek et al. Sep 1999 A
5957861 Combs et al. Sep 1999 A
5984861 Crowley Nov 1999 A
5987352 Klein et al. Nov 1999 A
5995876 Kruse et al. Nov 1999 A
5999857 Weijand et al. Dec 1999 A
6002969 Machek et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6061596 Richmond et al. May 2000 A
6076016 Feierbach Jun 2000 A
6080187 Alt et al. Jun 2000 A
6093146 Filangeri Jul 2000 A
6096065 Crowley Aug 2000 A
6102874 Stone et al. Aug 2000 A
6112116 Fischell et al. Aug 2000 A
6115628 Stadler et al. Sep 2000 A
6115630 Stadler et al. Sep 2000 A
6115636 Ryan Sep 2000 A
6119031 Crowley Sep 2000 A
6125290 Miesel Sep 2000 A
6125291 Miesel et al. Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6129751 Lucchesi et al. Oct 2000 A
6132390 Cookston et al. Oct 2000 A
6132456 Sommer et al. Oct 2000 A
6134459 Roberts et al. Oct 2000 A
6134470 Hartlaub Oct 2000 A
6139510 Palermo Oct 2000 A
6141584 Rockwell et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144866 Miesel et al. Nov 2000 A
6148230 KenKnight Nov 2000 A
6152882 Prutchi Nov 2000 A
6163723 Roberts et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6178349 Kieval Jan 2001 B1
6178356 Chastain et al. Jan 2001 B1
6185443 Crowley Feb 2001 B1
6185452 Schulman et al. Feb 2001 B1
6185464 Bonner et al. Feb 2001 B1
6188932 Lindegren Feb 2001 B1
6190324 Kieval et al. Feb 2001 B1
6198952 Miesel Mar 2001 B1
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6208900 Ecker et al. Mar 2001 B1
6223081 Kerver Apr 2001 B1
6230059 Duffin May 2001 B1
6236882 Lee et al. May 2001 B1
6240321 Janke et al. May 2001 B1
6243608 Pauly et al. Jun 2001 B1
6248080 Miesel et al. Jun 2001 B1
6263245 Snell Jul 2001 B1
6265100 Saaski et al. Jul 2001 B1
6266554 Hsu et al. Jul 2001 B1
6266564 Hill et al. Jul 2001 B1
6272379 Fischell et al. Aug 2001 B1
6280409 Stone et al. Aug 2001 B1
6289229 Crowley Sep 2001 B1
6306088 Krausman et al. Oct 2001 B1
6310960 Saaski et al. Oct 2001 B1
6315721 Schulman et al. Nov 2001 B2
6324418 Crowley et al. Nov 2001 B1
6324421 Stadler et al. Nov 2001 B1
RE37463 Altman Dec 2001 E
6343227 Crowley Jan 2002 B1
6343233 Werner et al. Jan 2002 B1
6347245 Lee et al. Feb 2002 B1
6358202 Arent Mar 2002 B1
6361522 Scheiner et al. Mar 2002 B1
6363282 Nichols et al. Mar 2002 B1
6364831 Crowley Apr 2002 B1
6370434 Zhang et al. Apr 2002 B1
6381492 Rockwell et al. Apr 2002 B1
6381493 Stadler et al. Apr 2002 B1
6381494 Gilkerson et al. Apr 2002 B1
6383209 Crowley May 2002 B1
6385593 Linberg May 2002 B2
6386882 Linberg May 2002 B1
6397100 Stadler et al. May 2002 B2
6402689 Scarantino et al. Jun 2002 B1
6405073 Crowley et al. Jun 2002 B1
6405083 Rockwell et al. Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6409675 Turcott Jun 2002 B1
6412490 Lee Jul 2002 B1
6418346 Nelson et al. Jul 2002 B1
6423056 Ishikawa et al. Jul 2002 B1
6424866 Mika et al. Jul 2002 B2
6428484 Battmer et al. Aug 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6442433 Linberg Aug 2002 B1
6444970 Barbato Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6458145 Ravenscroft et al. Oct 2002 B1
6459928 Mika et al. Oct 2002 B2
6459937 Morgan et al. Oct 2002 B1
6466820 Juran et al. Oct 2002 B1
6468263 Fischell et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6472991 Schulman et al. Oct 2002 B1
6477424 Thompson et al. Nov 2002 B1
6480733 Turcott Nov 2002 B1
6482154 Haubrich et al. Nov 2002 B1
6484055 Marcovecchio Nov 2002 B1
