Leadless cardiac pacing devices

Information

  • Patent Grant
  • 12161863
  • Patent Number
    12,161,863
  • Date Filed
    Friday, April 28, 2023
    a year ago
  • Date Issued
    Tuesday, December 10, 2024
    20 days ago
Abstract
Implantable leadless pacing devices and medical device systems including an implantable leadless pacing device are disclosed. An example implantable leadless pacing device may include a pacing capsule. The pacing capsule may include a housing. The housing may have a proximal region and a distal region. A first electrode may be disposed along the distal region. One or more anchoring members may be coupled to the distal region. The anchoring members may each include a region with a compound curve.
Description
TECHNICAL FIELD

The present disclosure pertains to medical devices, and methods for manufacturing medical devices. More particularly, the present disclosure pertains to leadless cardiac pacing devices.


BACKGROUND

A wide variety of medical devices have been developed for medical use, for example, cardiac use. Some of these devices include catheters, leads, pacemakers, and the like. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices as well as alternative methods for manufacturing and using medical devices.


BRIEF SUMMARY

This disclosure provides design, material, manufacturing method, and use alternatives for medical devices. An example medical device may include an implantable leadless pacing device. The implantable leadless pacing device may include a pacing capsule. The pacing capsule may include a housing. The housing may have a proximal region and a distal region. A first electrode may be disposed along the distal region. One or more anchoring members may be coupled to the distal region. The anchoring members may each include a region with a compound curve.


An implantable leadless pacing device system may include a delivery catheter having a proximal region, a distal holding section, and a lumen formed therein. A push member may be slidably disposed within the lumen. A leadless pacing device may be slidably received within the distal holding section. The leadless pacing device may include a housing having a proximal region and a distal region. A first electrode may be disposed along the distal region. A plurality of anchoring members including a first anchoring member may be coupled to the distal region. The first anchoring member may be capable of shifting between a first configuration when the leadless pacing device is disposed within the distal holding section and a second configuration when the leadless pacing device is advanced out from the distal holding section. The distal holding section may have a longitudinal axis. The first anchoring member may be arranged substantially parallel with the longitudinal axis when the first anchoring member is in the first configuration. The first anchoring member may include a region with a compound curve when the first anchoring member is in the second configuration.


Another example implantable leadless pacing device system may include a delivery catheter having a proximal region, a distal holding section, and a lumen formed therein. A push member may be slidably disposed within the lumen. A leadless pacing device may be slidably received within the distal holding section. The leadless pacing device may include a housing having a proximal region and a distal region. A first electrode may be disposed along the distal region. A plurality of anchoring members including a first anchoring member may be coupled to the distal region. The first anchoring member may be capable of shifting between a first configuration when the leadless pacing device is disposed within the distal holding section and a second configuration when the leadless pacing device is advanced out from the distal holding section. A contact section of the first anchoring member may contact an inner wall surface of the distal holding section when the first anchoring member is in the first configuration. The contact section may be positioned proximally of a distal end of the first anchoring member. The first anchoring member may include a region with a compound curve when the first anchoring member is in the second configuration.


The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following detailed description in connection with the accompanying drawings, in which:



FIG. 1 is a plan view of an example leadless pacing device implanted within a heart;



FIG. 2 is a perspective view of an example leadless pacing device;



FIG. 3A is a cross-sectional view taken through line 3A-3A;



FIG. 3B is an alternative cross-sectional view;



FIG. 3C is an alternative cross-sectional view;



FIG. 4 is a partial cross-sectional side view of an example medical device system positioned adjacent to a cardiac tissue;



FIG. 5 is a partial cross-sectional side view of an example leadless pacing device attached to a cardiac tissue;



FIG. 6 is a partial cross-sectional side view of another example medical device system positioned adjacent to a cardiac tissue; and



FIG. 7 is a partial cross-sectional side view of another example medical device system positioned adjacent to a cardiac tissue.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DETAILED DESCRIPTION

For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.


The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include one or more particular features, structures, and/or characteristics. However, such recitations do not necessarily mean that all embodiments include the particular features, structures, and/or characteristics. Additionally, when particular features, structures, and/or characteristics are described in connection with one embodiment, it should be understood that such features, structures, and/or characteristics may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contrary.


The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.


Cardiac pacemakers provide electrical stimulation to heart tissue to cause the heart to contract and thus pump blood through the vascular system. Conventional pacemakers typically include an electrical lead that extends from a pulse generator implanted subcutaneously or sub-muscularly to an electrode positioned adjacent the inside or outside wall of the cardiac chamber. As an alternative to conventional pacemakers, self-contained or leadless cardiac pacemakers have been proposed. A leadless cardiac pacemaker may take the form of a relatively small capsule that may be fixed to an intracardiac implant site in a cardiac chamber. It can be readily appreciated that the implantation of a leadless pacing device within a beating heart could become dislodged as the heart functions. Accordingly, it may be desirable for a leadless pacing device to include an anchoring mechanism and/or one or more anchoring members to help securing the pacing device to the heart.



