Leadless cardiac pacemaker with reversionary behavior

Abstract
A ventricularly implantable medical device that includes a sensing module that is configured to detect an atrial fiducial and identify an atrial contraction based at least on part on the detected atrial fiducial. Control circuitry in the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart based at least in part on the identified atrial contraction, and can automatically switch or revert the ventricular pacing therapies on the fly.
Description
TECHNICAL FIELD

The present disclosure generally relates to implantable medical devices, and more particularly, to systems that use a leadless cardiac pacemaker for monitoring, pacing and/or defibrillating a patient's heart.


BACKGROUND

Implantable medical devices are commonly used today to monitor a patient and/or deliver therapy to a patient. For example, and in some instances, pacing devices are used to treat patients suffering from various heart conditions that may result in a reduced ability of the heart to deliver sufficient amounts of blood to a patient's body. Such heart conditions may lead to slow, rapid, irregular, and/or inefficient heart contractions. To help alleviate some of these conditions, various medical devices (e.g., pacemakers, defibrillators, etc.) can be implanted in a patient's body. Such devices may monitor and in some cases provide electrical stimulation (e.g. pacing, defibrillation, etc.) to the heart to help the heart operate in a more normal, efficient and/or safe manner. In some cases, it may be beneficial to detect cardiac events occurring in multiple chambers of the heart. In some cases, this may be used to enhance the effectiveness of the cardiac pacing therapy and/or may allow different types of cardiac pacing therapy to be delivered.


SUMMARY

This disclosure generally relates to implantable medical devices, and more particularly, to systems that use a leadless cardiac pacemaker for monitoring, pacing and/or defibrillating a patient's heart. In a first example, a leadless cardiac pacemaker (LCP) may be configured to sense cardiac activity and to deliver pacing therapy to a patient's heart. The LCP may comprise a housing, a first electrode secured relative to the housing and exposed to the environment outside of the housing, a second electrode secured relative to the housing and responsive to the environment outside of the housing, a sensing module (e.g. sensing electronics) disposed within the housing and exposed to the environment outside of the housing, the sensing module configured to detect one or more atrial fiducials that are indicative of an atrial contraction, and a control module (e.g. control electronics) operatively coupled to the first electrode, the second electrode, and the sensing module. The control module may be configured to track the one or more atrial fiducials over a plurality of cardiac cycles and deliver a plurality of different ventricular pacing therapies to the patient's heart via the first electrode and the second electrode, wherein the control module selects which ventricular pacing therapy to deliver based, at least in part, on one or more of the tracked atrial fiducials. patient's heart. The LCP may comprise a housing, a first electrode secured relative to the


Alternatively or additionally to any of the examples above, in another example, the plurality of different ventricular pacing therapies may comprise two or more of VDD, VDDR, VVI, VVIR, VOO and VOOR.


Alternatively or additionally to any of the examples above, in another example, the plurality of different ventricular pacing therapies may comprise a first ventricular pacing therapy having a first pacing rate and a second ventricular pacing therapy having a second pacing rate different from the first pacing rate.


Alternatively or additionally to any of the examples above, in another example, the control module may be configured to dynamically select which ventricular pacing therapy to deliver based, at least in part, on one or more of the tracked atrial fiducials.


Alternatively or additionally to any of the examples above, in another example, the sensing module may be further configured to detect one or more ventricle fiducials that are indicative of a ventricle contraction, and the control module is configured to track the one or more ventricle fiducials over a plurality of cardiac cycles.


Alternatively or additionally to any of the examples above, in another example, the control module may be configured to select which ventricular pacing therapy to deliver based, at least in part, on one or more of the tracked atrial fiducials and one or more of the tracked ventricle fiducials.


Alternatively or additionally to any of the examples above, in another example, the control module may be configured to change from a first ventricular pacing therapy to a second ventricular pacing therapy when a predetermined one of the tracked atrial fiducials comes too close in time to a predetermined one of the tracked ventricle fiducials.


Alternatively or additionally to any of the examples above, in another example, the one or more atrial fiducials may comprise one or more of an electrical p-wave, a pressure a-wave, an acoustic S1 sound, an acoustic S2 sound, an acoustic S3 sound, an acoustic S4 sound, an indication of ventricular volume, an indication of ventricular wall thickness, an indication of cardiac tissue vibration, an indication of mitral valve position, and an indication of tricuspid valve position.


Alternatively or additionally to any of the examples above, in another example, the sensing module may be configured to detect two or more atrial fiducials that are indicative of an atrial contraction, and wherein the control module is configured to select which ventricular pacing therapy to deliver based, at least in part, on a selected one of the tracked atrial fiducials.


Alternatively or additionally to any of the examples above, in another example, the sensing module may be configured to detect two or more atrial fiducials that are indicative of an atrial contraction, and wherein the control module is configured to select which ventricular pacing therapy to deliver based, at least in part, on two or more of the tracked atrial fiducials.


Alternatively or additionally to any of the examples above, in another example, the control module may continuously track the one or more atrial fiducials over a plurality of cardiac cycles.


Alternatively or additionally to any of the examples above, in another example, the control module may intermittently track the one or more atrial fiducials over a plurality of cardiac cycles.


Alternatively or additionally to any of the examples above, in another example, the control module may be configured to switch from delivering a first ventricular pacing therapy to a delivering second ventricular pacing therapy when the control module can no longer track one or more of the atrial fiducials.


Alternatively or additionally to any of the examples above, in another example, the control module may enter a search mode to attempt to re-acquire the one or more of the atrial fiducials that can no longer be tracked.


Alternatively or additionally to any of the examples above, in another example, the sensing module may comprise one or more of a pressure measurement module and an acoustic measurement module.


In another example, a leadless cardiac pacemaker (LCP) may be configured to sense cardiac activity and to deliver pacing therapy to a patient's heart. The LCP may comprise a housing, a first electrode secured relative to the housing and exposed to the environment outside of the housing, a second electrode secured relative to the housing and exposed to the environment outside of the housing, a sensing module disposed within the housing and responsive to the environment outside of the housing, the sensing module including one or more of a pressure measurement module and an acoustic measurement module, the sensing module configured to detect one or more atrial fiducials that are indicative of an atrial contraction and one or more ventricle fiducials that are indicative of a ventricle contraction, and a control module operatively coupled to the first electrode, the second electrode, and the sensing module. The control module may be configured to track the one or more atrial fiducials and one or more ventricle fiducials over a plurality of cardiac cycles and deliver a plurality of different ventricular pacing therapies to the patient's heart via the first electrode and the second electrode, wherein the control module transitions from delivery of a first one of the different ventricular pacing therapies to a second one of the different ventricular pacing therapies based, at least in part, on one or more of the tracked atrial fiducials. The plurality of different ventricular pacing therapies may comprise two or more of VDD, VDDR, VVI, VVIR, VOO and VOOR.


Alternatively or additionally to any of the examples above, in another example, the control module may transition from delivery of a first one of the different ventricular pacing therapies to a second one of the different ventricular pacing therapies based, at least in part, on one or more of the tracked atrial fiducials and one or more of the tracked ventricle fiducials.


Alternatively or additionally to any of the examples above, in another example, the control module may be configured to switch from delivering a first ventricular pacing therapy to a delivering second ventricular pacing therapy when the control module can no longer track one or more of the atrial fiducials.


Alternatively or additionally to any of the examples above, in another example, the plurality of different ventricular pacing therapies may comprise a ventricular pacing therapy having a first pacing rate and a ventricular pacing therapy having a second pacing rate different from the first pacing rate.


In another example, a leadless cardiac pacemaker (LCP) may be configured to sense cardiac activity and to deliver pacing therapy to a patient's heart. The LCP may comprise a housing, a first electrode secured relative to the housing and exposed to the environment outside of the housing, a second electrode secured relative to the housing and exposed to the environment outside of the housing, a sensing module for sensing a hemodynamic state of the patient, and a control module operatively coupled to the first electrode, the second electrode, and the sensing module. The control module may be configured to deliver a plurality of different ventricular pacing therapies to the patient's heart via the first electrode and the second electrode, wherein the control module dynamically selects which ventricular pacing therapy to deliver based, at least in part, on the sensed hemodynamic state of the patient. The plurality of different ventricular pacing therapies may comprise two or more of VDD, VDDR, VVI, VVIR, VOO and VOOR.


Alternatively or additionally to any of the examples above, in another example, the sensing module comprises one or more of a pressure measurement module and an acoustic measurement module.


The above summary is not intended to describe each embodiment or every implementation of the present disclosure. Advantages and attainments, together with a more complete understanding of the disclosure, will become apparent and appreciated by referring to the following description and claims taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments in connection with the accompanying drawings, in which:



FIG. 1 is a schematic block diagram of an illustrative leadless cardiac pacemaker (LCP) according to one example of the present disclosure;



FIG. 2 a schematic block diagram of another medical device (MD), which may be used in conjunction with an LCP 100 (FIG. 1) in order to detect and/or treat cardiac arrhythmias and other heart conditions;



FIG. 3 is a schematic diagram of an exemplary medical system that includes an LCP and another medical device, in accordance with yet another example of the present disclosure;



FIG. 4 is a graphical representation of an illustrative electrocardiogram (ECG) showing a temporal relationship between electrical signals of the heart and mechanical indications of contraction of the heart;



FIG. 5 is a graph showing example pressures and volumes within the heart over time;



FIG. 6 is an illustrative table of various artifacts occurring during the cardiac cycle and different ways to detect them;



FIG. 7 is an illustrative table of various artifacts occurring during the cardiac cycle and during which cardiac phase each occur;



FIG. 8 is a side view of an illustrative LCP;



FIG. 9A is a partial cross-sectional plan view of an example LCP implanted within a heart during ventricular filling;



FIG. 9B is a partial cross-sectional plan view of an example LCP implanted within a heart during ventricular contraction;



FIG. 10 is a flow diagram showing an illustrative method of detecting atrial activity from an LCP implanted in a ventricle of the heart and generating and delivering a ventricular pacing pulse using the same;



FIG. 11 is a schematic diagram of an illustrative signal averaging method that can be used by an LCP implanted in the ventricle to help identify atrial timing fiducials;



FIG. 12 shows a portion of an illustrative ventricle pressure signal;



FIG. 13 shows a graph of illustrative cardiac signals including heart sounds, right ventricular pressure, and an electrocardiogram, along with various intervals between detectable characteristics of such signals;



FIG. 14 shows a graph of illustrative cardiac signals including heart sounds, right ventricular pressure, and an electrocardiogram, along with various timing delays (AV intervals) from detectable characteristics of such signals to a desired ventricle pacing pulse;



FIG. 15 is an illustrative method for determining when a medical device should utilize reversion;



FIG. 16 illustrates a comparison of pacing intervals on an electrocardiogram when the device is operating in a normal VDD tracking mode and pacing intervals on an electrocardiogram when the device is operating in a VDD pseudo tracking mode; and



FIG. 17 is a graphic representation of higher order derivatives that can be used by an LCP implanted in the ventricle to help identify atrial timing fiducials.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular illustrative embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DESCRIPTION

The following description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure. While the present disclosure is applicable to any suitable implantable medical device (IMD), the description below uses pacemakers and more particularly leadless cardiac pacemakers (LCP) as particular examples.


All numbers are herein assumed to be modified by the term “about”, unless the content clearly dictates otherwise. The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include the plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is contemplated that the feature, structure, or characteristic may be applied to other embodiments whether or not explicitly described unless clearly stated to the contrary.


A normal, healthy heart induces contraction by conducting intrinsically generated electrical signals throughout the heart. These intrinsic signals cause the muscle cells or tissue of the heart to contract in a coordinated manner. These contractions force blood out of and into the heart, providing circulation of the blood throughout the rest of the body. Many patients suffer from cardiac conditions that affect the efficient operation of their hearts. For example, some hearts develop diseased tissue that no longer generate or efficiently conduct intrinsic electrical signals. In some examples, diseased cardiac tissue may conduct electrical signals at differing rates, thereby causing an unsynchronized and inefficient contraction of the heart. In other examples, a heart may generate intrinsic signals at such a low rate that the heart rate becomes dangerously low. In still other examples, a heart may generate electrical signals at an unusually high rate, even resulting in cardiac fibrillation. In some cases such an abnormality can develop into a fibrillation state, where the contraction of the patient's heart chambers are almost completely de-synchronized and the heart pumps very little to no blood. Implantable medical devices, which may be configured to determine occurrences of such cardiac abnormalities or arrhythmias and deliver one or more types of electrical stimulation therapy to patient's hearts, may help to terminate or alleviate these and other cardiac conditions.


It is contemplated that atrial events or artifacts indicative of an atrial event may be used by a device implanted in the right (or left) ventricle to time a pacing pulse for the ventricle in support of treating bradycardia events. In some cases, the timing of the ventricle pacing pulse may be adjusted to maximize the amount of blood entering the right ventricle through passive filling. In some instances, this may include adjusting an AV delay relative to an atrial fiducial (e.g., atrial kick). In some cases, a measured pressure change (or other atrial fiducial) over time may be used to support management of a CRT cardiac therapy (e.g. if placed in the left ventricle), patient health status monitoring and/or any other suitable goal. It is contemplated that measuring events in one of or both of the ventricle and atrium using a single leadless cardiac pacemaker may replicate a dual chamber system using only a single device. For example, such a system may enable a device to be positioned in a ventricle and capable of sensing intrinsic ventricular and atrial events and pacing the ventricle when appropriate (e.g., a VDD pacemaker).



FIG. 1 depicts an illustrative leadless cardiac pacemaker (LCP) that may be implanted into a patient to provide bradycardia therapy, cardiac resynchronization therapy (CRT), anti-tachycardia pacing (ATP) therapy, defibrillation therapy, and/or the like. As can be seen in FIG. 1, the illustrative LCP 100 may be a compact device with all components housed within and/or on the LCP housing 120. In the example shown in FIG. 1, the LCP 100 includes a communication module 102, a pulse generator module 104, an electrical sensing module 106, a mechanical sensing module 108, a processing module 110, a battery 112, and electrodes 114. It is contemplated that the LCP 100 may include more or less modules, depending on the application.


The communication module 102 may be configured to communicate with remote devices such as sensors, other devices, and/or the like, that are located externally and/or internally to the patient's body. The other devices may be device primarily functioning as a medical device (e.g. a LCP programmer, an implanted sensor) or a device primarily functioning as a non-medical device (e.g. a personal computer, tablet computer, smart phone, laptop computer or the like). Irrespective of the location or primary function, the remote devices (i.e., external to the LCP 100 but not necessarily external to the patient's body) may communicate with the LCP 100 via the communication module 102 to accomplish one or more desired functions. For example, the LCP 100 may communicate information, such as sensed signals, data, instructions, messages, etc., to a remote medical device through the communication module 102. The remote medical device may then use the communicated signals, data, instructions and/or messages to perform various functions, such as determining occurrences of arrhythmias, delivering electrical stimulation therapy, storing received data, analyzing received data, transmitting the received data to an external programmer or server or the like for review by a physician, and/or performing any other suitable function. The LCP 100 may additionally receive information such as signals, data, instructions and/or messages from the remote medical device through the communication module 102, and the LCP 100 may use the received signals, data, instructions and/or messages to perform various functions, such as determining occurrences of arrhythmias, delivering electrical stimulation therapy, storing received data, analyzing received data, and/or performing any other suitable function. The communication module 102 may be configured to use one or more methods for communicating with remote devices. For example, the communication module 102 may communicate via radiofrequency (RF) signals, inductive coupling, optical signals, acoustic signals, conducted communication signals, and/or any other signals suitable for communication.


In the example shown in FIG. 1, the pulse generator module 104 may be electrically connected to the electrodes 114. In some examples, the LCP 100 may include one or more additional electrodes 114′. In such examples, the pulse generator 104 may also be electrically connected to the additional electrodes 114′. The pulse generator module 104 may be configured to generate electrical stimulation signals. For example, the pulse generator module 104 may generate electrical stimulation signals by using energy stored in a battery 112 within the LCP 100 and deliver the generated electrical stimulation signals via the electrodes 114 and/or 114′. Alternatively, or additionally, the pulse generator 104 may include one or more capacitors, and the pulse generator 104 may charge the one or more capacitors by drawing energy from the battery 112. The pulse generator 104 may then use the energy of the one or more capacitors to deliver the generated electrical stimulation signals via the electrodes 114 and/or 114′. In at least some examples, the pulse generator 104 of the LCP 100 may include switching circuitry to selectively connect one or more of the electrodes 114 and/or 114′ to the pulse generator 104 in order to select which of the electrodes 114/114′ (and/or other electrodes) that the pulse generator 104 uses to deliver the electrical stimulation therapy. The pulse generator module 104 may generate electrical stimulation signals with particular features or in particular sequences in order to provide one or multiple of a number of different stimulation therapies. For example, the pulse generator module 104 may be configured to generate electrical stimulation signals to provide electrical stimulation therapy to combat bradycardia, tachycardia, cardiac dyssynchrony, bradycardia arrhythmias, tachycardia arrhythmias, fibrillation arrhythmias, cardiac synchronization arrhythmias and/or to produce any other suitable electrical stimulation therapy. Some more common electrical stimulation therapies include bradycardia therapy, anti-tachycardia pacing (ATP) therapy, cardiac resynchronization therapy (CRT), and cardioversion/defibrillation therapy.


In some examples, the LCP 100 may not include a pulse generator 104 or may turn off the pulse generator 104. When so provided, the LCP 100 may be a diagnostic only device. In such examples, the LCP 100 may not deliver electrical stimulation therapy to a patient. Rather, the LCP 100 may collect data about cardiac electrical activity and/or other physiological parameters of the patient and communicate such data and/or determinations to one or more other medical devices via the communication module 102.


In some examples, the LCP 100 may include an electrical sensing module 106, and in some cases, a mechanical sensing module 108. The electrical sensing module 106 may be configured to sense the cardiac electrical activity of the heart. For example, the electrical sensing module 106 may be connected to the electrodes 114/114′, and the electrical sensing module 106 may be configured to receive cardiac electrical signals conducted through the electrodes 114/114′. The cardiac electrical signals may represent local information from the chamber (e.g. near field) in which the LCP 100 is implanted. For instance, if the LCP 100 is implanted within a ventricle of the heart, cardiac electrical signals sensed by the LCP 100 through the electrodes 114/114′ may represent ventricular cardiac electrical signals, and possibly some weaker atrial electrical signals. The electrical sensing module 106 may be configured to detect voltage, current and/or impedance. An electrogram sensing module may be provided as a part of the electrical sensing module.