6484057 Ideker et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6496715 Lee et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6500168 Jellie Dec 2002 B1
6501983 Natarajan et al. Dec 2002 B1
6512949 Combs et al. Jan 2003 B1
6512959 Gomperz et al. Jan 2003 B1
6522926 Kieval et al. Feb 2003 B1
6522928 Whitehurst et al. Feb 2003 B2
6539257 KenKnight Mar 2003 B1
6542781 Koblish et al. Apr 2003 B1
6556860 Groenewegen Apr 2003 B1
6558321 Burd et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6567680 Swetlik et al. May 2003 B2
6571120 Hutten May 2003 B2
6574509 Kraus et al. Jun 2003 B1
6574511 Lee Jun 2003 B2
6580946 Struble Jun 2003 B2
6580948 Haupert et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6589187 Dirnberger et al. Jul 2003 B1
6592518 Denker et al. Jul 2003 B2
6594523 Levine Jul 2003 B1
6597948 Rockwell et al. Jul 2003 B1
6597952 Mika et al. Jul 2003 B1
6609023 Fischell et al. Aug 2003 B1
6611710 Gomperz et al. Aug 2003 B2
6615075 Mlynash et al. Sep 2003 B2
6622043 Kraus et al. Sep 2003 B1
6647292 Bardy et al. Nov 2003 B1
6648823 Thompson Nov 2003 B2
6649078 Yu Nov 2003 B2
6654638 Sweeney Nov 2003 B1
6658285 Potse et al. Dec 2003 B2
6658297 Loeb Dec 2003 B2
6658301 Loeb et al. Dec 2003 B2
6659959 Brockway et al. Dec 2003 B2
6669631 Norris et al. Dec 2003 B2
6681135 Davis et al. Jan 2004 B1
6684100 Sweeney et al. Jan 2004 B1
6687540 Marcovecchio Feb 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6695885 Schulman et al. Feb 2004 B2
6697672 Andersson Feb 2004 B2
6697677 Dahl et al. Feb 2004 B2
6699200 Cao et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6704602 Berg et al. Mar 2004 B2
6711440 Deal et al. Mar 2004 B2
6716238 Elliott Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6728572 Hsu et al. Apr 2004 B2
6728574 Ujhelyi et al. Apr 2004 B2
6728576 Thompson et al. Apr 2004 B2
6731976 Penn et al. May 2004 B2
6731979 MacDonald May 2004 B2
6733485 Whitehurst et al. May 2004 B1
6735474 Loeb et al. May 2004 B1
6735475 Whitehurst et al. May 2004 B1
6738670 Almendinger et al. May 2004 B1
6741877 Shults et al. May 2004 B1
6741886 Yonce May 2004 B2
6746404 Schwartz Jun 2004 B2
6754538 Linberg Jun 2004 B2
6760620 Sippens Groenewegen Jul 2004 B2
6764446 Wolinsky et al. Jul 2004 B2
6768923 Ding et al. Jul 2004 B2
6783499 Schwartz Aug 2004 B2
6785576 Verness Aug 2004 B2
6786860 Maltan et al. Sep 2004 B2
6792314 Byers et al. Sep 2004 B2
6799069 Weiner et al. Sep 2004 B2
6804559 Kraus et al. Oct 2004 B1
6804561 Stover Oct 2004 B2
6809507 Morgan et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6821154 Canfield et al. Nov 2004 B1
6823217 Rutten et al. Nov 2004 B2
6824512 Warkentin et al. Nov 2004 B2
6829508 Schulman et al. Dec 2004 B2
6839596 Nelson et al. Jan 2005 B2
6848052 Hamid et al. Jan 2005 B2
6850801 Kieval et al. Feb 2005 B2
6856835 Bardy et al. Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6862480 Cohen et al. Mar 2005 B2
6865420 Kroll Mar 2005 B1
6869404 Schulhauser et al. Mar 2005 B2
6871099 Whitehurst et al. Mar 2005 B1
6878112 Linberg et al. Apr 2005 B2
6879695 Maltan et al. Apr 2005 B2
6879855 Schulman et al. Apr 2005 B2
6882875 Crowley Apr 2005 B1
6889081 Hsu May 2005 B2
6893395 Kraus et al. May 2005 B1
6895279 Loeb et al. May 2005 B2
6895281 Amundson et al. May 2005 B1
6896651 Gross et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6901294 Whitehurst et al. May 2005 B1
6901296 Whitehurst et al. May 2005 B1
6907285 Denker et al. Jun 2005 B2
6907293 Grill et al. Jun 2005 B2
6912420 Scheiner et al. Jun 2005 B2