FIG. 1 illustrates an example implantable leadless cardiac pacing device 10 implanted in a chamber of a heart H such as, for example, the right ventricle RV. Device may include a shell or housing 12 having a distal region 14 and a proximal region 16. One or more anchoring members 18 may be disposed adjacent to distal region 14. Anchoring members 18 may be used to attach device 10 to a tissue wall of the heart H, or otherwise anchor implantable device 10 to the anatomy of the patient. A docking member 20 may be disposed adjacent to proximal region 16 of housing 12. Docking member 20 may be utilized to facilitate delivery and/or retrieval of implantable device 10.



FIG. 2 is a perspective view of device 10. Here it can be seen that docking member 20 may extend from proximal region 16 of housing 12. In at least some embodiments, docking member 20 may include a head portion 22 and a neck portion 24 extending between housing 12 and head portion 22. Head portion 22 may be capable of engaging with a delivery and/or retrieval catheter. For example, if it is desired to retrieve device 10 from the patient, a retrieval catheter may be advanced to a position adjacent to device 10. A retrieval mechanism such as a snare, tether, arm, or other suitable structure may extend from the retrieval catheter and engage head portion 22. When suitably engaged, device 10 may be pulled from the cardiac tissue and, ultimately, removed from the patient.


The implantable device 10 may include a first electrode 26 positioned adjacent to the distal region 14 of the housing 12. A second electrode 28 may also be defined along housing 12. For example, housing 12 may include a conductive material and may be insulated along a portion of its length. A section along proximal region 16 may be free of insulation so as to define second electrode 28. Electrodes 26/28 may be sensing and/or pacing electrodes to provide electro-therapy and/or sensing capabilities. First electrode 26 may be capable of being positioned against or otherwise contact the cardiac tissue of the heart H while second electrode 28 may be spaced away from the first electrode 26, and thus spaced away from the cardiac tissue.


Device 10 may also include a pulse generator (e.g., electrical circuitry) and a power source (e.g., a battery) within housing 12 to provide electrical signals to electrodes 26/28. Electrical communication between pulse generator and electrodes 26/28 may provide electrical stimulation to heart tissue and/or sense a physiological condition.


As the name suggest, anchoring members 18 may be used to anchor device 10 to the target tissue. A suitable number of anchoring members 18 may be used with device 10. For example, device 10 may include one, two, three, four, five, six, seven, eight, or more anchoring members. In at least some embodiments, anchoring members 18 may take the form of grappling hooks that are capable of piercing the cardiac tissue, looping through a portion of the cardiac tissue, and then extending back out from the cardiac tissue. In doing so, it may be desirable for anchoring members 18 to have relatively shallow penetration into the cardiac tissue. In addition, it may be desirable for anchoring members 18 to be arranged so as to be spaced from first electrode 26. Other configurations are contemplated.


In order to achieve these and other goals, anchoring members 18 may have a compound curved structure. For the purposes of this disclosure, a compound curved structure may be understood as a structure that includes a plurality of different curved regions. For example, at least some of the anchoring members 18 may include a base region 30, a first curved region 32, a generally straight region 34, a second curved region 36, and an end region 38. Base region 30 may be positioned at the junction between anchoring members 18 and housing 12. In some embodiments, base region 30 may be fixed to housing 12. In other embodiments, base region 30 may be pivotably attached to housing 12. According to these embodiments, base region 30 may have some freedom of movement relative to housing 12. In some instance, an actuation mechanism may be coupled to anchoring members 18 so that a clinician may pivot anchoring members 18 during an implantation procedure. For example, a translatable mechanical feature such as a wire, tether, or the like may be coupled to housing 12 that is capable of transmitting motion to anchoring members 18.


First curved region 32 may curve away from housing 12. In other words, the curvature of first curved region 32 may result in at least a portion of anchoring members 18 becoming positioned progressively further radially away from housing 12. For example, it may be desirable for anchoring members 18 to extend or otherwise be positioned laterally as far away from first electrode 26 as possible so as to minimize tissue irritation adjacent to where first electrode 26 contacts the wall of the heart. In addition, the curvature of first curved region 32 (and/or other regions of anchoring members 18) may be capable of secured holding device to the wall of the heart while having a relatively shallow penetration into the tissue. Shallow penetration may help to reduce local tissue irritation and/or injury of the heart wall.