The mechanical sensing module 108 may include one or more sensors, such as an accelerometer, a gyroscope, a microphone, a hydrophone, a blood pressure sensor, a heart sound sensor, a blood-oxygen sensor, a temperature sensor, a flow sensor, a strain sensor, and/or any other suitable sensors that are configured to measure one or more mechanical and/or chemical parameters of the patient. In some cases, the mechanical sensing module 108 may include two or more of a pressure measurement module, an acoustic measurement module, an acceleration measurement module.


Both the electrical sensing module 106 and the mechanical sensing module 108 may be connected to a processing module 110, which may provide signals representative of the sensed mechanical parameters. Although described with respect to FIG. 1 as separate sensing modules, in some cases, the electrical sensing module 106 and the mechanical sensing module 108 may be combined into a single sensing module, as desired.


The electrodes 114/114′ can be secured relative to the housing 120 but exposed to the tissue and/or blood surrounding the LCP 100. In some cases, the electrodes 114 may be generally disposed on or near either end of the LCP 100 and may be in electrical communication with one or more of the modules 102, 104, 106, 108, and 110. The electrodes 114/114′ may be supported by the housing 120, although in some examples, the electrodes 114/114′ may be secured relative to the housing 120 through short connecting wires (e.g. tail) such that one or more of the electrodes 114/114′ may be spaced from the housing 120. In examples where the LCP 100 includes one or more electrodes 114′, the electrodes 114′ may in some cases be disposed on the sides of the housing 120 of the LCP 100, which may increase the number of electrodes by which the LCP 100 may sense cardiac electrical activity, deliver electrical stimulation and/or communicate with an external medical device. The electrodes 114/114′ can be made up of one or more biocompatible conductive materials such as various metals or alloys that are known to be safe for implantation within a human body. In some instances, the electrodes 114/114′ connected to LCP 100 may have an insulative portion that electrically isolates the electrodes 114/114′ from adjacent electrodes, the housing 120, and/or other parts of the LCP 100.


The processing module 110 can be configured to control the operation of the LCP 100. For example, the processing module 110 may be configured to receive electrical signals from the electrical sensing module 106 and/or the mechanical sensing module 108. Based on the received signals, the processing module 110 may determine, for example, a need for pacing therapy such as bradycardia therapy, cardiac resynchronization therapy (CRT), anti-tachycardia pacing (ATP) therapy, defibrillation therapy, and/or the like. The processing module 110 may control the pulse generator module 104 to generate electrical stimulation in accordance with one or more pacing therapies. The processing module 110 may further receive information from the communication module 102. In some examples, the processing module 110 may use such received information to help determine the need for pacing therapy and/or what type of pacing therapy. The processing module 110 may additionally control the communication module 102 to send/receive information to/from other devices.


In some examples, the processing module 110 may include a pre-programmed chip, such as a very-large-scale integration (VLSI) chip and/or an application specific integrated circuit (ASIC). In such embodiments, the chip may be pre-programmed with control logic in order to control the operation of the LCP 100. By using a pre-programmed chip, the processing module 110 may use less power than other programmable circuits (e.g., general purpose programmable microprocessors) while still being able to maintain basic functionality, thereby potentially increasing the battery life of the LCP 100. In other examples, the processing module 110 may include a programmable microprocessor. Such a programmable microprocessor may allow a user to modify the control logic of the LCP 100 even after implantation, thereby allowing for greater flexibility of the LCP 100 than when using a pre-programmed ASIC. In some examples, the processing module 110 may further include a memory, and the processing module 110 may store information on and read information from the memory. In other examples, the LCP 100 may include a separate memory (not shown) that is in communication with the processing module 110, such that the processing module 110 may read and write information to and from the separate memory.


The battery 112 may provide power to the LCP 100 for its operations. In some examples, the battery 112 may be a non-rechargeable lithium-based battery. In other examples, a non-rechargeable battery may be made from other suitable materials, as desired. Because the LCP 100 is an implantable device, access to the LCP 100 may be limited after implantation. Accordingly, it is desirable to have sufficient battery capacity to deliver therapy over a period of treatment such as days, weeks, months, years or even decades. In some instances, the battery 112 may a rechargeable battery, which may help increase the useable lifespan of the LCP 100. In still other examples, the battery 112 may be some other type of power source, as desired.


To implant the LCP 100 inside a patient's body, an operator (e.g., a physician, clinician, etc.), may fix the LCP 100 to the cardiac tissue of the patient's heart. To facilitate fixation, the LCP 100 may include one or more anchors 116. The anchor 116 may include any one of a number of fixation or anchoring mechanisms. For example, the anchor 116 may include one or more pins, staples, threads, screws, helix, tines, and/or the like. In some examples, although not shown, the anchor 116 may include threads on its external surface that may run along at least a partial length of the anchor 116. The threads may provide friction between the cardiac tissue and the anchor to help fix the anchor 116 within the cardiac tissue. In other examples, the anchor 116 may include other structures such as barbs, spikes, or the like to facilitate engagement with the surrounding cardiac tissue.



FIG. 2 depicts an example of another medical device (MD) 200, which may be used in conjunction with an LCP 100 (FIG. 1) in order to detect and/or treat cardiac arrhythmias and other heart conditions. In the example shown, the MD 200 may include a communication module 202, a pulse generator module 204, an electrical sensing module 206, a mechanical sensing module 208, a processing module 210, and a battery 218. Each of these modules may be similar to the modules 102, 104, 106, 108, and 110 of the LCP 100. Additionally, the battery 218 may be similar to the battery 112 of the LCP 100. In some examples, the MD 200 may have a larger volume within the housing 220 than LCP 100. In such examples, the MD 200 may include a larger battery and/or a larger processing module 210 capable of handling more complex operations than the processing module 110 of the LCP 100.


While it is contemplated that the MD 200 may be another leadless device such as shown in FIG. 1, in some instances the MD 200 may include leads such as leads 212. The leads 212 may include electrical wires that conduct electrical signals between the electrodes 214 and one or more modules located within the housing 220. In some cases, the leads 212 may be connected to and extend away from the housing 220 of the MD 200. In some examples, the leads 212 are implanted on, within, or adjacent to a heart of a patient. The leads 212 may contain one or more electrodes 214 positioned at various locations on the leads 212, and in some cases at various distances from the housing 220. Some of the leads 212 may only include a single electrode 214, while other leads 212 may include multiple electrodes 214. Generally, the electrodes 214 are positioned on the leads 212 such that when the leads 212 are implanted within the patient, one or more of the electrodes 214 are positioned to perform a desired function. In some cases, the one or more of the electrodes 214 may be in contact with the patient's cardiac tissue. In some cases, the one or more of the electrodes 214 may be positioned substernally or subcutaneously and spaced from but adjacent to the patient's heart. In some cases, the electrodes 214 may conduct intrinsically generated electrical signals to the leads 212, e.g., signals representative of intrinsic cardiac electrical activity. The leads 212 may, in turn, conduct the received electrical signals to one or more of the modules 202, 204, 206, and 208 of the MD 200. In some cases, the MD 200 may generate electrical stimulation signals, and the leads 212 may conduct the generated electrical stimulation signals to the electrodes 214. The electrodes 214 may then conduct the electrical signals and deliver the signals to the patient's heart (either directly or indirectly).


The mechanical sensing module 208, as with the mechanical sensing module 108, may contain or be electrically connected to one or more sensors, such as microphones, hydrophones, accelerometers, gyroscopes, blood pressure sensors, heart sound sensors, blood-oxygen sensors, acoustic sensors, ultrasonic sensors, strain sensors, and/or other sensors which are configured to measure one or more mechanical/chemical parameters of the heart and/or patient. In some examples, one or more of the sensors may be located on the leads 212, but this is not required. In some examples, one or more of the sensors may be located in the housing 220.


While not required, in some examples, the MD 200 may be an implantable medical device. In such examples, the housing 220 of the MD 200 may be implanted in, for example, a transthoracic region of the patient. The housing 220 may generally include any of a number of known materials that are safe for implantation in a human body and may, when implanted, hermetically seal the various components of the MD 200 from fluids and tissues of the patient's body.


In some cases, the MD 200 may be an implantable cardiac pacemaker (ICP). In this example, the MD 200 may have one or more leads, for example leads 212, which are implanted on or within the patient's heart. The one or more leads 212 may include one or more electrodes 214 that are in contact with cardiac tissue and/or blood of the patient's heart. The MD 200 may be configured to sense intrinsically generated cardiac electrical signals and determine, for example, one or more cardiac arrhythmias based on analysis of the sensed signals. The MD 200 may be configured to deliver CRT, ATP therapy, bradycardia therapy, and/or other therapy types via the leads 212 implanted within the heart or in concert with the LCP by commanding the LCP to pace. In some examples, the MD 200 may additionally be configured to provide defibrillation therapy.


In some instances, the MD 200 may be an implantable cardioverter-defibrillator (ICD). In such examples, the MD 200 may include one or more leads implanted within a patient's heart. The MD 200 may also be configured to sense cardiac electrical signals, determine occurrences of tachyarrhythmias based on the sensed signals, and may be configured to deliver defibrillation therapy in response to determining an occurrence of a tachyarrhythmia. In some instances, the MD 200 may be a subcutaneous implantable cardioverter-defibrillator (S-ICD). In examples where the MD 200 is an S-ICD, one of the leads 212 may be a subcutaneously or substernally implanted lead that is spaced from the heart. In at least some examples where the MD 200 is an S-ICD, the MD 200 may include only a single lead which is implanted subcutaneously or substernally, but this is not required. In some cases, the S-ICD lead may extend subcutaneously from the S-ICD can, around the sternum and may terminate adjacent the interior surface of the sternum and spaced from the heart.


In some examples, the MD 200 may not be an implantable medical device. Rather, the MD 200 may be a device external to the patient's body, and may include skin-electrodes that are placed on a patient's body. In such examples, the MD 200 may be able to sense surface electrical signals (e.g., cardiac electrical signals that are generated by the heart or electrical signals generated by a device implanted within a patient's body and conducted through the body to the skin). In such examples, the MD 200 may be configured to deliver various types of electrical stimulation therapy, including, for example, defibrillation therapy. The MD 200 may be further configured to deliver electrical stimulation via the LCP by commanding the LCP to deliver the therapy.


It is contemplated that one or more LCPs 100 and/or one or more MDs 200 may be used in combination as an example medical device system. The various devices 100, 200 may communicate through various communication pathways including using RF signals, inductive coupling, conductive coupling optical signals, acoustic signals, or any other signals suitable for communication. The system may further include and be in communication with a display. The display may be a personal computer, tablet computer, smart phone, laptop computer, or other display as desired. In some instances, the display may include input means for receiving an input from a user. For example, the display may also include a keyboard, mouse, actuatable (e.g., pushable) buttons, or a touchscreen display. These are just examples. Some illustrative medical device systems are described in commonly assigned Patent Application No. 62/547,458, entitled IMPLANTABLE MEDICAL DEVICE WITH PRESSURE SENSOR and filed on Aug. 18, 2017, which is hereby incorporated by reference.



FIG. 3 shows an example system 250 incorporating an LCP 100 and a MD 200. In FIG. 3, an LCP 100 is shown fixed to the interior of the right ventricle of the heart H, and MD 200 including a pulse generator is shown coupled to a lead 212 having one or more electrodes 214a, 214b, 214c. In some cases, the MD 200 may be part of a subcutaneous implantable cardioverter-defibrillator (S-ICD), and the one or more electrodes 214a, 214b, 214c may be positioned subcutaneously or substernally adjacent the heart. In some cases, the S-ICD lead may extend subcutaneously from the S-ICD can, around the sternum and one or more electrodes 214a, 214b, 214c may be positioned adjacent the interior surface of the sternum but spaced from the heart H. In some cases, the LCP 100 may communicate with the subcutaneous implantable cardioverter-defibrillator (S-ICD).


In some cases, the LCP 100 may be in the left ventricle, right atrium or left atrium of the heart, as desired. In some cases, more than one LCP 100 may be implanted. For example, one LCP may be implanted in the right ventricle and another may be implanted in the right atrium. In another example, one LCP may be implanted in the right ventricle and another may be implanted in the left ventricle. In yet another example, one LCP may be implanted in each of the chambers of the heart. Further, the LCP 100 may be used without the second MD 200.


The medical device system 250 may also include an external support device, such as external support device 260. The external support device 260 can be used to perform functions such as device identification, device programming and/or transfer of real-time and/or stored data between devices using one or more of the communication techniques described herein. As one example, communication between the external support device 260 and the MD 200 is performed via a wireless mode (e.g. RF, Bluetooth, inductive communication, etc.), and communication between the MD 200 and the LCP 100 is performed via a conducted mode (e.g. conducted communication). In some examples, communication between the LCP 100 and the external support device 260 is accomplished by sending communication information through the MD 200. However, in other examples, communication between the LCP 100 and the external support device 260 may be direct. In some embodiments, the external support device 260 may be provided with or be in communication with a display 262. The display 262 may be a personal computer, tablet computer, smart phone, laptop computer, or other display as desired. In some instances, the display 262 may include input means for receiving an input from a user. For example, the display 262 may also include a keyboard, mouse, actuatable buttons, or be a touchscreen display. These are just examples.


With reference to FIG. 4, it will be appreciated that the heart is controlled via electrical signals that pass through the cardiac tissue and that can be detected by implanted devices such as but not limited to the LCP 100 and/or MD 200 of FIG. 1 or 2. FIG. 4 is a graphical representation of an illustrative electrocardiogram (ECG) 300 showing a temporal relationship between electrical signals of the heart and mechanical indications 302 (e.g. heart sounds) of contraction of the heart. As can be seen in the illustrative ECG 300, a heartbeat includes a P-wave that indicates atrial depolarization associated with an atrial contraction to load the ventricles. A QRS complex, including a Q-wave, an R-wave and an S-wave, represents a ventricular depolarization associated with the ventricles contracting to pump blood to the body and lungs. A T-wave shows the repolarization of the ventricles in preparation for a next heart beat. With heart disease, the timing of these individual events may be anomalous or abnormal, and the shape, amplitude and/or timing of the various waves can be different from that shown. It will be appreciated that the ECG 300 may be detected by implanted devices such as but not limited to the LCP 100 and/or MD 200 of FIG. 1 or 2.


The electrical signal 300 typically instructs a portion of the heart to contract, which then results in a corresponding mechanical contraction. There is a correspondence between a characteristic in the electrical signal (e.g. ECG 300) and a corresponding mechanical response. The mechanical response is typically delayed because it takes some time for the heart to respond to the electrical signal.


It will be appreciated that heart sounds may be considered as one example of mechanical indications of the heart beating. Other illustrative mechanical indications may include, for example, endocardial acceleration or movement of a heart wall detected by an accelerometer in the LCP, acceleration or movement of a heart wall detected by an accelerometer in the SICD, a pressure, pressure change, or pressure change rate in a chamber of the heart detected by a pressure sensor of the LCP, acoustic signals caused by heart movements detected by an acoustic sensor (e.g. accelerometer, microphone, etc.), twisting of the heart detected by a gyroscope in the LCP and/or any other suitable indication of a heart chamber beating.


In some cases, there may be a first heart sound denoted S1 that is produced by vibrations generated by closure of the mitral and tricuspid valves during a ventricular contraction, a second heart sound denoted S2 that is produced by closure of the aortic and pulmonary valves, a third heart sound denoted S3 that is an early diastolic sound caused by the rapid entry of blood from the right atrium into the right ventricle and from the left atrium into the left ventricle, and a fourth heart sound denoted S4 that is a late diastolic sound corresponding to late ventricular filling during an active atrial contraction. These are mechanical responses that can be detected using various sensors (e.g. microphone, hydrophone, accelerometer, etc.).


Because the heart sounds are a result of cardiac muscle contracting or relaxing in response to an electrical signal, it will be appreciated that there is a delay between the electrical signal, indicated by the ECG 300, and the corresponding mechanical indication, indicated in the example shown by the heart sounds trace 302. For example, the P-wave of the ECG 300 is an electrical signal triggering an atrial contraction. The S4 heart sound is the mechanical signal caused by the atrial contraction. In some cases, it may be possible to use this relationship between the P-wave and the S4 heart sound. For example, if one of these signals can be detected, their expected timing relationship can be used as a mechanism to search for the other. For example, if the P-wave can be detected, a window following the P-wave can be defined and searched in order to help find and/or isolate the corresponding S4 heart sound. In some cases, detection of both signals may be an indication of an increased confidence level in a detected atrial contraction. In some cases, detection of either signal may be sufficient to identify an atrial contraction. The identification of an atrial contraction may be used to identify an atrial contraction timing fiducial (e.g. a timing marker of the atrial contraction).


With traditional systems having transvenous leads, the intracardiac electrodes are placed to detect the atrial depolarization while also delivering pacing therapy to one or both ventricles. As a result, the circuitry of a single device would receive, directly, information for the P-wave allowing delivery at a timed interval of a pacing pulse to properly coordinate the ventricular pace with the atrial contraction and improve pumping efficiency. However, with a system only having an LCP implanted within a ventricle, it may be difficult to detect the relatively small P-wave from within the ventricle, and as such, it is contemplated that the LCP may be configured to detect atrial activity without relying on the P-wave (e.g. using S4). The detected atrial activity may be used to identify an atrial timing fiducial that can be used as a basis for timing a pacing pulse in the ventricle (e.g. after an AV delay).


In some examples, a time window for atrial artifact detection is defined during which the LCP 100 may specifically look for atrial artifacts (such as, but not limited to, atrial contraction) to determine an atrial timing fiducial. Such windows may be defined by analysis of the cardiac signals obtained from a patient using, for example, a detected ventricular event such as the R-wave/QRS complex or the T-wave of a previous heart beat as the starting point for timing delays 304, 306, as shown in FIG. 4. Timing delays 304, 306 may be dynamic based on the overall heart beat rate of the patient using data gathered from a patient or using a formula or accepted relationship. Other windows may be determined based on detected atrial artifacts and/or determined atrial events, as described in more detail herein.


In some cases, the relationship of certain electrical signals and/or mechanical indications may be used to predict the timing of other electrical signals and/or mechanical indications within the same heartbeat. Alternatively, or in addition, the timing of certain electrical signals and/or mechanical indications corresponding to a particular heartbeat may be used to predict the timing of other electrical signals and/or mechanical indications within a subsequent heartbeat.