6917833 Denker et al. Jul 2005 B2
6922330 Nielsen Jul 2005 B2
6925328 Foster et al. Aug 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6999821 Jenney et al. Feb 2006 B2
7001372 Richter Feb 2006 B2
7023359 Goetz et al. Apr 2006 B2
7027876 Casavant et al. Apr 2006 B2
7103408 Haller Sep 2006 B2
7120992 He Oct 2006 B2
7146222 Boling Dec 2006 B2
7146225 Guenst et al. Dec 2006 B2
7164950 Kroll et al. Jan 2007 B2
7177698 Klosterman et al. Feb 2007 B2
7181505 Haller et al. Feb 2007 B2
7187971 Sommer et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7212870 Helland May 2007 B1
7277754 McCabe et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7363090 Halperin et al. Apr 2008 B2
7558631 Cowan et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7616991 Mann et al. Nov 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7848823 Drasler et al. Dec 2010 B2
7937148 Jacobson May 2011 B2
7945333 Jacobson May 2011 B2
8010209 Jacobson Aug 2011 B2
8295939 Jacobson Oct 2012 B2
8352025 Jacobson Jan 2013 B2
8704124 Wilson Apr 2014 B2
8788035 Jacobson Jul 2014 B2
8798745 Jacobson Aug 2014 B2
20010031999 Carter et al. Oct 2001 A1
20020032467 Shemer et al. Mar 2002 A1
20020077686 Westlund et al. Jun 2002 A1
20020116028 Greatbatch et al. Aug 2002 A1
20020147488 Doan et al. Oct 2002 A1
20030141995 Lin Jul 2003 A1
20030158584 Cates et al. Aug 2003 A1
20030163184 Scheiner et al. Aug 2003 A1
20030199941 Nielsen Oct 2003 A1
20040011366 Schulman et al. Jan 2004 A1
20040059392 Parramon et al. Mar 2004 A1
20040116939 Goode Jun 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040143262 Visram et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167587 Thompson Aug 2004 A1
20040172116 Seifert et al. Sep 2004 A1
20040193223 Kramer et al. Sep 2004 A1
20040249417 Ransbury et al. Dec 2004 A1
20040260349 Stroebel Dec 2004 A1
20050038474 Wool Feb 2005 A1
20050038491 Haack Feb 2005 A1
20050043765 Williams et al. Feb 2005 A1
20050075682 Schulman et al. Apr 2005 A1
20050096702 Denker et al. May 2005 A1
20050131478 Kim et al. Jun 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165465 Pianca et al. Jul 2005 A1
20050267555 Marnfeldt et al. Dec 2005 A1
20050288722 Eigler et al. Dec 2005 A1
20060064149 Belacazar et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060105613 Carroll May 2006 A1
20060108335 Zhao et al. May 2006 A1
20060121475 Davids et al. Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161222 Haubrich et al. Jul 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247750 Seifert et al. Nov 2006 A1
20060282150 Olson et al. Dec 2006 A1
20070016263 Armstrong et al. Jan 2007 A1
20070043414 Fifer et al. Feb 2007 A1
20070055184 Echt et al. Mar 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070123923 Lindstrom et al. May 2007 A1
20070142709 Martone et al. Jun 2007 A1
20070179552 Dennis et al. Aug 2007 A1
20070270675 Kane et al. Nov 2007 A1
20070276004 Hirsch et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20080004535 Smits Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080039738 Dinsmoor et al. Feb 2008 A1
20080086168 Cahill Apr 2008 A1
20080091255 Caparso et al. Apr 2008 A1
20080119911 Rosero May 2008 A1
20080243218 Bottomley et al. Oct 2008 A1
20080269591 Halperin et al. Oct 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090149902 Kumar et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20090206066 Rekowski Aug 2009 A1
20100069983 Peacock et al. Mar 2010 A1