In some embodiments, the radius of curvature of first curved region 32 may be constant. In other embodiments, the radius of curvature may vary along first curved region 32. For example, first curved region 32 may include a parabolic curve, hyperbolic curve, exponential curve, a curve defined by a first order polynomial, a curve defined by a second order polynomial, a curve defined by a third order polynomial, a curve defined by a fourth order or greater polynomial, etc. First curved region 32 may lie fully within a single plane (e.g., first curved region 32 may extend in only two dimension) or first curved region 32 may lie within more than one plane (e.g., first curved region 32 may extend in three dimensions). These are just examples. Other curves, shapes, configurations, etc. are contemplated.


Generally straight region 34, as the name suggests, may be substantially free from a curve. Generally straight region 34 may have a suitable length. For example, in some embodiments it may be desirable for greater separation between first curved region 32 and second curved region 36. In such embodiments, it may be desirable for generally straight region 34 to have a relatively longer length. In other embodiments, less separation may be desired between curved portions 32/36 and, thus, generally straight region 34 may be relatively short. In still other embodiments, anchoring members 18 may lack generally straight region 34. In other words, first curved region 32 may be directly attached to or otherwise continuous with second curved region 36.


Second curved region 36 may curve toward housing 12. In at least some embodiments, the curvature of second curved region 36 may be oriented in the opposite direction of first curved region 32. Just like first curved region 32, second curved region 36 may have a constant or variable radius of curvature.


End region 38 may be generally straight or end region 38 may include a curve. In at least some embodiments, end region 38 may have a point or relatively sharpened end that may be capable of penetrating tissue.


In addition to allowing device 10 to be securely anchored to the heart of a patient, anchoring members 18 may also allow for acute repositioning of device 10. For example, device 10 may be secured to the heart of a patient via anchoring members 18. If it desired to relocate device 10, a suitable retrieval and/or repositioning device may be used to engage device 10 so that it can be repositioned (e.g., removing anchoring members 18 from the tissue and moving device 10 to another desirable location) and re-anchored.


The cross-sectional shape of anchoring members 18 may vary. For example, at least some of anchoring members 18 may have a generally rectangular cross-sectional shape as shown in FIG. 3A. According to these embodiments, the width W of anchoring member 18 may be greater than the thickness T. However, in other embodiments, the thickness T may be greater than the width W. In other embodiments, at least some of anchoring members 18 may have a generally circular cross-sectional shape with a diameter D as depicted in FIG. 3B. Other cross-sectional shapes are contemplated. For example, anchoring members 18 can have an oval cross-sectional shape (e.g. as depicted in FIG. 3C), a semi-circular cross-sectional shape, a polygonal cross-sectional shape (e.g., triangular, square, quadrilateral, pentagonal, hexagonal, octagonal, etc.), combinations thereof (e.g., a polymeric shape with rounded edges or corners), or any other suitable shape. Anchoring members 18 may have the same cross-sectional shape along essentially the full length thereof. Alternatively, the cross-sectional shape may vary along the length of anchoring members 18. For example, portions of anchoring members 18 may have a generally non-circular cross-sectional shape and other portions of anchoring members 18 may have a generally circular cross-sectional shape. Furthermore, in some embodiments all of anchoring members 18 may have the same cross-sectional shape and/or profile. In other embodiments, the various anchoring members 18 of a given device 10 may differ from one another.



FIG. 4 illustrates a delivery catheter 100 that may be used, for example, to deliver device 10 to a suitable location within the anatomy (e.g., the heart). Catheter 100 may include a proximal member or region 140 and a distal member or holding section 146. A push member 142 may be disposed (e.g., slidably disposed) within proximal region 140. A head region 144 of push member 142 may be disposed within distal holding section 146. Head region 144 may be capable of engaging docking member 20 of device 10. Push member 142 may be used to “push” device 10 out from distal holding section 146 so as to deploy and anchor device 10 within a target region 148 (e.g., a region of the heart such as the right ventricle). Catheter 100 may be advanced through the vasculature to target region 148. For example, catheter 100 may be advanced through a femoral vein, into the inferior vena cava, into the right atrium, through the tricuspid valve, and into the right ventricle. Target region 148 may be a portion of the right ventricle. For example, target region 148 may be a portion of the right ventricle near the apex of the heart. Target region 148 could also be other regions including other regions of the heart (e.g., the right atrium, the left ventricle, the left atrium), blood vessel, or other suitable targets.


Anchoring members 18 may be capable of shifting between a first configuration and a second configuration. For example, when device 10 is disposed within distal holding section 146 of delivery catheter 100, anchoring members 18 may be in the first configuration. When so configured, anchoring members 18 may extend distally from device 10 in a generally more straightened configuration. In other words, anchoring members 18 may be oriented in the distal direction. For example, catheter 100 may have a longitudinal axis X and anchoring members 18 may corresponding longitudinal axis Y that is generally parallel with the longitudinal axis X of catheter 100. However, anchoring members 18 need not extend exactly parallel with the longitudinal axis X of catheter 100 and, instead, may be generally oriented in the distal direction.