It will be appreciated that as the heart undergoes a cardiac cycle, the blood pressures and blood volumes within the heart vary over time. FIG. 5 illustrates how these parameters correlate with the electrical signals and corresponding mechanical indications. FIG. 5 shows an illustrative example of the aortic pressure, left ventricular pressure, left atrial pressure, left ventricular volume, an electrocardiogram (ECG or egram), and heart sounds of the heart over two consecutive heart beats. A cardiac cycle may begin with diastole, and the mitral valve opens. The ventricular pressure falls below the atrial pressure, resulting in the ventricle filling with blood. During ventricular filling, the aortic pressure slowly decreases as shown. During systole, the ventricle contracts. When ventricular pressure exceeds the atrial pressure, the mitral valve closes, generating the S1 heart sound. Before the aortic valve opens, an isovolumetric contraction phase occurs where the ventricle pressure rapidly increases but the ventricle volume does not significantly change. Once the ventricular pressure equals the aortic pressure, the aortic valve opens and the ejection phase begins where blood is ejected from the left ventricle into the aorta. The ejection phase continues until the ventricular pressure falls below the aortic pressure, at which point the aortic valve closes, generating the S2 heart sound. At this point, the isovolumetric relaxation phase begins and ventricular pressure falls rapidly until it is exceeded by the atrial pressure, at which point the mitral valve opens and the cycle repeats.


Contractions of the atria are initiated near the end of ventricular diastole. The active atrial contraction pushes or forces additional volumes of blood into the ventricles (often referred to as “atrial kick”) in addition to the volumes associated with passive filling. In some cases, the atrial kick contributes in the range of about 20% of the volume of blood toward ventricular preload. At normal heart rates, the atrial contractions are considered highly desirable for adequate ventricular filling. However, as heart rates increase, atrial filling becomes increasingly important for ventricular filling because the time interval between contractions for active filling becomes progressively shorter. Cardiac pressure curves for the pulmonary artery, the right atrium, and the right ventricle, and the cardiac volume curve for the right ventricle, may be similar to those illustrated in FIG. 5. Typically, the cardiac pressure in the right ventricle is lower than the cardiac pressure in the left ventricle.


The heart sound signals shown in FIG. 5 can be recorded using acoustic sensors, for example a microphone, which may capture the acoustic waves resulted from such heart sounds. In another example, the heart sounds can be recorded using accelerometers or pressure sensors that capture the vibrations or pressure waves caused by the heart sounds. The heart sound signals can be recorded within or outside the heart. These are just examples.


In some cases, sensing atrial events or artifacts indicative of an atrial event may allow a device, such as LCP 100 implanted in the ventricle, to detect an atrial contraction, resulting in, for example, an atrial kick. In some cases, signals that provide an indication of an atrial contraction may include one or more of an S3 heart sound signal, an S4 heart sound signal, an A-wave signal (pressure wave) and a P-wave signal. In some cases, signals that can provide an indication of a ventricular contraction may include one or more of an R-wave, a ventricle pressure signal, a ventricle change in pressure signal (dP/dt), a ventricle wall acceleration signal, a ventricle twist signal, a blood flow rate signal, and a ventricle volume signal. These are just some examples.


Some other events or artifacts detected may include, but are not limited to, S1 heart sounds, S2 heart sounds, ventricular volume, ventricular wall dimension, cardiac tissue and/or blood vibration, atrium to ventricle blood movement, ventricular wall and/or atrioventricular (AV) valve position, akinetic pressure, ventricular twist, and any other event or artifact suitable for identifying an atrial event, and/or combinations thereof.


It is contemplated that a number of different sensor modalities may be used to help detect atrial events or artifacts indicative of an atrial event from the ventricle. FIG. 6 shows a table 320 that includes a column for each of various illustrative artifact(s), and a row for each illustrative sensor modality. An “X” indicates the sensor modalities that may be used to detect the corresponding artifact.


In FIG. 6, it can be seen that voltage may be used to detect P-waves, such as via an electrogram or an electrocardiogram (ECG). It is contemplated that, in some cases, an LCP implanted in the right ventricle may have a free end (e.g. end that is not affixed to the tissue) pointed towards the tricuspid valve. Due to their anatomical proximity, the electrodes of the LCP may be used to detect atrial depolarization (e.g., the p-wave). From the ventricle, the p-wave may be relatively small and difficult to detect. In some cases, the LCP may identify a time window around when the p-wave is expected, and the LCP may increase amplification and/or add special filtering and/or signal averaging (e.g. see FIG. 11) to help identify the p-wave during the window. Alternatively, or in addition, the p-wave may be detected along with one or more other artifacts to help confirm an atrial contraction and to develop an atrial timing fiducial therefrom.


As shown in FIG. 6, pressure may be used to identify a number of different atrial artifacts. For example DC and/or near DC type pressure measurements (e.g. 0-10 Hz range) may be used to identify passive filling of the ventricle (e.g., akinetic pressure). Low frequency (e.g. 1-5 Hz range) AC type pressure measurements may be used to detect the A-wave (atrial pressure wave in the ventricle), while higher frequency (e.g. 15-30 Hz range) AC type pressure measurements may be used to detect heart sounds. These are just examples. In some cases, pressure may be used to identify the transition between passive and active filling modes. This transition may be used as an indicator of atrial contraction. Other suitable methods for measuring or detecting pressure in one or more heart chambers may also be used, as desired. Some illustrative but non-limiting pressure sensors and configurations for sensing pressure using an LCP are described in commonly assigned Patent Application No. 62/413,766 entitled “IMPLANTABLE MEDICAL DEVICE WITH PRESSURE SENSOR and filed on Oct. 27, 2016, and Patent Application No. 62/547,458, entitled IMPLANTABLE MEDICAL DEVICE WITH PRESSURE SENSOR and filed on Aug. 18, 2017, which are hereby incorporated by reference.


As shown in FIG. 6, impedance measurements may be used to determine ventricular volume changes which may then be used to infer a pressure wave (e.g. A-wave) due to an atrial contraction. In one example, as the volume of blood in the ventricle changes, the impedance between the electrodes of the LCP changes. It is contemplated that the rate of change in the volume (e.g., an increase in the rate of blood entering the ventricle and hence a faster change in volume of the ventricle) may be used to identify the start of active filling and thus an atrial contraction. Some illustrative uses of impedance measurements in the heart are described in commonly assigned patent application Ser. No. 15/630,677 entitled LEADLESS CARDIAC PACEMAKER FOR GENERATING CARDIAC PRESSURE-VOLUME LOOP and filed on Jun. 22, 2017, now U.S. Pat. No. 10,478,629, which is hereby incorporated by reference.


As blood enters the ventricle as a result of an atrial contraction, the ventricle may stretch. The stretching of the ventricle may be measure with a strain sensor. A strain sensor may require two or more points of fixation. Acceleration may be used to measure contractility of the heart H, as well as sounds. In some cases, cardiac output can be determined when acceleration measurements are combined with ventricle pressure, cardiac volume and/or other sensed parameters.


It should be understood that the table 320 shown in FIG. 6 is not intended to include every possible artifact or sensor modality for detecting each artifact. Those of skill in the art will recognize that other artifacts, sensor modalities and/or combinations thereof may be used to identify an atrial event from the ventricle. In one additional example, a respiratory phase sensor may be used with other atrial artifacts described herein or by itself to help identify an atrial artifact.


The atrial event and/or artifacts indicative of an atrial event may occur during either or both passive ventricular filling or active ventricular filling. FIG. 7 illustrates a table 330 of the cardiac phases, and the artifact(s) that may occur during that phases of the cardiac cycle, where an “X” is used to denote that the corresponding artifact occurs during the identified cardiac phase. Due to an electromechanical delay, the initial portion of the P-wave may fall into the passive filling phase while the later portion may fall into the active filling phase, and that is why an “X” is in both rows of the table 330. Although not required, it is contemplated that force per unit area type measurements may be provided as a DC voltage or current and/or a low frequency pressure signal linearly proportional to pressure. Sound type pressure measurements (e.g., infrasonic and sonic) may be provided as an AC pressure.


In some instances, ultrasound may use a combined ultrasound source and sensor, although this is not required. The source and sensor may be separately provided, as desired. It is contemplated that ultrasound imaging may be used in a device implanted in the ventricle to see the atrial wall (e.g., through the tricuspid valve), tricuspid closing, and/or a flow increase due to an atrial contraction to help identify an A-wave. In some cases, ultrasound sensor may detect an atrial arrhythmia (e.g. atrial flutter or atrial fibrillation). During normal sinus rhythm (NSR) atrial blood flow into the ventricle is comprised of two sequential components, an E (early) wave followed by an A (atrial) wave. During atrial arrhythmias the E wave is largely unchanged from that in NSR, however the A wave is either missing (atrial fibrillation) or smaller and much faster (atrial flutter). During a detected atrial arrhythmia an LCP with an ultrasound sensor may modify its behavior (e.g. revert from VVD mode to VVI mode).


It should be noted that while the heart sounds are indicated as capable of being identified with an accelerometer, the accelerometer actually measures or detects mechanical vibration associated with the heart sound and not the pressure of the sound waves. In some cases, the measured artifact may not occur distinctly within one cardiac phase or another. For example, ventricular twist may be used to identify the end of active ventricular filling (e.g., ejection). Further, the S1 heart sound may occur at the end of active ventricular filling, while the S2 heart sound may occur shortly before the beginning of passive ventricular filling. These are just some examples.


In some cases, the LCP 100 may be configured to determine an atrial contraction timing fiducial based at least in part upon a sensed indication of an atrial contraction in a first heartbeat and/or a sensed indication of a ventricular contraction in the first heartbeat and/or one or more immediately preceding heartbeat(s). In some cases, the processing module 110 of the LCP 100 may be configured to generate and deliver a ventricle pacing pulse using the determined atrial contraction timing fiducial (e.g. after an A-V delay).


As described above, atrial events or artifacts indicative of an atrial event may be used by an LCP in the ventricle (e.g. right ventricle) to time a pacing pulse for the ventricle in support of treating bradycardia events. In some cases, the timing of the ventricle pacing pulse may be adjusted to improve the amount of blood entering the right ventricle through active filling. In some instances, this may include adjusting an AV delay relative to an atrial fiducial (e.g., atrial kick). In some cases, a measured pressure change (or other atrial fiducial) over time may be used to support management of a CRT cardiac therapy (if placed in the left ventricle), patient health status monitoring and/or any other suitable goal. It is contemplated that detecting events in one of or both of the ventricle and atrium using a single LCP implanted in the ventricle may replicate a dual chamber system with only a single device. That is, a single device positioned in the ventricle may listening to both the ventricle and the atrium and pacing accordingly (e.g., a VDD device).



FIG. 8 is a side view of an illustrative implantable leadless cardiac pacemaker (LCP) 400 which may be positioned within the ventricle and configured to listen to both the ventricle and the atrium. The LCP 400 may be similar in form and function to the LCP 100 described above. The LCP 400 may include any of the sensing, electrical, control, and/or pacing modules and/or structural features described herein. The LCP 400 may include a shell or housing 402 having a proximal end 404 and a distal end 406. The illustrative LCP 400 includes a first electrode 410 secured relative to the housing 402 and positioned adjacent to the distal end 406 of the housing 402 and a second electrode 412 secured relative to the housing 402 and positioned adjacent to the proximal end 404 of the housing 402. In some cases, the housing 402 may include a conductive material and may be insulated along a portion of its length. A section along the proximal end 404 may be free of insulation so as to define the second electrode 412. The electrodes 410, 412 may be sensing and/or pacing electrodes to provide electro-therapy and/or sensing capabilities. The first electrode 410 may be capable of being positioned against or otherwise in contact with the cardiac tissue of the heart, while the second electrode 412 may be spaced away from the first electrode 410. The first and/or second electrodes 410, 412 may be exposed to the environment outside the housing 402 (e.g., to blood and/or tissue).


It is contemplated that the housing 402 may take a variety of different shapes. For example, in some cases, the housing 402 may have a generally cylindrical shape. In other cases, the housing 402 may have a half-dome shape. In yet other embodiments, the housing 402 may be a rectangular prism. It is contemplated that the housing may take any cross sectional shape desired, including but not limited to annular, polygonal, oblong, square, etc.


In some cases, the LCP 400 may include a pulse generator (e.g., electrical circuitry) and a power source (e.g., a battery) within the housing 402 to provide electrical signals to the electrodes 410, 412 to control the pacing/sensing electrodes 410, 412. While not explicitly shown, the LCP 400 may also include a communications module, an electrical sensing module, a mechanical sensing module, and/or a processing module, and the associated circuitry, similar in form and function to the modules 102, 106, 108, 110 described above. The various modules and electrical circuitry may be disposed within the housing 402. Electrical communication between the pulse generator and the electrodes 410, 412 may provide electrical stimulation to heart tissue and/or sense a physiological condition.


In the example shown, the LCP 400 includes a fixation mechanism 414 proximate the distal end 406 of the housing 402. The fixation mechanism 414 is configured to attach the LCP 400 to a wall of the heart H, or otherwise anchor the LCP 400 to the anatomy of the patient. As shown in FIG. 8, in some instances, the fixation mechanism 414 may include one or more, or a plurality of hooks or tines 416 anchored into the cardiac tissue of the heart H to attach the LCP 400 to a tissue wall. In other instances, the fixation mechanism 414 may include one or more, or a plurality of passive tines, configured to entangle with trabeculae within the chamber of the heart H and/or a helical fixation anchor configured to be screwed into a tissue wall to anchor the LCP 400 to the heart H. These are just examples.


The LCP 400 may further include a docking member 420 proximate the proximal end 404 of the housing 402. The docking member 420 may be configured to facilitate delivery and/or retrieval of the LCP 400. For example, the docking member 420 may extend from the proximal end 404 of the housing 402 along a longitudinal axis of the housing 402. The docking member 420 may include a head portion 422 and a neck portion 424 extending between the housing 402 and the head portion 422. The head portion 422 may be an enlarged portion relative to the neck portion 424. For example, the head portion 422 may have a radial dimension from the longitudinal axis of the LCP 400 that is greater than a radial dimension of the neck portion 424 from the longitudinal axis of the LCP 400. In some cases, the docking member 420 may further include a tether retention structure 426 extending from or recessed within the head portion 422. The tether retention structure may define an opening 428 configured to receive a tether or other anchoring mechanism therethrough. The retention structure may take any shape that provides an enclosed perimeter surrounding the opening such that a tether may be securably and releasably passed (e.g., looped) through the opening 428. In some cases, the retention structure may extend though the head portion 422, along the neck portion 424, and to or into the proximal end 404 of the housing 402. The docking member 420 may be configured to facilitate delivery of the LCP 400 to the intracardiac site and/or retrieval of the LCP 400 from the intracardiac site. While this describes one example docking member 420, it is contemplated that the docking member 420, when provided, can have any suitable configuration.


It is contemplated that the LCP 400 may include one or more sensors 430 coupled to or formed within the housing 402 such that the sensor(s) is exposed to and/or otherwise operationally coupled with (e.g., responsive to) the environment outside the housing 402 to measure or detect various artifacts within the heart. The one or more sensors 430 may be of a same modality or a combination of two or more different sensing modalities, as desired. For example, the one or more sensors 430 may be use voltage, pressure, sound, ultrasound, impedance, strain, acceleration, flow, and/or rotation to detect P-waves, A-waves, S1-S4 heart sounds, ventricular volume, ventricular wall dimensions, cardiac tissue and/or blood vibration, atrium to ventricle blood movement, ventricular wall and/or atrioventricular valve position, akinetic pressure, and/or ventricular twist, such as described with respect to FIGS. 6 and 7. The sensors may be a part of, coupled to, and/or in electrical communication with a sensing module disposed within the housing 402. In addition to sensing artifacts within the heart, the sensing module may be further configured to detect physiological conditions that may impact the LCP's ability to detect artifacts including, but not limited to posture, activity and/or respiration. The use of two or more sensors in combination may allow for the removal of some common mode noise (e.g., may eliminate gross body motion).


In some cases, the one or more sensors 430 may be coupled to an exterior surface of the housing 402. In other cases, the one or more sensors 430 may be positioned within the housing 402 with an artifact acting on the housing and/or a port on the housing 402 to affect the sensor 430. In one illustrative example, if the LCP 400 is placed in the right ventricle, the sensor(s) 430 may be a pressure sensor configured to measure a pressure within the right ventricle. If the LCP 400 is placed in another portion of the heart (such as one of the atriums or the left ventricle), the pressures sensor(s) may measure the pressure within that portion of the heart. In some cases, the sensor(s) 430 may be sensitive enough to detect an artifact in a heart chamber different from the chamber in which the LCP 400 is positioned. For example, in some instances a sensor 430 may detect a pressure change caused by an atrial contraction (e.g., atrial kick) when the LCP 400 is placed in the right ventricle. Some illustrative sensor configurations will be described in more detail herein.



FIG. 9A is a plan view of the example leadless cardiac pacing device 400 implanted within a right ventricle RV of the heart H during ventricular filling. The right atrium RA, left ventricle LV, left atrium LA, and aorta A are also illustrated. FIG. 9B is a plan view of the leadless cardiac pacing device 610 implanted within a right ventricle of the heart H during ventricular contraction. These figures illustrate how the volume of the right ventricle may change over a cardiac cycle. As can be seen in FIGS. 9A and 9B, the volume of the right ventricle during ventricular filling is larger than the volume of the right ventricle of the heart after ventricular contraction.


While it is desirable to identify an atrial contraction often associated with the A-wave, the A-wave can be difficult to detect as it may be very small in magnitude and detection of it may come and go. It is contemplated that a combination of sensor modalities and/or measured atrial artifacts may be used to identify an atrial timing fiducial. For example, it is contemplated that any of the sensor modalities identified with respect to FIGS. 6 and 7 may be combined with any other sensor modality to identify an atrial timing fiducial. In some cases, a pressure signal may be used to determine a number of parameters. For example, a pressure signal may be used to determine or detect an A-wave (atrial kick). In another example, the pressure signal may be used to determine or detect a pressure pulse or pressure vibrations associated with S4, which may, for example, be in the 15-30 Hz range. In some cases, the S4 heart sound may be easier to detect using a pressure signal from a pressure sensor than from an accelerometer signal from accelerometer or using an acoustic signal from an acoustic sensor, particularly since the ventricular pressure is not changing substantially during this time period (ventricle is filling) and since there may be a great deal of unwanted signal (i.e. noise) in the accelerometer signal due to patient activity. In another example, a pressure signal may be used to determine a change in ventricle pressure relative to time (dP/dt).