20100198288 Ostroff Aug 2010 A1
20100211149 Morgan et al. Aug 2010 A1
20100249828 Mavani et al. Sep 2010 A1
20100292541 Hashiba et al. Nov 2010 A1
20100305629 Lund et al. Dec 2010 A1
20100305653 Lund et al. Dec 2010 A1
20100305656 Imran et al. Dec 2010 A1
20100312332 Forster et al. Dec 2010 A1
20110004117 Neville et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110190842 Johnson et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110282423 Jacobson Nov 2011 A1
20120010709 Wilson Jan 2012 A1
20120089198 Ostroff Apr 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120245665 Friedman et al. Sep 2012 A1
20120255990 Szabo Oct 2012 A1
20120290021 Saurkar et al. Nov 2012 A1
20130041422 Jacobson Feb 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20140039570 Carroll et al. Feb 2014 A1
Foreign Referenced Citations (16)
Number Date Country
0 801 958 Oct 1997 EP
1741465 Jan 2007 EP
H04-506167 Oct 1992 JP
05-245215 Sep 1993 JP
06507096 Mar 2006 JP
06516449 Jul 2006 JP
2006-526483 Nov 2006 JP
WO9312714 Jul 1993 WO
WO0234333 May 2002 WO
WO2004012811 Feb 2004 WO
WO 2006065394 Jun 2006 WO
WO 2007047681 Apr 2007 WO
WO 2007059386 May 2007 WO
WO 2008058265 May 2008 WO
WO2010088116 Aug 2010 WO
2011094413 Aug 2011 WO
Non-Patent Literature Citations (13)
Entry
U.S. Appl. No. 10/891,747 entitled “System and method for synchronizing supplemental pacing pulses generated by a satellite pacing device with primary pulses delivered by a separate pacing device,” filed Jul. 14, 2004 (abandoned prior to pub.: CIP of this app. is U.S. Pat. No. 7,630,767).
Beeby et al.; Micromachined silicon generator for harvesting power from vibrations; (Proceedings) PowerMEMS 2004; Kyoto, Japan; pp. 104-107; Nov. 28-30, 2004.
Bordacher et al.; Impact and prevention of far-field sensing in fallback mode switches; PACE; vol. 26 (pt. II); pp. 206-209; Jan. 2003.
Brandt et al.; Far-field QRS complex sensing: prevalence and timing with bipolar atrial leads; PACE; vol. 23; pp. 315-320; Mar. 2000.
Brown, Eric S.; The atomic battery; Technology Review: Published by MIT; 4 pgs.; Jun. 16, 2005.
Irnich et al.; Do we need pacemakers resistant to magnetic resonance imaging; Europace; vol. 7; pp. 353-365; Feb. 2005.
Irnich; Electronic security systems and active implantable medical devices; Journal of PACE; vol. 25; No. 8; pp. 1235-1258; Aug. 2002.
Luechinger et al.; Force and torque effects of a 1.5-tesla MRI scanner of cardiac pacemakers and ICDs; Journal of PACE; vol. 24; No. 2; pp. 199-205; Feb. 2001.
Luechinger et al.; In vivo heating of pacemaker leads during magnetic resonance imaging; European Heart Journal; vol. 26; pp. 376-383; Feb. 2005.
Lüchinger ; Safety aspects of cardiac pacemakers in magnetic resonance imaging; Dissertation submitted to the Swiss Federal Institute of Technology Zurich; 137 pages; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 2002.
Nyenhuis et al.; MRI and Implanted Medical Devices: Basic Interactions with an emphasis on heating; vol. 5; No. 3; pp. 467-480; Sep. 2005.
Shellock et al.; Cardiac pacemaker: in vitro assessment at 1.5 T; Am Heart J; vol. 151; No. 2; pp. 436-443; Feb. 2006.
International Searching Authority, “Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration,” International Application No. PCT/US12/63552, Feb. 22, 2013, 11 pages.
Related Publications (1)
Number Date Country
20130123875 A1 May 2013 US
Provisional Applications (1)
Number Date Country
61555988 Nov 2011 US