In some cases, the circuitry and/or processing module of the LCP 400 may also be configured determine an atrial contraction timing fiducial based at least in part upon two or more of a signal received from the electrical sensing module, mechanical sensing module, and/or communication module. In some cases, the electrical cardiac signal received via the electrode arrangement 410, 412 may include at least a portion of an electrocardiogram (ECG). In some cases, the electrical cardiac signal received via electrode arrangement 410, 412 may include a P-wave. In some instances, the electrical cardiac signal received via the electrode arrangement 410, 412 may include a QRS complex, from which a QRS width can be determined. In some cases, the electrical cardiac signal received via electrode arrangement 410, 412 may include two consecutive R waves, from which an R-wave to R-wave interval can be determined. In some cases, the electrical cardiac signal may include a conducted or other communicated electrical signal from another device (e.g. SICD device) that includes an indication of an atrial or other contraction of the heart H. In some cases, the processing module and/or circuity may be configured to generate and deliver a ventricle pacing pulse using the atrial contraction timing fiducial.


It is contemplated that the use of sensors to determine an atrial contraction timing fiducial without having to detect the A-wave may allow the LCP 100, 400 to predict or recognize when an A-wave likely occurred, even when the A-wave itself was not detected. The predicted time of the A-wave may then be used as an atrial contraction timing fiducial for pacing the ventricle. The A-wave may be particularly difficult to detect when, for example, the heart is experiencing atrial fibrillation, a patient is in certain postures, the respiration rate is high, the patient activity is high, the heart rate is high, the atria are hypocontractile or akinetic, and/or during periods of high heart rate variability (HRV).


In the cardiac cycle, the ventricles receive blood from the atria first through passive filling and then through active filling. Discussion of passive and active filling will be described with reference to a right side of the heart, however, it should be understood that a similar process is occurring in the left side of the heart. Passive filling of the right ventricle begins when the there is a pressure gradient between the chambers causing the tricuspid valve to open and blood accumulated in the right atrium to flow into the right ventricle. Both the right atrium and the right ventricle continue to fill as blood returns to the heart. The right atrium contracts near the end of ventricular diastole. Atrial depolarization begins at the P-wave of the electrocardiogram. As a result of the P-wave, atrial cells develop tension and shortening causing the atrial pressure to increase (e.g. A-wave). These active contraction forces force additional volumes of blood into the ventricle (often referred to as the “atrial kick”). The active contraction forces begin the active filling phase. At normal heart rates, the atrial contractions are considered desirable for adequate ventricular filling. As heart rate increases, atrial filling becomes increasingly important for ventricular filling because the time interval between contractions for filling becomes progressively shorter. Atrial fibrillation and/or asynchronized atrial-ventricular contractions can result in a minimal contribution to preload via atrial contraction.


As described above, the fourth heart sound (e.g., S4) is typically a gallop sound that results from a forceful atrial contraction during presystole that ejected blood into a ventricle which cannot expand further. The fourth heart sound occurs during the last one-third of diastole about 90 milliseconds before S1. The frequency of S4 may be in the range of about 15 Hertz (Hz) to about 30 Hz, although the frequency may sometimes be outside this range. Due to the low pitch, S4 (and sometimes S3) are usually not audible with a typical stethoscope. It is contemplated that the S4 heart sound may be used to identify the start of active filling of the ventricle. In some cases, the processing module 110 and/or circuitry may be programmed to begin looking for the S4 heart sound just before the S1 heart sound is expected (projected from one or more previous heart beats).


The heart sounds may be time dependent on the heart rate in manner that changes linearly with the heart rate. For example, as the heart rate increases, the time between the heart sounds (e.g. S1 to S1; S4 to S1, etc.) may decrease in a linear and predicable manner. This may allow the S4 heart sound to be used to identify a reliable atrial event and/or as an atrial timing fiducial over a range of heart rates.


As noted above, the S4 heart sound may be identified and/or detected using a variety of different sensors, including but not limited to a higher frequency pressure sensor (e.g. 15 to 30 Hz), a hydrophone, a microphone, and/or an accelerometer. These are just some examples of how the LCP 400 can detect an artifact during active ventricular filling and identify an atrial timing fiducial based on the detected artifact.


While the above example was described with respect to active filling, it is contemplated that an artifact identified during passive filling may also be used to identify an atrial event which may then be used to identify an atrial timing fiducial. For example, the third heart sound (e.g., S3) occurs near the middle of passive filling. Passive filling may generate a very low frequency sound (in the range of 0 to 10 Hz) which may be detected by a DC capable pressure sensor. This may allow the S3 heart sound to be used to identify an atrial event and/or as an atrial timing fiducial over a range of heart rates.



FIG. 10 is a flow diagram showing an illustrative method 500 of generating a ventricular pulse using an LCP that is disposed with the right ventricle. In some cases, as indicated at block 502, a first signal (e.g., an atrial artifact) indicating an atrial event of a patient's heart may be sensed with a sensing module of the LCP. A second different signal related to the atrial event of the patient's heart may also be detected, as indicated at block 504. The second different signal may be sensed by the LCP, or may be received from another device (e.g. an SICD or another LCP) via a communication module of the LCP.


In some instances, the first signal and/or the second signal may be generated via one or more sensors within or on the housing the LCP. As described above, the sensing module of the LCP 400 may sense different events depending on whether attempting to identify active filling or passive filling (see FIG. 7). Some illustrative sensing modalities for sensing active filling may include, but are not limited to impedance, strain, sound, rotation, or flow, any or all of which may be used to detect at least one of a P-wave, S2 heart sound, S3 heart sound, ventricular volume, ventricular wall dimension, ventricular blood movement, ventricular wall movement, tricuspid valve position, mitral valve position, and/or akinetic ventricular pressure. Some illustrative sensing modalities for sensing passive filling may include, but are not limited to pressure, impedance, strain, sound, rotation, acceleration, voltage, and flow, which may be used to detect at least one of a P-wave, A-wave, S1 heart sound, S4 heart sound, ventricular volume, ventricular wall dimension, cardiac tissue vibration, ventricular blood movement, ventricular wall movement, tricuspid valve position, and mitral valve position.


The circuitry within the LCP 400 may be configured to determine an atrial timing fiducial based at least in part on the first and/or second sensed signals, as indicated at block 506. For example, the circuitry may be configured to determine when the A-wave occurs based on a sensed S4 heart sound and/or other atrial artifact. This is just one example. Those skilled in the art will recognize that any number of artifacts (or combinations thereof) can be used to determine an atrial timing fiducial. The circuitry may be configured to then generate and deliver a ventricular pacing pulse using the determined atrial timing fiducial, as indicated at block 508. The control circuitry may delay delivering a pacing pulse to the ventricle until an appropriate AV delay expires after the determined atrial timing fiducial. Notably, a different AV delay may be used for different atrial timing fiducials (see FIG. 14).


While the control timing of the pacing pulse may be triggered by an atrial timing fiducial that is based on arterial artifacts detected during a single heart beat, it is contemplated that the pacing pulse may be triggered by an atrial timing fiducial that is based on arterial and/or other artifacts detected during two or more previous heart beats. In some cases, the LCP may determine an average timing for a particular atrial artifact and/or atrial timing fiducial over multiple heart beats.


The circuitry of the LCP may further be configured to determine intrinsic intervals within the cardiac cycle. This capability may be provided within the control circuitry or provided as a separate interval determination module in the LCP. In some cases, the circuitry may be configured to identify intrinsic intervals including atrial to atrial event or artifact intervals, atrial to ventricle event or artifact intervals, ventricle to atrial event or artifact intervals, and/or ventricle to ventricle event or artifact intervals. This information may be useful in predicting when, for example, an atrial event (e.g. A-wave) is expected to occur. This may be useful in, for example, confirming an atrial event that is sensed by the LCP. This may also be useful in identifying a window of time around which an atrial event is expected, such that the LCP may increase amplification and/or add special filtering and/or signal averaging (e.g. see FIG. 11) to help identify the atrial event during the window.


In some cases, the sensing module of the LCP may be configured to manipulate the signal prior to identifying an atrial event. For example, the sensing module may include one or more filters for filtering a signal. In some cases, the filter may include a first filter for passing a first frequency band, a second filter for passing a second frequency band, and a third filter for passing a third frequency band. The filter may include more than three frequency bands or fewer than three frequency bands, as desired. In some cases, the filter may be band-pass filter, a low pass filter, a high pass filter, and/or any other suitable filter. In some cases, a band-pass filter may be in the range of 1 to 5 Hz. In other cases, a bandpass filter may be in the range of 15 to 30 Hz. In yet another example, the filter may be a low-pass filter in the range of 0 to 10 Hz. These are just examples; other frequency ranges can be used, as desired. Also, filters may be employed that are not based on frequency, but rather some other signal feature such as amplitude, phase, etc.


In some cases it may be desirable to limit the time frame in which the LCP 400 is looking for an atrial artifact. For example, battery life may be increased when the circuitry is searching for an artifact only during a limited window or period of time that is less than an entire cardiac cycle. The method for determining a time window for searching for an atrial artifact may include first identifying an expected time frame for the atrial event (e.g., atrial contraction) and then defining a search window accordingly. Referring to FIG. 11, to begin, the control module may select one or more signals with a desirable characteristic for a first timing fiducial signal to use as a time reference. The signal may be one or more of a pressure signal, an acoustic signal, an acceleration signal, an electrical signal, etc. It is contemplated that the fiducial signal may be a different signal from the signal used to identify an atrial artifact and hence an atrial event or atrial timing fiducial. In the example shown in FIG. 12, the selected signal may be an ECG 554 generated from electrical signals in the right ventricle. Within the ECG 554, a specific feature, such as, but not limited to the R-wave may be selected as the fiducial reference feature 556. The ECGs 554 signals for a plurality of cardiac cycles (e.g., at least two or more) may be averaged, with the fiducial reference features 556 in each ECG 554 aligned. This signal averaging technique may help reveal small signals by canceling out random noise. The signal averaging technique may also be used to identify various cardiac events, atrial event templates, appropriate A-V delays for a variety of different atrial timing fiducials (e.g. A-wave, P-wave, R-wave, and/or other atrial timing fiducial).


A window 560 where an atrial event is expected to occur can then be isolated. For example, an atrial event (e.g., atrial contraction) may be expected to occur within a time window 560 before the next R-wave. Using this time window 560, the LCP may search for the atrial event. In some cases, the LCP may increase amplification and/or add special filtering and/or signal averaging to help identify the atrial event during the time window 560. In some case, the window 560 can be used as a reference point for determining another window in which another signal should be recorded and searched to identify an atrial artifact from which an atrial event can be deduced.


In some cases, the timing window for identifying an atrial contraction may be based on artifacts occurring during passive filling of the ventricle. In some cases the down-stroke of the ventricular pressure (e.g., when the A-V valve opens) may be used to open a timing window for detecting an atrial artifact and/or atrial contraction. An upslope in ventricular pressure may trigger an open sensing window to detect the atrial kick. FIG. 12 illustrates a portion of the pressure profile 600 of the right ventricle relative to the S3 and S4 heart sounds. The right ventricle may have an increase in pressure at the start of systole. The pressure may decrease as blood exits the ventricle. This sharp decrease in pressure may signal the control module to open a search window. For example, the search window may be opened in the general time frame indicated by box 602. This may command the control module to begin searching for an atrial artifact that may be used to start a timing window. The timing window 604 may open at the S3 heart sound 606 and close at the R-wave 608. The S4 heart sound and the atrial kick may occur within this timing window, as shown. It is contemplated that the control module may utilize automatic gain control to increase the sensitivity (e.g., reduce the threshold and/or increase the gain) over the period of the timing window to help increase the sensitivity when the expected event (e.g., atrial kick) is expected to occur.


In another example, the S2 heart sound may be used to identify the start of passive filling. It is contemplated that a pressure sensor in the LCP may be used to detect the pressure change associated with the atrial kick, or any of the atrial artifacts identified herein can be used either alone or in combination with the atrial kick as the atrial timing fiducial. The LCP 100, 400 can then pace the ventricle based off of the artifact, the atrial kick or a combination thereof. In another example, ventricular impedance may be used to identify volume changes in the ventricle, which may then be used to infer a pressure wave due to the atrial contraction. In another example, one or more atrial artifacts may be used to identify the end of passive filling for hemodynamic optimization. For example, passive filling may by typically completed approximately 500 milliseconds after the S2 heart sound. In yet another example, the timing window may be open between the S3 and S4 heart sounds. In some cases, the control module of the LCP may set a decreasing signal threshold to allow smaller signals to reach the input amplifier after the S3 heart sound in order to increase the signal. In some cases, the control module may be configured to run a continuous integration of the pressure signal as a surrogate for pressure, which may then be used to create a timing window. It is contemplated that changes in ventricular filling and/or pressures over time may be used to pick up respiration signals that may be used to support other features of the LCP 100, 400. These are just some examples of how atrial artifacts can be detected by an LCP within the ventricle, which can then be used to identify an atrial timing fiducial for use in timing delivery of a pacing pulse to the ventricle.


It is contemplated that the control module of the LCP 100, 400 may be configured to search for an atrial artifact and identify a search window in more than one manner. In some cases, pacing can cover up, hide, or otherwise distort atrial artifacts and may make then difficult to identify. It may be desirable to allow the LCP to enter a listening mode in which the control circuitry does not issue pacing commands. The listening mode may be for a predefined window of time during a cardiac cycle that is less than the entire cardiac cycle. This may allow the LCP 400 to identify an atrial event without hiding or covering up the atrial artifact of interest (e.g. the A-wave). In some cases, such as when the patient is not pacing dependent, pacing can be paused for a cardiac cycle or two when no atrial activity is detected in order to determine if pacing is covering the atrial artifact(s) if interest. If the patient is pacing dependent, the pacing rate may be slowed (period extended) to allow for a larger period of time to search for the atrial artifacts without a pacing pulse present. Once the atrial artifact has been identified, the LCP may use the artifact to control the timing of the pacing pulse for a one or more cardiac cycles. In the event that an atrial artifact is not found, the LCP may return to its original pacing rate. In some cases, the LCP may be configured to pause or delay pacing and look for an atrial artifact and/or event on a predetermined time schedule.


It is further contemplated that in the event that the atrial artifact is not found the control module may be configured to deliver a pacing therapy at an altered pacing rate. In an example, the altered pacing rate may be less than the pacing rate delivered while atrial events are detected. In another example, the altered pacing rate may be greater than the pacing rate delivered while atrial events are detected. In a further example, the altered pacing rate may be static (e.g., remain constant) during the time there is a failure to detect atrial events. In yet another example, the altered pacing rate may be dynamic (e.g., change) during the time there is a failure to detect atrial events.


In another example, the control module may be configured to switch to a pacing only mode (in some cases a VOO mode). In this example, the control module may be configured to analyze the inputs received from the various sensor modules to determine if some sensors are providing a clearer signal than others. The control module may be configured to prioritize which sensor module is used to search for an atrial artifact and/or event before re-entering VDD mode. When in VOO mode, it may be desirable to pace off of the P-wave. However if this is not possible, it may be desirable to open a timing window based on other sensors including, but not limited to, pressure sensors and/or accelerometers to identify an atrial contraction. It is contemplated that the control module may be configured to switch between sensing modes and pacing modes as needed.


The control module may be configured to determine a quality threshold for a timing window, which may reflect the quality of the atrial artifact signal identified during the timing window. For example, the control module may be configured to analyze or grade a current A-wave timing window. If the current A-wave timing window does not meet certain quality metrics (e.g. percent of cardiac cycles in which an A-Wave is detected, the signal-to-noise ration of the detected A-wave signal, etc.), the control module may discard the window and use a previous window or calculate a new timing window. In some cases, the control module may prioritize one type of atrial artifact over another based on the quality of the detected signal.


As described above, the LCP 100, 400 may use different atrial and/or ventricle artifacts to determine when to search for an artifact and when to open the timing window. The LCP 100, 400 may include a sensing module that includes at least two of a pressure measurement module, an acoustic measurement module, an acceleration measurement module, and an electrogram measurement module. In some cases, the sensing module may include at least a pressure measurement module and at least one of an acoustic measurement module, an acceleration measurement module, and an electrogram measurement module. In some cases, the control module may use a ventricular event such as the R-wave to identify when to start a search window. In some cases, the control module may use different search windows to identify atrial artifacts from different measurement modules. The control module may identify a window of time during each of one or more cardiac cycles in which an atrial artifact and/or atrial event is expected to occur. The window of time may be less than an entire cardiac cycle. The control module may analyze information gathered by the sensing module (e.g., using at least one of the pressure measurement module, an acoustic measurement module, an acceleration measurement module, and an electrogram measurement module) to identify an atrial event (e.g., atrial kick). The control module may then deliver or command a pacing module to deliver a ventricular pacing pulse via the pacing electrodes of the LCP. The ventricular pacing pulse is delivered at a time that is based at least in part on the timing of the identified atrial event. For example, the pacing pulse may be delivered a predetermined length of time (e.g. A-V delay) after the identified atrial event. It is contemplated that the A-V delay that is used may depend on the particular atrial event that was identified. That is, different atrial events may cause different A-V delays to be applied.


The control module may be further configured to average the signals gathered from the sensing module in a similar manner to that described with respect to FIG. 11. For example, the control module may be configured to use signal averaging of the signals gather at the sensing module during each of a plurality of cardiac cycles to determine a signal average. The signal average may then be used to identify a window of time within a cardiac cycle. The identified window of time may then be used in subsequent cardiac cycles to search for and identify an atrial artifact and/or atrial event.


In some cases, the control module may be configured to move the window of time to search for an atrial artifact and/or atrial event. For example, if one of measurement modules of the sensor module is providing a better signal (e.g. better SNR), the control module may base the window around the detected artifact with a clearer signal. As the artifacts can occur at varying time points within the cardiac cycle, the window may be moved accordingly, sometimes cycle-to-cycle. The control module may be configured to select which measurement module to use dynamically or on a case to case basis.


In some cases, the control module may use different quality measurements to determine which measurement module to use. For example, the control module may select the measurement module with a better Signal-to-Noise Ratio (SNR). In another example, a p-wave detecting atrial activation by an electrogram measurement module may have a higher priority than a pressure signal detecting an atrial kick by a pressure measurement module. However, due to the inability of a ventricle only configuration to reliably sense a P-wave, the LCP may not rely solely on the P-wave to identify an atrial artifact and/or event. It may in fact, it may switch to detecting the A-wave when the P-wave is not available, and/or may use the A-wave to confirm the detection of a noisy P-wave. These are just examples.


In some cases, the control module may combine information gathered from more than one measurement module in identifying an atrial artifact and/or atrial event. For example, the control module may use both pressure data and electrocardiogram data in identifying an atrial artifact and/or event. In some cases, when data is used from two or more measurement modules, the data from each measurement module may be weighted differently (e.g., one may count more or be weighted more heavily than another). It is further contemplated that the control module may be configured to lengthen the window (e.g., make it longer) under certain conditions. For example, the window may not be long enough to identify an atrial artifact and/or event or a pacing pulse may be covering up the atrial event. In other cases, the window may be shortened (e.g., when noise is present, the noise may be reduced with a shortened window).


As described herein, the timing intervals for both searching and pacing may be based on pressure and/or heart sound fiducials (as well as other atrial artifacts described herein) as opposed to basing the intervals off solely of an electrocardiogram. FIG. 13 is a graph 650 of illustrative cardiac signals including heart sounds, right ventricular pressure, and an electrocardiogram. FIG. 13 also shows various intervals between various artifacts of these signals. It is contemplated that a number of different artifacts or characteristics during a cardiac cycle can be used to form a number of different timing intervals. For example, there can be intervals that extend between two electrocardiogram signals (E-E) such as between an R-wave amplitude 670 of a first cardiac cycle and an R-wave amplitude 672 of the next cardiac cycle, as indicated at arrow 652. Another interval may be defined between two pressure signals (P-P), such as between an A-wave pressure 674 and a maximum systolic pressure 676 of the same cardiac cycle, as shown at arrow 654, or between a maximum systolic pressure 676 of a first cardiac cycle and an A-wave pressure 678 in the subsequent cardiac cycle, as shown at arrow 656. Another illustrative interval may be defined between two acoustic signals (A-A), such as between an S1 heart sound 680 and an S2 heart sound 682, as shown at arrow 658, between an S2 heart sound 682 and an S3 heart sound 684 as shown at arrow 660, and/or between an S3 heart sound 684 and an S1 heart sound 686 of a subsequent cardiac cycle, as shown at arrow 662.


As illustrated in FIG. 13, there can also be intervals defined between an electrocardiogram signal and a pressure signal (E-P), between a pressure signal and an electrocardiogram signal (P-E), between an electrocardiogram signal and an acoustic signal (E-A), between an acoustic signal and an electrocardiogram signal (A-E), between a pressure signal and an acoustic signal (P-A), and/or between an acoustic signal and a pressure signal (A-P). It is contemplated that any measurable parameter may serve as the beginning and/or end of an interval as desired, and the intervals are not limited to those explicitly described or shown in FIG. 13.



FIG. 14 is a graph 700 of illustrative cardiac signals including heart sounds, right ventricular pressure, and an electrocardiogram. FIG. 14 also shows various intervals between various artifacts of these signals. As described herein, there can be a number of different intervals using various sensed parameters. Not only can there be various intervals from a sensed artifact to another sensed artifact, but also various intervals from a sensed artifact to a pacing pulse.


The E-E (R-wave to subsequent R-wave), A-A (S1 to subsequent S1), and P-P (max pressure to subsequent max pressure) intervals shown at 702 are three ventricular intervals. The E-E (P-wave to subsequent P-wave), A-A (S4 to subsequent S4), and P-P (atrial kick to subsequent atrial kick) intervals shown at 704 are three atrial intervals. These intrinsic same chamber intervals 706 have the same or roughly the same time interval between same sensed artifacts or events regardless of which parameter is used (e.g., R-wave to R-wave, S1 to S1, max pressure to max pressure). In contrast, intervals between chambers 708 vary substantially. As can be seen at 708 in FIG. 14, atrioventricular (A-V) intervals vary significantly depending on which atrial event is selected for the atrial timing fiducial. An E-E (P-wave to R-wave) interval, A-E (S4 to R-wave), and P-E (atrial kick to R-wave) intervals shown at 708 are three illustrative atrioventricular (AV) intervals each having a different duration. The duration of each of these AV intervals can be sensed during one or more intrinsic heart beats (e.g. no pacing). In some cases, the duration of each of these intervals can be sensed during a plurality of intrinsic heart beats (no pacing) and then averaged, resulting in an average AV interval for each of the different atrial timing fiducials as shown at 710.


As described above, a P-wave may not be consistently detected in a device implanted in the ventricle. As such, it may be desirable to time the ventricular pacing pulse (VP) using a pressure artifact (e.g., a-wave or atrial kick) as the atrial timing fiducial along with a corresponding AV interval. In another example, it may be desirable to time the ventricular pacing pulse (VP) using an acoustic artifact (e.g., S4) as the atrial timing fiducial along with a corresponding AV interval. The corresponding AV interval used with an acoustic artifact (e.g., S4) may be different than the AV interval used with a pressure artifact, as seen at 710 in FIG. 14. In yet another example, it may be desirable to time the ventricular pacing pulse (VP) using an electrical artifact (e.g., P-wave) as the atrial timing fiducial along with a corresponding AV interval, as seen at 712 in FIG. 14. These are just examples. The LCP may dynamically switch between these and other atrial timing fiducials, depending on a number of factors such as the quality of the signals that are currently sensed. In some cases, an atrial timing fiducial may be determined from two or more cardiac artifacts, sometimes with one weighted more than the others.


The sensing module of the LCP 100, 400 may include one or more of a pressure measurement module and an acoustic measurement module. However, other measurement modules may be used as desired, including but not limited to, measurement modules that include suitable sensors for determining the artifacts described with respect to FIGS. 6 and 7. For example, the sensing module may further include an electrogram measurement module. As described herein, the sensing module may be configured to gather information suitable for determining one or more atrial timing fiducials. The information may include, but is not limited to, an atrial artifact such as any of those discussed with reference to FIGS. 6 and 7. In some cases, information gathered from one of the measurement modules may be used to determine a blanking interval for another measurement module.


In some cases, a pressure measurement module may detect or determine at least one of a maximum pressure (atrial or ventricular), a minimum pressure (atrial or ventricular), a mean pressure (atrial or ventricular), a pressure time integral (atrial or ventricular), and/or a pressure time derivative (atrial or ventricular). An acoustic measurement module may detect or determine at least one of an S1 heart sound, an S2 heart sound, an S3 heart sound, and/or an S4 heart sound. An acceleration measurement module, if present, may detect or determine at least of an S1 heart sound, an S2 heart sound, an S3 heart sound, an S4 heart sound, myocardial (e.g., heart wall) movement, patient activity and/or patient posture. These and other artifacts may be used as the basis for an atrial timing fiducial.


In some cases, it may be desirable for the LCP 100, 400 to be configured to operate in a number of different pacing modes. Some illustrative pacing modes may include, but are not limited to VDD, VDDR, VVI, VVIR, VOO, and VOOR. As used herein, the pacing modes use the North American Society of Pacing and Electrophysiology (NASPE) and British Pacing and Electrophysiology Group (BPEG) pacemaker codes as outlined in Table 1 below:









TABLE 1







NASPE/BPEG Revised in 2002 NBG Pacemaker Code











Position I
Position II
Position III
Position IV
Position V





(Chamber Paced)
(Chamber Sensed)
(Response to Sensed Event)
(Programmability,
(Multisite Pacing)


O = none
O = none
O = none
Rate Modulation)
O = none


A = atrium
A = atrium
I = inhibited

A = atrium


V = ventricle
V = ventricle
T = triggered
O = none
V = ventricle


D = dual (A + V)
D = dual (A + V)
D = dual (T + I)
R = rate modulation
D = dual (A + V)





Miller R D. Miller’s Anesthesia, 6th ed. Philadelphia: Elsevier, Inc, 2005, pp 1417.







A VDD device is a device pacing in the ventricle, sensing both the atrium and the ventricle, and using triggered and inhibited pacing.


It is contemplated that a right ventricle LCP 100, 400 using remote tracking of atrial activity such as described herein may automatically revert from one pacing mode to another, depending on one or more sensed conditions. The reversionary behavior may be desirable for safe operation and/or for enhancing the effectiveness of the pacing therapy. The control module may be configured to search for and identify conditions that may indicate a reversion is desirable. Some conditions may include, but are not limited to: an atrial artifact (e.g., atrial timing fiducial) occurring too close to the R-wave (or other ventricular fiducial); a hemodynamic response that indicates that the present pacing therapy is worse than another pacing therapy or no pacing therapy, either actual or anticipated (due to one or more of posture, heart rate, respiratory rate, respiratory cycle, patient activity, physiological noise, environmental noise, etc.); continuous or intermittent loss of an atrial tracking artifact or fiducial; actual or anticipated continuous or intermittent loss of an atrial tracking artifact or fiducial due to search algorithms associated with reacquiring an atrial artifact or fiducial; a time period between adjacent atrial artifacts or fiducials being too short (e.g., due to over sensing caused by physiological or environmental noise or atrial tachyarrhythmia); and/or a ventricular interval being too short (e.g., due to over sensing caused by physiological or environmental noise or ventricular tachyarrhythmia). These are just some examples. Other events and conditions may be detected and cause reversionary behavior.


The LCP 100, 400 may experience or be configured to use different types of reversionary behavior based on the current conditions. In a first example, the control module may be configured to change pacing modes. In the event of a loss of an atrial timing fiducial, an atrial rate above a specified threshold, or atrial noise above a threshold, the LCP may be configured to automatically switch between VDD and VVI modes. In the event of ventricular noise being above a threshold, the LCP may be configured to automatically switch between VDD or VVI and VOO modes. In the event of a reduction in the hemodynamic signal, the LCP may be configured to automatically switch between VDD or VVI and OOO modes.


In an example LCP 100, 400 reverts to a VDI mode wherein the device continues to search and/or measure atrial artifacts but does not use any detected atrial artifacts to trigger ventricular pacing. If the LCP determines the atrial fiducial can be reliably determined the LCP reverts back to a mode that allows triggering of ventricular paces from the atrial fiducial (e.g. VDD mode).


In some cases, the control module may be configured to manipulate the tracking algorithm. For example, the control module may switch between continuous tracking and intermittent tracking with tracking estimate and search. In yet another example, the atrial timing fiducial signal may be reverted. In another example, the type of signal and/or portion of signal used to determine the atrial timing fiducial may be changed or switched. In yet another example, the atrial timing fiducial may be changed from a first weighted average of two or more signals to a second different weighted average of the same or different two or more signals. These are just examples.



FIG. 15 is a flow chart 800 of an illustrative method for determining whether the LCP 100, 400 should utilize reversion. The control module may continuously verify the current pacing mode is the best under the current conditions. If a reversion is needed, the control module may dynamically change the pacing mode (e.g., change on a beat-to-beat basis, if needed). The LCP 100, 400 may first deliver a pace, as shown at 802. After delivering the pace, the control module may check to see if the atrial artifact and/or event (e.g., atrial timing fiducial) was detected, as shown at 804. If the atrial timing fiducial was detected, the LCP 100, 400 may continue with its normal operational mode, which in some cases may be VDD tracking with the pacing occurring after the corresponding AV interval, as shown at 806. An exception may occur when the normal VDD tracking inhibits a pacing pulse due to preventricular contraction, as shown at 808. If the atrial timing fiducial was not detected or resolved, the LCP 100, 400 may enter a reversionary mode, as shown at 810. In some cases, in the reversionary mode, the LCP 100, 400 may enter a VDD pseudo tracking mode in which the LCP 100, 400 paces using an estimated atrial timing fiducial time. Other reversionary modes may be used as appropriate. The control module may be configured to select a ventricular pacing therapy and/or mode based at least in part on one or more of the tracked atrial artifacts/events. In some cases, a first ventricular pacing therapy may have a first pacing rate and the reversionary (or second) ventricular pacing therapy may have a second pacing rate different from the first. For example, the reversionary ventricular pacing therapy may extend the pacing rate to aid in the search for the atrial timing fiducial.



FIG. 16 illustrates a comparison of pacing intervals on an electrocardiogram when the LCP 100, 400 is operating in a normal VDD mode 820 and pacing intervals on an electrocardiogram when the LCP 100, 400 is operating in a VDD pseudo tracking mode 830. As can be seen in the normal VDD mode 820, the control module is detecting an atrial timing fiducial 822, and using the appropriate AV delay 824, delivers the pacing pulse 826 at the appropriate time. The LCP 100, 400 will continue to operate in this manner unless conditions change that make VDD pacing unsafe or less desirable.



FIG. 16 illustrates an example in which the control module of the LCP 100, 400 has determined that the atrial artifact/event 832 is missing or unreliable. The control module may then sense a ventricular event 834 (such as but not limited to the R-wave) and essentially use the ventricular event 834 as the atrial pacing fiducial for the next cardiac cycle. The control module may determine an appropriate AV interval 836, calculated using the ventricular intrinsic interval (e.g., R-wave to subsequent R-wave) minus a previously stored pace to R wave interval. In the example shown, starting at the sensed ventricular event 834, the pacing pulse 838 may be delivered at a time equal to the R-wave to R-wave intrinsic interval minus a percentage of the historical AV interval. It is contemplated that the percentage of the historical AV interval may be in the range of about 30 to 70%. Alternatively, a fixed time period, such as, but not limited about 200 milliseconds may be used in place of the percentage of the historical AV interval or a previously stored pace to R wave interval. The control module may then continue to pace using the R-wave to R-wave intrinsic interval 840 as the timing interval using the pacing pulse 838 as the timing fiducial until a suitable atrial timing fiducial is identified. If the control module fails to re-acquire a suitable atrial timing fiducial, the control module may command the device to enter a search mode in an attempt to detect an intrinsic atrial and/or ventricular event. This is just one example of a reversionary scenario.


The control module may be configured to determine the accuracy of the atrial timing fiducial by analyzing the effectiveness of the pacing therapy. In one example, the control module may use the upstroke (e.g., dP/dt or peak pressure) on sequential cardiac cycles to estimate the accuracy of the A-wave detection. If the LCP 100, 400 is pacing at an incorrect time due to an inaccurate atrial timing fiducial, passive filling may be reduced thereby reducing the dP/dt. Similarly, the control module may use an integrator to find the area under the pressure waveform, which may represents the filling volume of the ventricle, or impedance between the electrodes of the LCP may be used as an indication of ventricle volume. Poor filling volume may indicate an inaccurate atrial timing fiducial. In yet another example, the control module may be configured to search for edges using, for example a high-pass pole to create a differentiator to help identify a sub-par atrial timing fiducial. If the atrial timing fiducial is determined to be inaccurate, the LCP may revert to asynchronous pacing (e.g. VOO mode). Alternatively, if the patient's intrinsic heart rate is high enough (e.g. 50 BPM), the LCP may revert to no pacing (e.g. OOO mode).


In addition to a first-order differentiator, higher-order differentiation could further provide better timing fiducials (e.g., more crisp) and other measures such as verification of signal quality. A third order time derivative of position is known as “jerk”, which is the change in acceleration with respect to time. FIG. 17 illustrates a graph 900 of an illustrative relationship of higher order differentiation of a signal 902. The signal 902 could be any suitable signal including an egram, a pressure signal, an acceleration signal, or any other suitable signal. The change in pressure with respect to time may be considered the first derivative 904. The change in the first derivative 904 with respect to time may be considered the second derivative 906. The change in second derivative with respect to time may be considered as an equivalent to jerk 908 (or the third derivative). When the signal is a pressure signal, the inflections produced by an A-wave may give third order blips which could be used for timing or verifying a quality of the signal.


Those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific examples described and contemplated herein. For instance, as described herein, various examples include one or more modules described as performing various functions. However, other examples may include additional modules that split the described functions up over more modules than that described herein. Additionally, other examples may consolidate the described functions into fewer modules. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.

Claims
  • 1. A leadless cardiac pacemaker (LCP) configured to sense cardiac activity and to deliver pacing therapy to a patient's heart, the LCP comprising: a housing;a first electrode secured relative to the housing and exposed to the environment outside of the housing;a second electrode secured relative to the housing and exposed to the environment outside of the housing;sensing electronics disposed within the housing and responsive to the environment outside of the housing, the sensing electronics configured to detect two or more different atrial artifacts that are each indicative of a particular atrial contraction;control electronics operatively coupled to the first electrode, the second electrode, and the sensing electronics, the control electronics configured to: identify an atrial timing fiducial for each of a plurality of cardiac cycles, wherein the atrial timing fiducial for each of the plurality of cardiac cycles is based on the two or more atrial artifacts sensed during the corresponding cardiac cycle, wherein the two or more different atrial artifacts comprise two or more of a S2 heart sound, a S4 heart sound, and an A-wave;track the atrial timing fiducials identified for each of the plurality of cardiac cycles over time;identify a relationship between one or more of the tracked atrial timing fiducials identified for each of the plurality of cardiac cycles and another detected cardiac event or an anticipated but missing cardiac event; anddeliver a plurality of different types of ventricular pacing therapies to the patient's heart via the first electrode and the second electrode, wherein the control electronics select which type of ventricular pacing therapy to deliver based, at least in part, on the identified relationship.
  • 2. The LCP of claim 1, wherein the plurality of different types of ventricular pacing therapies comprise two or more of VDD, VDDR, VVI, VVIR, VOO and VOOR.
  • 3. The LCP of claim 1, wherein the plurality of different types of ventricular pacing therapies comprise a first ventricular pacing therapy having a first pacing rate and a second ventricular pacing therapy having a second pacing rate different from the first pacing rate.
  • 4. The LCP of claim 1, wherein the control electronics are configured to dynamically select which type of ventricular pacing therapy to deliver based, at least in part, on the identified relationship.
  • 5. The LCP of claim 1, wherein the sensing electronics configured to detect one or more ventricle timing fiducials that are indicative of a particular ventricle contraction, and the control electronics are configured to track the one or more atrial timing fiducials and the one or more ventricle timing fiducials over a plurality of cardiac cycles.
  • 6. The LCP of claim 5, wherein the control electronics are configured to select which type of ventricular pacing therapy to deliver based, at least in part, on one or more of the tracked atrial timing fiducials and one or more of the tracked ventricle timing fiducials.
  • 7. The LCP of claim 6, wherein the identified relationship is a timing relationship between a predetermined one of the tracked atrial timing fiducials and a predetermined one of the tracked ventricle timing fiducials, and wherein the control electronics are configured to change from a first ventricular pacing therapy type to a second ventricular pacing therapy type when the predetermined one of the tracked atrial timing fiducials comes too close in time to the predetermined one of the tracked ventricle timing fiducials.
  • 8. The LCP of claim 1, wherein the sensing electronics comprise a single sensor type capable of detecting the two or more different atrial artifacts, wherein the single sensor comprises an accelerometer.
  • 9. The LCP of claim 1, wherein the sensing electronics comprise two or more sensors of different sensor types for detecting the two or more different atrial artifacts.
  • 10. The LCP of claim 1, wherein the control electronics continuously track the atrial timing fiducials over a plurality of cardiac cycles.
  • 11. The LCP of claim 1, wherein the control electronics intermittently track the atrial timing fiducials over a plurality of cardiac cycles.
  • 12. The LCP of claim 1, wherein the control electronics are configured to switch from delivering a first type of ventricular pacing therapy to delivering a second type of ventricular pacing therapy when the control electronics can no longer track one or more of the atrial timing fiducials.
  • 13. The LCP of claim 12, wherein the control electronics automatically enter a search mode to attempt to re-acquire the one or more of the atrial timing fiducials that can no longer be tracked.
  • 14. A leadless cardiac pacemaker (LCP) configured to sense cardiac activity and to deliver pacing therapy to a patient's heart, the LCP comprising: a housing;a first electrode secured relative to the housing and exposed to the environment outside of the housing;a second electrode secured relative to the housing and exposed to the environment outside of the housing;sensing electronics disposed within the housing, the sensing electronics including two or more different sensors that are responsive to the environment outside of the housing, the sensing electronics is configured to detect two or more different atrial artifacts that are each indicative of a particular atrial contraction, wherein the two or more different atrial artifacts comprise two or more of a S2 heart sound, a S4 heart sound, and an A-wave, and wherein each of at least two of the two or more different atrial artifacts are sensed by different ones of the two or more different sensors;control electronics operatively coupled to the first electrode, the second electrode, and the sensing electronics, the control electronics configured to: identify an atrial timing fiducial for each of a plurality of cardiac cycles, wherein the atrial timing fiducial for each of the plurality of cardiac cycles is based on at least two of the two or more different atrial artifacts that are sensed by different ones of the two or more different sensors of the sensing electronics during the corresponding cardiac cycle;identify a relationship between one or more of the atrial timing fiducials identified for each of the plurality of cardiac cycles and another detected cardiac event or an anticipated but missing cardiac event;deliver a plurality of different ventricular pacing therapy types to the patient's heart via the first electrode and the second electrode, wherein the control electronics dynamically select which ventricular pacing therapy type to deliver based, at least in part, on the identified relationship; andwherein the plurality of different ventricular pacing therapy types comprise two or more of VDD, VDDR, VVI, VVIR, VOO and VOOR.
  • 15. The LCP of claim 14, wherein the two or more different sensors of the sensing electronics comprise one or more of a pressure measurement sensor and an acoustic measurement sensor.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/593,662 filed on Dec. 1, 2017, the disclosure of which is incorporated herein by reference.

US Referenced Citations (1251)
Number Name Date Kind
3835864 Rasor et al. Sep 1974 A
3943936 Rasor et al. Mar 1976 A
4142530 Wittkampf Mar 1979 A
4151513 Menken et al. Apr 1979 A
4157720 Greatbatch Jun 1979 A
RE30366 Rasor et al. Aug 1980 E
4243045 Maas Jan 1981 A
4250884 Hartlaub et al. Feb 1981 A
4256115 Bilitch Mar 1981 A
4263919 Levin Apr 1981 A
4310000 Lindemans Jan 1982 A
4312354 Walters Jan 1982 A
4323081 Wiebusch Apr 1982 A
4357946 Dutcher et al. Nov 1982 A
4365639 Goldreyer Dec 1982 A
4440173 Hudziak et al. Apr 1984 A
4476868 Thompson Oct 1984 A
4522208 Buffet Jun 1985 A
4537200 Widrow Aug 1985 A
4556063 Thompson et al. Dec 1985 A
4562841 Brockway et al. Jan 1986 A
4593702 Kepski et al. Jun 1986 A
4593955 Leiber Jun 1986 A
4630611 King Dec 1986 A
4635639 Hakala et al. Jan 1987 A
4674508 DeCote Jun 1987 A
4712554 Garson Dec 1987 A
4729376 DeCote Mar 1988 A
4754753 King Jul 1988 A
4759366 Callaghan Jul 1988 A
4776338 Lekholm et al. Oct 1988 A
4787389 Tarjan Nov 1988 A
4793353 Borkan Dec 1988 A
4819662 Heil et al. Apr 1989 A
4858610 Callaghan et al. Aug 1989 A
4886064 Strandberg Dec 1989 A
4887609 Cole Dec 1989 A
4928688 Mower May 1990 A
4967746 Vandegriff Nov 1990 A
4987897 Funke Jan 1991 A
4989602 Sholder et al. Feb 1991 A
5012806 De Bellis May 1991 A
5036849 Hauck et al. Aug 1991 A
5040534 Mann et al. Aug 1991 A
5058581 Silvian Oct 1991 A
5078134 Heilman et al. Jan 1992 A
5109845 Yuuchi et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5117824 Keimel et al. Jun 1992 A
5127401 Grevious et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144950 Stoop et al. Sep 1992 A
5170784 Ramon et al. Dec 1992 A
5179945 Van Hofwegen et al. Jan 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5241961 Henry Sep 1993 A
5243977 Trabucco et al. Sep 1993 A
5259387 DePinto Nov 1993 A
5269326 Verrier Dec 1993 A
5284136 Hauck et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5301677 Hsung Apr 1994 A
5305760 McKown et al. Apr 1994 A
5312439 Loeb May 1994 A
5313953 Yomtov et al. May 1994 A
5314459 Swanson et al. May 1994 A
5318597 Hauck et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5334222 Salo et al. Aug 1994 A
5342408 deCoriolis et al. Aug 1994 A
5370667 Alt Dec 1994 A
5372606 Lang et al. Dec 1994 A
5376106 Stahmann et al. Dec 1994 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5411031 Yomtov May 1995 A
5411525 Swanson et al. May 1995 A
5411535 Fujii et al. May 1995 A
5441489 Utsumi et al. Aug 1995 A
5456691 Snell Oct 1995 A
5458622 Alt Oct 1995 A
5466246 Silvian Nov 1995 A
5468254 Hahn et al. Nov 1995 A
5472453 Alt Dec 1995 A
5522866 Fernald Jun 1996 A
5540727 Tockman et al. Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5571146 Jones et al. Nov 1996 A
5591214 Lu Jan 1997 A
5620466 Haefner et al. Apr 1997 A
5634938 Swanson et al. Jun 1997 A
5649968 Alt et al. Jul 1997 A
5662688 Haefner et al. Sep 1997 A
5674259 Gray Oct 1997 A
5683426 Greenhut et al. Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5706823 Wodlinger Jan 1998 A
5709215 Perttu et al. Jan 1998 A
5720770 Nappholz et al. Feb 1998 A
5728154 Crossett et al. Mar 1998 A
5741314 Daly et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grevious et al. May 1998 A
5755736 Gillberg et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5774501 Halpern et al. Jun 1998 A
5792195 Carlson et al. Aug 1998 A
5792202 Rueter Aug 1998 A
5792203 Schroeppel Aug 1998 A
5792205 Alt et al. Aug 1998 A
5792208 Gray Aug 1998 A
5814089 Stokes et al. Sep 1998 A
5827216 Igo et al. Oct 1998 A
5836985 Rostami et al. Nov 1998 A
5836987 Baumann et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5855593 Olson et al. Jan 1999 A
5873894 Vandegriff et al. Feb 1999 A
5891184 Lee et al. Apr 1999 A
5897586 Molina Apr 1999 A
5899876 Flower May 1999 A
5899928 Sholder et al. May 1999 A
5919214 Ciciarelli et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5941906 Barreras, Sr. et al. Aug 1999 A
5944744 Paul et al. Aug 1999 A
5954757 Gray Sep 1999 A
5978713 Prutchi et al. Nov 1999 A
5991660 Goyal Nov 1999 A
5991661 Park et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
5999857 Weijand et al. Dec 1999 A
6016445 Baura Jan 2000 A
6026320 Carlson et al. Feb 2000 A
6029085 Olson et al. Feb 2000 A
6041250 DePinto Mar 2000 A
6044298 Salo et al. Mar 2000 A
6044300 Gray Mar 2000 A
6055454 Heemels Apr 2000 A
6066126 Li et al. May 2000 A
6073050 Griffith Jun 2000 A
6076016 Feierbach Jun 2000 A
6077236 Cunningham Jun 2000 A
6080187 Alt et al. Jun 2000 A
6083248 Thompson Jul 2000 A
6106551 Crossett et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6141581 Olson et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144879 Gray Nov 2000 A
6162195 Igo et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6211799 Post et al. Apr 2001 B1
6221011 Bardy Apr 2001 B1
6240316 Richmond et al. May 2001 B1
6240317 Villaseca et al. May 2001 B1
6256534 Dahl Jul 2001 B1
6259947 Olson et al. Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6273856 Sun et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6285907 Kramer et al. Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6295473 Rosar Sep 2001 B1
6297943 Carson Oct 2001 B1
6298271 Weijand Oct 2001 B1
6307751 Bodony et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6336903 Bardy Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6351667 Godie Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6361780 Ley et al. Mar 2002 B1
6368284 Bardy Apr 2002 B1
6371922 Baumann et al. Apr 2002 B1
6398728 Bardy Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6400990 Silvian Jun 2002 B1
6408208 Sun Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6424865 Ding Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6438421 Stahmann et al. Aug 2002 B1
6440066 Bardy Aug 2002 B1
6441747 Khair et al. Aug 2002 B1
6442426 Kroll Aug 2002 B1
6442432 Lee Aug 2002 B2
6443891 Grevious Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6453200 Koslar Sep 2002 B1
6459929 Hopper et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6480745 Nelson et al. Nov 2002 B2
6487443 Olson et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6507755 Gozani et al. Jan 2003 B1
6507759 Prutchi et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6526311 Begemann Feb 2003 B2
6539253 Thompson et al. Mar 2003 B2
6542775 Ding et al. Apr 2003 B2
6553258 Stahmann et al. Apr 2003 B2
6561975 Pool et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6574506 Kramer et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6597948 Rockwell et al. Jul 2003 B1
6597951 Kramer et al. Jul 2003 B2
6622046 Fraley et al. Sep 2003 B2
6628985 Sweeney et al. Sep 2003 B2
6647292 Bardy et al. Nov 2003 B1
6666844 Igo et al. Dec 2003 B1
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694189 Begemann Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6718212 Parry et al. Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6738670 Almendinger et al. May 2004 B1
6746797 Benson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6763269 Cox Jul 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788971 Sloman et al. Sep 2004 B1
6788974 Bardy et al. Sep 2004 B2
6804558 Haller et al. Oct 2004 B2
6807442 Myklebust et al. Oct 2004 B1
6847844 Sun et al. Jan 2005 B2
6871095 Stahmann et al. Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6885889 Chinchoy Apr 2005 B2
6892094 Ousdigian et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6904315 Panken et al. Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6931282 Esler Aug 2005 B2
6934585 Schloss et al. Aug 2005 B1
6957107 Rogers et al. Oct 2005 B2
6978176 Lattouf Dec 2005 B2
6985773 Von Arx et al. Jan 2006 B2
6990375 Kloss et al. Jan 2006 B2
7001366 Ballard Feb 2006 B2
7003350 Denker et al. Feb 2006 B2
7006864 Echt et al. Feb 2006 B2
7013178 Reinke et al. Mar 2006 B2
7027871 Burnes et al. Apr 2006 B2
7050849 Echt et al. May 2006 B2
7060031 Webb et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7082336 Ransbury et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092758 Sun et al. Aug 2006 B2
7110824 Amundson et al. Sep 2006 B2
7120504 Osypka Oct 2006 B2
7130681 Gebhardt et al. Oct 2006 B2
7139613 Reinke et al. Nov 2006 B2
7142912 Wagner et al. Nov 2006 B2
7146225 Guenst et al. Dec 2006 B2
7146226 Lau et al. Dec 2006 B2
7149581 Goedeke Dec 2006 B2
7149588 Lau et al. Dec 2006 B2
7158839 Lau Jan 2007 B2
7162307 Patrias Jan 2007 B2
7164952 Lau et al. Jan 2007 B2
7177700 Cox Feb 2007 B1
7181505 Haller et al. Feb 2007 B2
7184830 Echt et al. Feb 2007 B2
7186214 Ness Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7206423 Feng et al. Apr 2007 B1
7209785 Kim et al. Apr 2007 B2
7209790 Thompson et al. Apr 2007 B2
7211884 Davis et al. May 2007 B1
7212871 Morgan May 2007 B1
7226440 Gelfand et al. Jun 2007 B2
7228183 Sun et al. Jun 2007 B2
7236821 Cates et al. Jun 2007 B2
7236829 Farazi et al. Jun 2007 B1
7254448 Almendinger et al. Aug 2007 B2
7260436 Kilgore et al. Aug 2007 B2
7270669 Sra Sep 2007 B1
7272448 Morgan et al. Sep 2007 B1
7277755 Falkenberg et al. Oct 2007 B1
7280872 Mosesov et al. Oct 2007 B1
7288096 Chin Oct 2007 B2
7289847 Gill et al. Oct 2007 B1
7289852 Helfinstine et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7289855 Nghiem et al. Oct 2007 B2
7302294 Kamath et al. Nov 2007 B2
7305266 Kroll Dec 2007 B1
7310556 Bulkes Dec 2007 B2
7319905 Morgan et al. Jan 2008 B1
7321798 Muhlenberg et al. Jan 2008 B2
7333853 Mazar et al. Feb 2008 B2
7336994 Hettrick et al. Feb 2008 B2
7347819 Lebel et al. Mar 2008 B2
7366572 Heruth et al. Apr 2008 B2
7373207 Lattouf May 2008 B2
7384403 Sherman Jun 2008 B2
7386342 Falkenberg et al. Jun 2008 B1
7392090 Sweeney et al. Jun 2008 B2
7406105 DelMain et al. Jul 2008 B2
7406349 Seeberger et al. Jul 2008 B2
7410497 Hastings et al. Aug 2008 B2
7425200 Brockway et al. Sep 2008 B2
7433739 Salys et al. Oct 2008 B1
7496409 Greenhut et al. Feb 2009 B2
7496410 Heil Feb 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7512448 Malick et al. Mar 2009 B2
7515969 Tockman et al. Apr 2009 B2
7526342 Chin et al. Apr 2009 B2
7529589 Williams et al. May 2009 B2
7532933 Hastings et al. May 2009 B2
7536222 Bardy et al. May 2009 B2
7536224 Ritscher et al. May 2009 B2
7539541 Quiles et al. May 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7558631 Cowan et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7584002 Burnes et al. Sep 2009 B2
7590455 Heruth et al. Sep 2009 B2
7606621 Brisken et al. Oct 2009 B2
7610088 Chinchoy Oct 2009 B2
7610092 Cowan et al. Oct 2009 B2
7610099 Almendinger et al. Oct 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7616991 Mann et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7617007 Williams et al. Nov 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7637867 Zdeblick Dec 2009 B2
7640060 Zdeblick Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7650186 Hastings et al. Jan 2010 B2
7657311 Bardy et al. Feb 2010 B2
7668596 Von Arx et al. Feb 2010 B2
7682316 Anderson et al. Mar 2010 B2
7691047 Ferrari Apr 2010 B2
7702392 Echt et al. Apr 2010 B2
7713194 Zdeblick May 2010 B2
7713195 Zdeblick May 2010 B2
7729783 Michels et al. Jun 2010 B2
7734333 Ghanem et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7738958 Zdeblick et al. Jun 2010 B2
7738964 Von Arx et al. Jun 2010 B2
7742812 Ghanem et al. Jun 2010 B2
7742816 Masoud et al. Jun 2010 B2
7742822 Masoud et al. Jun 2010 B2
7743151 Vallapureddy et al. Jun 2010 B2
7747335 Williams Jun 2010 B2
7751881 Cowan et al. Jul 2010 B2
7758521 Morris et al. Jul 2010 B2
7761150 Ghanem et al. Jul 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7765001 Echt et al. Jul 2010 B2
7769452 Ghanem et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7792588 Harding Sep 2010 B2
7797059 Bornzin et al. Sep 2010 B1
7801596 Fischell et al. Sep 2010 B2
7809438 Echt et al. Oct 2010 B2
7840281 Kveen et al. Nov 2010 B2
7844331 Li et al. Nov 2010 B2
7844348 Swoyer et al. Nov 2010 B2
7846088 Ness Dec 2010 B2
7848815 Brisken et al. Dec 2010 B2
7848823 Drasler et al. Dec 2010 B2
7860455 Fukumoto et al. Dec 2010 B2
7871433 Lattouf Jan 2011 B2
7877136 Moffitt et al. Jan 2011 B1
7877142 Moaddeb et al. Jan 2011 B2
7881786 Jackson Feb 2011 B2
7881798 Miesel et al. Feb 2011 B2
7881810 Chitre et al. Feb 2011 B1
7890173 Brisken et al. Feb 2011 B2
7890181 Denzene et al. Feb 2011 B2
7890192 Kelsch et al. Feb 2011 B1
7894885 Bartal et al. Feb 2011 B2
7894894 Stadler et al. Feb 2011 B2
7894907 Cowan et al. Feb 2011 B2
7894910 Cowan et al. Feb 2011 B2
7894915 Chitre et al. Feb 2011 B1
7899537 Kroll et al. Mar 2011 B1
7899541 Cowan et al. Mar 2011 B2
7899542 Cowan et al. Mar 2011 B2
7899554 Williams et al. Mar 2011 B2
7901360 Yang et al. Mar 2011 B1
7904170 Harding Mar 2011 B2
7907993 Ghanem et al. Mar 2011 B2
7920928 Yang et al. Apr 2011 B1
7925343 Min et al. Apr 2011 B1
7930022 Zhang et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7937135 Ghanem et al. May 2011 B2
7937148 Jacobson May 2011 B2
7937161 Hastings et al. May 2011 B2
7941214 Kleckner et al. May 2011 B2
7945333 Jacobson May 2011 B2
7946997 Hübinette May 2011 B2
7949404 Hill May 2011 B2
7949405 Feher May 2011 B2
7953486 Daum et al. May 2011 B2
7953493 Fowler et al. May 2011 B2
7962202 Bhunia Jun 2011 B2
7974702 Fain et al. Jul 2011 B1
7979136 Young et al. Jul 2011 B2
7983753 Severin Jul 2011 B2
3000791 Sunagawa et al. Aug 2011 A1
3000807 Morris et al. Aug 2011 A1
3001975 DiSilvestro et al. Aug 2011 A1
3002700 Ferek-Petric et al. Aug 2011 A1
7991467 Markowitz et al. Aug 2011 B2
7991471 Ghanem et al. Aug 2011 B2
7996087 Cowan et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8019419 Panescu et al. Sep 2011 B1
8019434 Quiles et al. Sep 2011 B2
8027727 Freeberg Sep 2011 B2
8027729 Sunagawa et al. Sep 2011 B2
8032219 Neumann et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8046079 Bange et al. Oct 2011 B2
8046080 Von Arx et al. Oct 2011 B2
3055350 Roberts Nov 2011 A1
3060212 Rios et al. Nov 2011 A1
3065018 Haubrich et al. Nov 2011 A1
8050297 DelMain et al. Nov 2011 B2
8050759 Stegemann et al. Nov 2011 B2
8050774 Kveen et al. Nov 2011 B2
8055345 Li et al. Nov 2011 B2
8073542 Doerr Dec 2011 B2
8078278 Penner Dec 2011 B2
8078283 Cowan et al. Dec 2011 B2
8095123 Gray Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103359 Reddy Jan 2012 B2
8103361 Moser Jan 2012 B2
8112148 Giftakis et al. Feb 2012 B2
8114021 Robertson et al. Feb 2012 B2
8121680 Falkenberg et al. Feb 2012 B2
8123684 Zdeblick Feb 2012 B2
8126545 Flach et al. Feb 2012 B2
8131334 Lu et al. Mar 2012 B2
8140161 Willerton et al. Mar 2012 B2
8150521 Crowley et al. Apr 2012 B2
8160672 Kim et al. Apr 2012 B2
8160702 Mann et al. Apr 2012 B2
8160704 Freeberg Apr 2012 B2
8165694 Carbanaru et al. Apr 2012 B2
8175715 Cox May 2012 B1
8180451 Hickman et al. May 2012 B2
8185213 Kveen et al. May 2012 B2
8187161 Li et al. May 2012 B2
8195293 Limousin et al. Jun 2012 B2
8204595 Pianca et al. Jun 2012 B2
8204605 Hastings et al. Jun 2012 B2
8209014 Doerr Jun 2012 B2
8214043 Matos Jul 2012 B2
8224244 Kim et al. Jul 2012 B2
8229556 Li Jul 2012 B2
8233985 Bulkes et al. Jul 2012 B2
8262578 Bharmi et al. Sep 2012 B1
8265748 Liu et al. Sep 2012 B2
8265757 Mass et al. Sep 2012 B2
8280521 Haubrich et al. Oct 2012 B2
8285387 Utsi et al. Oct 2012 B2
8290598 Boon et al. Oct 2012 B2
8290600 Hastings et al. Oct 2012 B2
8295939 Jacobson Oct 2012 B2
8301254 Mosesov et al. Oct 2012 B2
8315701 Cowan et al. Nov 2012 B2
8315708 Berthelsdorf et al. Nov 2012 B2
8321021 Kisker et al. Nov 2012 B2
8321036 Brockway et al. Nov 2012 B2
8332036 Hastings et al. Dec 2012 B2
8335563 Stessman Dec 2012 B2
8335568 Heruth et al. Dec 2012 B2
8340750 Prakash et al. Dec 2012 B2
8340780 Hastings et al. Dec 2012 B2
8352025 Jacobson Jan 2013 B2
8352028 Wenger Jan 2013 B2
8352038 Mao et al. Jan 2013 B2
8359098 Lund et al. Jan 2013 B2
8364261 Stubbs et al. Jan 2013 B2
8364276 Willis Jan 2013 B2
8369959 Meskens Feb 2013 B2
8369962 Abrahamson Feb 2013 B2
8380320 Spital Feb 2013 B2
8386051 Rys Feb 2013 B2
8391981 Mosesov Mar 2013 B2
8391990 Smith et al. Mar 2013 B2
8406874 Liu et al. Mar 2013 B2
8406879 Shuros et al. Mar 2013 B2
8406886 Gaunt et al. Mar 2013 B2
8412352 Griswold et al. Apr 2013 B2
8417340 Goossen Apr 2013 B2
8417341 Freeberg Apr 2013 B2
8423149 Hennig Apr 2013 B2
8428722 Verhoef et al. Apr 2013 B2
8433402 Ruben et al. Apr 2013 B2
8433409 Johnson et al. Apr 2013 B2
8433420 Bange et al. Apr 2013 B2
8447412 Dal Molin et al. May 2013 B2
8452413 Young et al. May 2013 B2
8457740 Osche Jun 2013 B2
8457742 Jacobson Jun 2013 B2
8457744 Janzig et al. Jun 2013 B2
8457761 Wariar Jun 2013 B2
8478407 Demmer et al. Jul 2013 B2
8478408 Hastings et al. Jul 2013 B2
8478431 Griswold et al. Jul 2013 B2
8494632 Sun et al. Jul 2013 B2
8504156 Bonner et al. Aug 2013 B2
8509910 Sowder et al. Aug 2013 B2
8515559 Roberts et al. Aug 2013 B2
8525340 Eckhardt et al. Sep 2013 B2
8527068 Ostroff Sep 2013 B2
8532790 Griswold Sep 2013 B2
8538526 Stahmann et al. Sep 2013 B2
8541131 Lund et al. Sep 2013 B2
8543205 Ostroff Sep 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8548605 Ollivier Oct 2013 B2
8554333 Wu et al. Oct 2013 B2
8565882 Matos Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8571678 Wang Oct 2013 B2
8577327 Makdissi et al. Nov 2013 B2
8588926 Moore et al. Nov 2013 B2
8612002 Faltys et al. Dec 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8626280 Allavatam et al. Jan 2014 B2
8626294 Sheldon et al. Jan 2014 B2
8634908 Cowan Jan 2014 B2
8634912 Bomzin et al. Jan 2014 B2
8634919 Hou et al. Jan 2014 B1
8639335 Peichel et al. Jan 2014 B2
8644934 Hastings et al. Feb 2014 B2
8649859 Smith et al. Feb 2014 B2
8670842 Bornzin et al. Mar 2014 B1
8676319 Knoll Mar 2014 B2
8676335 Katoozi et al. Mar 2014 B2
8700173 Edlund Apr 2014 B2
8700181 Bornzin et al. Apr 2014 B2
8705599 dal Molin et al. Apr 2014 B2
8718766 Wahlberg May 2014 B2
8718773 Willis et al. May 2014 B2
8725260 Shuros et al. May 2014 B2
8738133 Shuros et al. May 2014 B2
8738147 Hastings et al. May 2014 B2
8744555 Allavatam et al. Jun 2014 B2
8744572 Greenhut et al. Jun 2014 B1
8747314 Stahmann et al. Jun 2014 B2
8755884 Demmer et al. Jun 2014 B2
8758365 Bonner et al. Jun 2014 B2
8768483 Schmitt et al. Jul 2014 B2
8774572 Hamamoto Jul 2014 B2
8781605 Bornzin et al. Jul 2014 B2
8788035 Jacobson Jul 2014 B2
8788053 Jacobson Jul 2014 B2
8798740 Samade et al. Aug 2014 B2
8798745 Jacobson Aug 2014 B2
8798762 Fain et al. Aug 2014 B2
8798770 Reddy Aug 2014 B2
8805505 Roberts Aug 2014 B1
8805528 Corndorf Aug 2014 B2
8812109 Blomqvist et al. Aug 2014 B2
8818504 Bodner et al. Aug 2014 B2
8827913 Havel et al. Sep 2014 B2
8831747 Min et al. Sep 2014 B1
8855789 Jacobson Oct 2014 B2
8868186 Kroll Oct 2014 B2
8886339 Faltys et al. Nov 2014 B2
8903473 Rogers et al. Dec 2014 B2
8903500 Smith et al. Dec 2014 B2
8903513 Ollivier Dec 2014 B2
8909336 Navarro-Paredes et al. Dec 2014 B2
8914131 Bornzin et al. Dec 2014 B2
8923795 Makdissi et al. Dec 2014 B2
8923963 Bonner et al. Dec 2014 B2
8938300 Rosero Jan 2015 B2
8942806 Sheldon et al. Jan 2015 B2
8958892 Khairkhahan et al. Feb 2015 B2
8977358 Ewert et al. Mar 2015 B2
8989873 Locsin Mar 2015 B2
8996109 Karst et al. Mar 2015 B2
9002467 Smith et al. Apr 2015 B2
9008776 Cowan et al. Apr 2015 B2
9008777 Dianaty et al. Apr 2015 B2
9014818 Deterre et al. Apr 2015 B2
9017341 Bornzin et al. Apr 2015 B2
9020611 Khairkhahan et al. Apr 2015 B2
9037262 Regnier et al. May 2015 B2
9042984 Demmer et al. May 2015 B2
9072911 Hastings et al. Jul 2015 B2
9072913 Jacobson Jul 2015 B2
9155882 Grubac et al. Oct 2015 B2
9168372 Fain Oct 2015 B2
9168380 Greenhut et al. Oct 2015 B1
9168383 Jacobson et al. Oct 2015 B2
9180285 Moore et al. Nov 2015 B2
9192774 Jacobson Nov 2015 B2
9205225 Khairkhahan et al. Dec 2015 B2
9216285 Boling et al. Dec 2015 B1
9216293 Berthiaume et al. Dec 2015 B2
9216298 Jacobson Dec 2015 B2
9227077 Jacobson Jan 2016 B2
9238145 Wenzel et al. Jan 2016 B2
9242102 Khairkhahan et al. Jan 2016 B2
9242113 Smith et al. Jan 2016 B2
9248300 Rys et al. Feb 2016 B2
9265436 Min et al. Feb 2016 B2
9265962 Dianaty et al. Feb 2016 B2
9272155 Ostroff Mar 2016 B2
9278218 Karst et al. Mar 2016 B2
9278229 Reinke et al. Mar 2016 B1
9283381 Grubac et al. Mar 2016 B2
9283382 Berthiaume et al. Mar 2016 B2
9289612 Sambelashvili et al. Mar 2016 B1
9302115 Molin et al. Apr 2016 B2
9333364 Echt et al. May 2016 B2
9358387 Suwito et al. Jun 2016 B2
9358400 Jacobson Jun 2016 B2
9364675 Deterre et al. Jun 2016 B2
9370663 Moulder Jun 2016 B2
9375580 Bonner et al. Jun 2016 B2
9375581 Baru et al. Jun 2016 B2
9381365 Kibler et al. Jul 2016 B2
9393424 Demmer et al. Jul 2016 B2
9393436 Doerr Jul 2016 B2
9399139 Demmer et al. Jul 2016 B2
9399140 Cho et al. Jul 2016 B2
9409033 Jacobson Aug 2016 B2
9427594 Bornzin et al. Aug 2016 B1
9433368 Stahmann et al. Sep 2016 B2
9433780 Régnier et al. Sep 2016 B2
9457193 Klimovitch et al. Oct 2016 B2
9492668 Sheldon et al. Nov 2016 B2
9492669 Demmer et al. Nov 2016 B2
9492674 Schmidt et al. Nov 2016 B2
9492677 Greenhut et al. Nov 2016 B2
9511233 Sambelashvili Dec 2016 B2
9511236 Varady et al. Dec 2016 B2
9511237 Deterre et al. Dec 2016 B2
9522276 Shen et al. Dec 2016 B2
9522280 Fishier et al. Dec 2016 B2
9526522 Wood et al. Dec 2016 B2
9526891 Eggen et al. Dec 2016 B2
9526909 Stahmann et al. Dec 2016 B2
9533163 Klimovitch et al. Jan 2017 B2
9561382 Persson et al. Feb 2017 B2
9566012 Greenhut et al. Feb 2017 B2
9636511 Carney et al. May 2017 B2
9669223 Auricchio et al. Jun 2017 B2
9687654 Sheldon et al. Jun 2017 B2
9687655 Pertijs et al. Jun 2017 B2
9687659 Von Arx et al. Jun 2017 B2
9694186 Carney et al. Jul 2017 B2
9782594 Stahmann et al. Oct 2017 B2
9782601 Ludwig Oct 2017 B2
9789317 Greenhut et al. Oct 2017 B2
9789319 Sambelashvili Oct 2017 B2
9808617 Ostroff et al. Nov 2017 B2
9808628 Sheldon et al. Nov 2017 B2
9808631 Maile et al. Nov 2017 B2
9808632 Reinke et al. Nov 2017 B2
9808633 Bonner et al. Nov 2017 B2
9808637 Sharma et al. Nov 2017 B2
9855414 Marshall et al. Jan 2018 B2
9855430 Ghosh et al. Jan 2018 B2
9855435 Sahabi et al. Jan 2018 B2
9861815 Tran et al. Jan 2018 B2
10080887 Schmidt et al. Sep 2018 B2
10080888 Kelly et al. Sep 2018 B2
10080900 Ghosh et al. Sep 2018 B2
10080903 Willis et al. Sep 2018 B2
10086206 Sambelashvili Oct 2018 B2
10118026 Grubac et al. Nov 2018 B2
10124163 Ollivier et al. Nov 2018 B2
10124175 Berthiaume et al. Nov 2018 B2
10130821 Grubac et al. Nov 2018 B2
10137305 Kane et al. Nov 2018 B2
10201710 Jackson et al. Feb 2019 B2
10207115 Echt et al. Feb 2019 B2
10207116 Sheldon et al. Feb 2019 B2
10226197 Reinke et al. Mar 2019 B2
10226639 Zhang Mar 2019 B2
10232182 Hareland et al. Mar 2019 B2
10265503 Schmidt et al. Apr 2019 B2
10265534 Greenhut et al. Apr 2019 B2
10271752 Regnier et al. Apr 2019 B2
10278601 Greenhut et al. May 2019 B2
10279165 Seifert et al. May 2019 B2
10286221 Sawchuk May 2019 B2
10307598 Ciciarelli et al. Jun 2019 B2
10328274 Zhang et al. Jun 2019 B2
10342981 Ghosh et al. Jul 2019 B2
20020032470 Linberg Mar 2002 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035380 Rissmann et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042630 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020091414 Bardy et al. Jul 2002 A1
20020095196 Linberg Jul 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020103454 Sackner et al. Aug 2002 A1
20020103510 Bardy et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20020107546 Ostroff et al. Aug 2002 A1
20020107547 Edinger et al. Aug 2002 A1
20020107548 Bardy et al. Aug 2002 A1
20020107549 Bardy et al. Aug 2002 A1
20020107559 Sanders et al. Aug 2002 A1
20020120299 Ostroff et al. Aug 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030009203 Lebel et al. Jan 2003 A1
20030028082 Thompson Feb 2003 A1
20030040779 Engmark et al. Feb 2003 A1
20030041866 Linberg et al. Mar 2003 A1
20030045805 Sheldon et al. Mar 2003 A1
20030088278 Bardy et al. May 2003 A1
20030097153 Bardy et al. May 2003 A1
20030105497 Zhu et al. Jun 2003 A1
20030114908 Flach Jun 2003 A1
20030120337 Van Tassel et al. Jun 2003 A1
20030144701 Mehra et al. Jul 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20030191526 Van Tassel et al. Oct 2003 A1
20030195572 Bocek et al. Oct 2003 A1
20030204145 Manolas Oct 2003 A1
20040024435 Leckrone et al. Feb 2004 A1
20040068302 Rodgers et al. Apr 2004 A1
20040087938 Leckrone et al. May 2004 A1
20040088035 Guenst et al. May 2004 A1
20040102830 Williams May 2004 A1
20040127959 Amundson et al. Jul 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167558 Igo et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172071 Bardy et al. Sep 2004 A1
20040172077 Chinchoy Sep 2004 A1
20040172104 Berg et al. Sep 2004 A1
20040176817 Wahlstrand et al. Sep 2004 A1
20040176818 Wahlstrand et al. Sep 2004 A1
20040176830 Fang Sep 2004 A1
20040186529 Bardy et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040210292 Bardy et al. Oct 2004 A1
20040210293 Bardy et al. Oct 2004 A1
20040210294 Bardy et al. Oct 2004 A1
20040215308 Bardy et al. Oct 2004 A1
20040220624 Ritscher et al. Nov 2004 A1
20040220626 Wagner Nov 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20040230283 Prinzen et al. Nov 2004 A1
20040249431 Ransbury et al. Dec 2004 A1
20040260348 Bakken et al. Dec 2004 A1
20040267303 Guenst Dec 2004 A1
20050061320 Lee et al. Mar 2005 A1
20050070962 Echt et al. Mar 2005 A1
20050102003 Grabek et al. May 2005 A1
20050137634 Hall et al. Jun 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050182465 Ness Aug 2005 A1
20050203410 Jenkins Sep 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060042830 Maghribi et al. Mar 2006 A1
20060052829 Sun et al. Mar 2006 A1
20060052830 Spinelli et al. Mar 2006 A1
20060064135 Brockway Mar 2006 A1
20060064149 Belacazar et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060095078 Tronnes May 2006 A1
20060106442 Richardson et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060155338 Mongeon et al. Jul 2006 A1
20060161061 Echt et al. Jul 2006 A1
20060200002 Guenst Sep 2006 A1
20060206151 Lu Sep 2006 A1
20060212079 Routh et al. Sep 2006 A1
20060228452 Cromack et al. Oct 2006 A1
20060228453 Cromack et al. Oct 2006 A1
20060240070 Cromack et al. Oct 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060259088 Pastore et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20060293715 Plicchi et al. Dec 2006 A1
20070004979 Wojciechowicz et al. Jan 2007 A1
20070016098 Kim et al. Jan 2007 A1
20070027508 Cowan Feb 2007 A1
20070060787 Peters et al. Mar 2007 A1
20070078490 Cowan et al. Apr 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088405 Jacobson Apr 2007 A1
20070135882 Drasler et al. Jun 2007 A1
20070135883 Drasler et al. Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070156190 Cinbis Jul 2007 A1
20070179541 Prakash et al. Aug 2007 A1
20070219525 Gelfand et al. Sep 2007 A1
20070219590 Hastings et al. Sep 2007 A1
20070225545 Ferrari Sep 2007 A1
20070233206 Frikart et al. Oct 2007 A1
20070239210 Libbus et al. Oct 2007 A1
20070239244 Morgan et al. Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293900 Sheldon et al. Dec 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20080004663 Jorgenson Jan 2008 A1
20080009791 Cohen et al. Jan 2008 A1
20080009910 Kraetschmer et al. Jan 2008 A1
20080010024 Diamond Jan 2008 A1
20080021505 Hastings et al. Jan 2008 A1
20080021519 De Geest et al. Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080065183 Whitehurst et al. Mar 2008 A1
20080065185 Worley Mar 2008 A1
20080071318 Brooke et al. Mar 2008 A1
20080109054 Hastings et al. May 2008 A1
20080119911 Rosero May 2008 A1
20080130670 Kim et al. Jun 2008 A1
20080154139 Shuros et al. Jun 2008 A1
20080154322 Jackson et al. Jun 2008 A1
20080228234 Stancer Sep 2008 A1
20080234771 Chinchoy et al. Sep 2008 A1
20080243217 Wildon Oct 2008 A1
20080269814 Rosero Oct 2008 A1
20080269825 Chinchoy et al. Oct 2008 A1
20080275518 Ghanem et al. Nov 2008 A1
20080275519 Ghanem et al. Nov 2008 A1
20080288039 Reddy Nov 2008 A1
20080294208 Willis et al. Nov 2008 A1
20080294210 Rosero Nov 2008 A1
20080294217 Lian et al. Nov 2008 A1
20080294229 Friedman et al. Nov 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090024180 Kisker et al. Jan 2009 A1
20090036941 Corbucci Feb 2009 A1
20090048646 Katoozi et al. Feb 2009 A1
20090062895 Stahmann et al. Mar 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090088648 Jaffe et al. Apr 2009 A1
20090088813 Brockway et al. Apr 2009 A1
20090112285 Cahan et al. Apr 2009 A1
20090131907 Chin et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090143835 Pastore et al. Jun 2009 A1
20090149908 Bjorling et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20090171414 Kelly et al. Jul 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210024 M. Aug 2009 A1
20090216292 Pless et al. Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090234407 Hastings et al. Sep 2009 A1
20090234411 Sambelashvili et al. Sep 2009 A1
20090266573 Engmark et al. Oct 2009 A1
20090275998 Burnes et al. Nov 2009 A1
20090275999 Burnes et al. Nov 2009 A1
20090299424 Narayan Dec 2009 A1
20090299447 Jensen et al. Dec 2009 A1
20100013668 Kantervik Jan 2010 A1
20100016911 Willis et al. Jan 2010 A1
20100023085 Wu et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100030327 Chatel Feb 2010 A1
20100042108 Hibino Feb 2010 A1
20100056871 Govari et al. Mar 2010 A1
20100063375 Kassab et al. Mar 2010 A1
20100063562 Cowan et al. Mar 2010 A1
20100069983 Peacock, III et al. Mar 2010 A1
20100094274 Narayan et al. Apr 2010 A1
20100094367 Sen Apr 2010 A1
20100114209 Krause et al. May 2010 A1
20100114214 Morelli et al. May 2010 A1
20100125281 Jacobson et al. May 2010 A1
20100131027 Sathaye et al. May 2010 A1
20100168761 Kassab et al. Jul 2010 A1
20100168819 Freeberg Jul 2010 A1
20100174333 Dewals Jul 2010 A1
20100198288 Ostroff Aug 2010 A1
20100198289 Kameli et al. Aug 2010 A1
20100198304 Wang Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100228308 Cowan et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100234924 Willis Sep 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100249729 Morris et al. Sep 2010 A1
20100268040 Ben-Oren et al. Oct 2010 A1
20100286744 Echt et al. Nov 2010 A1
20100298841 Prinzen et al. Nov 2010 A1
20100312309 Harding Dec 2010 A1
20110022113 Zdeblick et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110112600 Cowan et al. May 2011 A1
20110118588 Komblau et al. May 2011 A1
20110118810 Cowan et al. May 2011 A1
20110137187 Yang et al. Jun 2011 A1
20110144720 Cowan et al. Jun 2011 A1
20110152970 Jollota et al. Jun 2011 A1
20110160558 Rassatt et al. Jun 2011 A1
20110160565 Stubbs et al. Jun 2011 A1
20110160801 Markowitz et al. Jun 2011 A1
20110160806 Lyden et al. Jun 2011 A1
20110166620 Cowan et al. Jul 2011 A1
20110166621 Cowan et al. Jul 2011 A1
20110184491 Kivi Jul 2011 A1
20110190835 Brockway et al. Aug 2011 A1
20110202099 Makdissi Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110218587 Jacobson Sep 2011 A1
20110230734 Fain et al. Sep 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110245890 Brisben et al. Oct 2011 A1
20110251660 Griswold Oct 2011 A1
20110251662 Griswold et al. Oct 2011 A1
20110270099 Ruben et al. Nov 2011 A1
20110270339 Murray, III et al. Nov 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110270341 Ruben et al. Nov 2011 A1
20110276102 Cohen Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20120004527 Thompson et al. Jan 2012 A1
20120029323 Zhao Feb 2012 A1
20120041508 Rousso et al. Feb 2012 A1
20120059433 Cowan et al. Mar 2012 A1
20120059436 Fontaine et al. Mar 2012 A1
20120065500 Rogers et al. Mar 2012 A1
20120065597 Cohen Mar 2012 A1
20120078322 Dal Molin et al. Mar 2012 A1
20120089198 Ostroff Apr 2012 A1
20120093245 Makdissi et al. Apr 2012 A1
20120095521 Hintz Apr 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120101540 O'Brien et al. Apr 2012 A1
20120101553 Reddy Apr 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner et al. May 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120109259 Bond et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120150251 Giftakis et al. Jun 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac et al. Jul 2012 A1
20120172942 Berg Jul 2012 A1
20120197350 Roberts et al. Aug 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120215285 Tahmasian et al. Aug 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120245665 Friedman et al. Sep 2012 A1
20120277600 Greenhut Nov 2012 A1
20120277606 Ellingson et al. Nov 2012 A1
20120283795 Stancer et al. Nov 2012 A1
20120283807 Deterre et al. Nov 2012 A1
20120289776 Keast et al. Nov 2012 A1
20120289815 Keast et al. Nov 2012 A1
20120290021 Saurkar et al. Nov 2012 A1
20120290025 Keimel Nov 2012 A1
20120296381 Matos Nov 2012 A1
20120303082 Dong et al. Nov 2012 A1
20120316613 Keefe et al. Dec 2012 A1
20130012151 Hankins Jan 2013 A1
20130023975 Locsin Jan 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130041422 Jacobson Feb 2013 A1
20130053908 Smith et al. Feb 2013 A1
20130053915 Holmstrom et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130060298 Splett et al. Mar 2013 A1
20130066169 Rys et al. Mar 2013 A1
20130072770 Rao et al. Mar 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130085350 Schugt et al. Apr 2013 A1
20130085403 Gunderson et al. Apr 2013 A1
20130085550 Polefko et al. Apr 2013 A1
20130090702 Mongeon et al. Apr 2013 A1
20130096649 Martin et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103109 Jacobson Apr 2013 A1
20130110008 Bourget et al. May 2013 A1
20130110127 Bornzin et al. May 2013 A1
20130110192 Tran et al. May 2013 A1
20130110219 Bornzin et al. May 2013 A1
20130116529 Min et al. May 2013 A1
20130116738 Samade et al. May 2013 A1
20130116740 Bornzin et al. May 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123872 Bornzin et al. May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131591 Berthiaume et al. May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130131750 Stadler et al. May 2013 A1
20130138006 Bornzin et al. May 2013 A1
20130150695 Biela et al. Jun 2013 A1
20130150911 Perschbacher et al. Jun 2013 A1
20130150912 Perschbacher et al. Jun 2013 A1
20130184776 Shuros et al. Jul 2013 A1
20130192611 Taepke, II et al. Aug 2013 A1
20130196703 Masoud et al. Aug 2013 A1
20130197609 Moore et al. Aug 2013 A1
20130204312 Gill et al. Aug 2013 A1
20130231710 Jacobson Sep 2013 A1
20130238072 Deterre et al. Sep 2013 A1
20130238073 Makdissi et al. Sep 2013 A1
20130253309 Allan et al. Sep 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Waldhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130265144 Banna et al. Oct 2013 A1
20130268042 Hastings et al. Oct 2013 A1
20130274828 Willis Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130282070 Cowan et al. Oct 2013 A1
20130282073 Cowan et al. Oct 2013 A1
20130296727 Sullivan et al. Nov 2013 A1
20130303872 Taff et al. Nov 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20130325081 Karst Dec 2013 A1
20130345770 Dianaty et al. Dec 2013 A1
20140012344 Hastings et al. Jan 2014 A1
20140018690 Carlson et al. Jan 2014 A1
20140018876 Ostroff Jan 2014 A1
20140018877 Demmer et al. Jan 2014 A1
20140031836 Ollivier Jan 2014 A1
20140039570 Carroll et al. Feb 2014 A1
20140039591 Drasler et al. Feb 2014 A1
20140043146 Makdissi et al. Feb 2014 A1
20140046395 Regnier et al. Feb 2014 A1
20140046420 Moore et al. Feb 2014 A1
20140058240 Mothilal et al. Feb 2014 A1
20140058494 Ostroff et al. Feb 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140074186 Faltys et al. Mar 2014 A1
20140094676 Gani et al. Apr 2014 A1
20140094891 Pare et al. Apr 2014 A1
20140100624 Ellingson Apr 2014 A1
20140100627 Min Apr 2014 A1
20140107723 Hou et al. Apr 2014 A1
20140121719 Bonner et al. May 2014 A1
20140121720 Bonner et al. May 2014 A1
20140121722 Sheldon et al. May 2014 A1
20140128935 Kumar et al. May 2014 A1
20140135865 Hastings et al. May 2014 A1
20140142648 Smith et al. May 2014 A1
20140148675 Nordstrom et al. May 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140155950 Hastings et al. Jun 2014 A1
20140169162 Romano et al. Jun 2014 A1
20140172060 Bomzin et al. Jun 2014 A1
20140180306 Grubac et al. Jun 2014 A1
20140180366 Edlund Jun 2014 A1
20140207149 Hastings et al. Jul 2014 A1
20140207210 Willis et al. Jul 2014 A1
20140214104 Greenhut et al. Jul 2014 A1
20140222015 Keast et al. Aug 2014 A1
20140222098 Baru et al. Aug 2014 A1
20140222109 Moulder Aug 2014 A1
20140228696 Narayan et al. Aug 2014 A1
20140228913 Molin et al. Aug 2014 A1
20140236172 Hastings et al. Aug 2014 A1
20140243848 Auricchio et al. Aug 2014 A1
20140255298 Cole et al. Sep 2014 A1
20140257324 Fain Sep 2014 A1
20140257422 Herken Sep 2014 A1
20140257444 Cole et al. Sep 2014 A1
20140276929 Foster et al. Sep 2014 A1
20140277237 Maskara et al. Sep 2014 A1
20140303704 Suwito et al. Oct 2014 A1
20140309706 Jacobson Oct 2014 A1
20140343348 Kaplan et al. Nov 2014 A1
20140371818 Bond et al. Dec 2014 A1
20140379041 Foster Dec 2014 A1
20150025612 Haasl et al. Jan 2015 A1
20150031966 Ward et al. Jan 2015 A1
20150038962 Cohen Feb 2015 A1
20150039041 Smith et al. Feb 2015 A1
20150045868 Bonner et al. Feb 2015 A1
20150051609 Schmidt et al. Feb 2015 A1
20150051610 Schmidt et al. Feb 2015 A1
20150051611 Schmidt et al. Feb 2015 A1
20150051612 Schmidt et al. Feb 2015 A1
20150051613 Schmidt et al. Feb 2015 A1
20150051614 Schmidt et al. Feb 2015 A1
20150051615 Schmidt et al. Feb 2015 A1
20150051616 Haasl et al. Feb 2015 A1
20150051682 Schmidt et al. Feb 2015 A1
20150057520 Foster et al. Feb 2015 A1
20150057558 Stahmann et al. Feb 2015 A1
20150057721 Stahmann et al. Feb 2015 A1
20150088155 Stahmann et al. Mar 2015 A1
20150105836 Bonner et al. Apr 2015 A1
20150112425 Cromack et al. Apr 2015 A1
20150126854 Keast et al. May 2015 A1
20150142069 Sambelashvili May 2015 A1
20150157861 Aghassian Jun 2015 A1
20150157866 Demmer et al. Jun 2015 A1
20150173655 Demmer et al. Jun 2015 A1
20150190638 Smith et al. Jul 2015 A1
20150196756 Stahmann et al. Jul 2015 A1
20150196757 Stahmann et al. Jul 2015 A1
20150196758 Stahmann et al. Jul 2015 A1
20150196769 Stahmann et al. Jul 2015 A1
20150217119 Nikolski et al. Aug 2015 A1
20150221898 Chi et al. Aug 2015 A1
20150224315 Stahmann Aug 2015 A1
20150224320 Stahmann Aug 2015 A1
20150230699 Berul et al. Aug 2015 A1
20150238769 Demmer et al. Aug 2015 A1
20150258345 Smith et al. Sep 2015 A1
20150290468 Zhang Oct 2015 A1
20150297905 Greenhut et al. Oct 2015 A1
20150297907 Zhang Oct 2015 A1
20150305637 Greenhut et al. Oct 2015 A1
20150305638 Zhang Oct 2015 A1
20150305639 Greenhut et al. Oct 2015 A1
20150305640 Reinke et al. Oct 2015 A1
20150305641 Stadler et al. Oct 2015 A1
20150305642 Reinke et al. Oct 2015 A1
20150306374 Seifert et al. Oct 2015 A1
20150306375 Marshall et al. Oct 2015 A1
20150306401 Demmer et al. Oct 2015 A1
20150306406 Crutchfield et al. Oct 2015 A1
20150306407 Crutchfield et al. Oct 2015 A1
20150306408 Greenhut et al. Oct 2015 A1
20150321016 O'Brien et al. Nov 2015 A1
20150328459 Chin et al. Nov 2015 A1
20150335383 Cohen Nov 2015 A9
20150335884 Khairkhahan et al. Nov 2015 A1
20150342466 Thakur et al. Dec 2015 A1
20150360041 Stahmann et al. Dec 2015 A1
20160015322 Anderson et al. Jan 2016 A1
20160023000 Cho et al. Jan 2016 A1
20160030757 Jacobson Feb 2016 A1
20160033177 Barot et al. Feb 2016 A1
20160051823 Maile et al. Feb 2016 A1
20160067486 Brown et al. Mar 2016 A1
20160067490 Carney Mar 2016 A1
20160114161 Amblard et al. Apr 2016 A1
20160121127 Klimovitch et al. May 2016 A1
20160121128 Fishier et al. May 2016 A1
20160121129 Persson et al. May 2016 A1
20160129262 Sheldon May 2016 A1
20160144192 Sanghera et al. May 2016 A1
20160213919 Suwito et al. Jul 2016 A1
20160213937 Reinke et al. Jul 2016 A1
20160213939 Carney et al. Jul 2016 A1
20160228026 Jackson Aug 2016 A1
20160262691 Jain et al. Sep 2016 A1
20160270734 Imhoff et al. Sep 2016 A1
20160278657 Narayan et al. Sep 2016 A1
20160317825 Jacobson Nov 2016 A1
20160367823 Cowan et al. Dec 2016 A1
20170014629 Ghosh et al. Jan 2017 A1
20170027458 Glover et al. Feb 2017 A1
20170028203 Ghosh Feb 2017 A1
20170035315 Jackson Feb 2017 A1
20170043173 Sharma et al. Feb 2017 A1
20170043174 Greenhut et al. Feb 2017 A1
20170189681 Anderson Jul 2017 A1
20170274213 Ghosh et al. Sep 2017 A1
20170281261 Shuros et al. Oct 2017 A1
20170281952 Shuros et al. Oct 2017 A1
20170281953 Min et al. Oct 2017 A1
20170281955 Maile et al. Oct 2017 A1
20170312531 Sawchuk Nov 2017 A1
20170368347 Muessig Dec 2017 A1
20180008829 An et al. Jan 2018 A1
20180021567 An et al. Jan 2018 A1
20180021581 An et al. Jan 2018 A1
20180021582 An et al. Jan 2018 A1
20180256902 Toy et al. Sep 2018 A1
20180256909 Smith et al. Sep 2018 A1
20180264262 Haasl et al. Sep 2018 A1
20180264270 Koop et al. Sep 2018 A1
20180264272 Haasl et al. Sep 2018 A1
20180264273 Haasl et al. Sep 2018 A1
20180264274 Haasl et al. Sep 2018 A1
20180339160 Carroll Nov 2018 A1
20190167991 Stahmann Jun 2019 A1
Foreign Referenced Citations (48)
Number Date Country
2008279789 Oct 2011 AU
2008329620 May 2014 AU
2014203793 Jul 2014 AU
1003904 Jan 1977 CA
202933393 May 2013 CN
104203340 Dec 2014 CN
106535987 Mar 2017 CN
0362611 Apr 1990 EP
503823 Sep 1992 EP
1702648 Sep 2006 EP
1904166 Jun 2011 EP
2471452 Jul 2012 EP
2433675 Jan 2013 EP
2441491 Jan 2013 EP
2452721 Nov 2013 EP
2662113 Nov 2013 EP
1948296 Jan 2014 EP
2760541 May 2016 EP
2833966 May 2016 EP
2000051373 Feb 2000 JP
2002502640 Jan 2002 JP
2004512105 Apr 2004 JP
2005508208 Mar 2005 JP
2005245215 Sep 2005 JP
2008540040 Nov 2008 JP
5199867 Feb 2013 JP
9500202 Jan 1995 WO
9636134 Nov 1996 WO
9724981 Jul 1997 WO
9826840 Jun 1998 WO
9939767 Aug 1999 WO
0234330 May 2002 WO
02098282 Dec 2002 WO
2005000206 Jan 2005 WO
2005042089 May 2005 WO
2006065394 Jun 2006 WO
2006086435 Aug 2006 WO
2006113659 Oct 2006 WO
2006124833 Nov 2006 WO
2007073435 Jun 2007 WO
2007075974 Jul 2007 WO
2009006531 Jan 2009 WO
2012054102 Apr 2012 WO
2013080038 Jun 2013 WO
2013098644 Jul 2013 WO
2013184787 Dec 2013 WO
2014120769 Aug 2014 WO
2016014352 Jan 2016 WO
Non-Patent Literature Citations (10)
Entry
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn)
International Search Report and Written Opinion for Application No. PCT/US2018/063122, 14 pages, dated Feb. 14, 2019.
Chinitz et al; “Accelerometer-Based Atrioventricular Synchronus Pacing with a Ventricular Leadless Pacemaker: Results from the Micra Atrioventricular Feasibility Studies”, Heart Rhythm 15, pp. 1363-1371, 2018.
International Search Report and Written Opinion for Application No. PCT/US2018/062469, 12 pages, dated Feb. 26, 2019.
International Search Report and Written Opinion for Application No. PCT/US2018/062631, 13 pages, dated Feb. 5, 2019.
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013.
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003.
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering,vol. 60(8): 2067-2079, 2013.
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(384): 324-331, 1970.
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. EIH, No. 17323,1-173, 2007.
Related Publications (1)
Number Date Country
20190167991 A1 Jun 2019 US
Provisional Applications (1)
Number Date Country
62593662 Dec 2017 US