When device 10 is suitably positioned adjacent to target region 148, push member 142 may be distally advanced to push device 10 distally so that anchoring members 18 engage target region 148. In doing so, anchoring members may shift to the second configuration as shown in FIG. 5. When in the second configuration, anchoring members 18 may have the compound curved configuration. The compound curve of anchoring members 18 may help to guide anchoring members 18 away laterally away from the tissue entry point and then back out of the tissue at a location that is laterally spaced from the entry point.


In at least some embodiments, anchoring members 18 may still maintain a compound curvature (e.g., albeit in an altered shape) when in the more straightened configuration. For example, when device 10 is disposed within a delivery catheter, anchoring members 18 may still maintain the compound curve. In other embodiments, one or more of curves formed in anchoring members 18 may be substantially straightened such that anchoring members 18 may be considered as no longer having a compound curve when in the more straightened configuration. When shifting to the second configuration (e.g., which may be considered a deployed, implanted, delivered, or “unbiased” configuration), anchoring members 18 may have or otherwise return to a shape that includes the compound curve.


When in the first configuration, a portion of anchoring members 18 may engage an inner wall surface of distal holding section 146. The portion of anchoring member 18 that engages the inner wall surface of distal holding section 146 may be positioned proximally of the distal end of anchoring member 18. For example, second curved region 36 may engage the inner wall surface of distal holding section 146 as shown in FIG. 4. Other arrangements are contemplated. For example, FIG. 6 illustrates device 110 (which may be similar in form and function to other devices disclosed herein) including anchoring member 118 and docking member 120. Here it can be seen that first curved region 132 may engage the inner wall surface of distal holding section 146.



FIG. 7 illustrates device 210 (which may be similar in form and function to other devices disclosed herein) including anchoring member 218 and docking member 220. In this embodiment, a section of anchoring member 218 extending from second curved region 232 to tip 238 may lie flat against the inner wall surface of distal holding section 146.


The materials that can be used for the various components of device 10 and catheter 100 (and/or other devices/catheters disclosed herein) may include those commonly associated with medical devices. For example, device 10 and/or catheter 100 may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the sheath can be blended with a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.


Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like); platinum enriched stainless steel; titanium; combinations thereof; and the like; or any other suitable material.


As alluded to herein, within the family of commercially available nickel-titanium or nitinol alloys, is a category designated “linear elastic” or “non-super-elastic” which, although may be similar in chemistry to conventional shape memory and super elastic varieties, may exhibit distinct and useful mechanical properties. Linear elastic and/or non-super-elastic nitinol may be distinguished from super elastic nitinol in that the linear elastic and/or non-super-elastic nitinol does not display a substantial “superelastic plateau” or “flag region” in its stress/strain curve like super elastic nitinol does. Instead, in the linear elastic and/or non-super-elastic nitinol, as recoverable strain increases, the stress continues to increase in a substantially linear, or a somewhat, but not necessarily entirely linear relationship until plastic deformation begins or at least in a relationship that is more linear that the super elastic plateau and/or flag region that may be seen with super elastic nitinol. Thus, for the purposes of this disclosure linear elastic and/or non-super-elastic nitinol may also be termed “substantially” linear elastic and/or non-super-elastic nitinol.


In some cases, linear elastic and/or non-super-elastic nitinol may also be distinguishable from super elastic nitinol in that linear elastic and/or non-super-elastic nitinol may accept up to about 2-5% strain while remaining substantially elastic (e.g., before plastically deforming) whereas super elastic nitinol may accept up to about 8% strain before plastically deforming. Both of these materials can be distinguished from other linear elastic materials such as stainless steel (that can also can be distinguished based on its composition), which may accept only about 0.2 to 0.44 percent strain before plastically deforming.


In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy is an alloy that does not show any martensite/austenite phase changes that are detectable by differential scanning calorimetry (DSC) and dynamic metal thermal analysis (DMTA) analysis over a large temperature range. For example, in some embodiments, there may be no martensite/austenite phase changes detectable by DSC and DMTA analysis in the range of about −60 degrees Celsius (° C.) to about 120° C. in the linear elastic and/or non-super-elastic nickel-titanium alloy. The mechanical bending properties of such material may therefore be generally inert to the effect of temperature over this very broad range of temperature. In some embodiments, the mechanical bending properties of the linear elastic and/or non-super-elastic nickel-titanium alloy at ambient or room temperature are substantially the same as the mechanical properties at body temperature, for example, in that they do not display a super-elastic plateau and/or flag region. In other words, across a broad temperature range, the linear elastic and/or non-super-elastic nickel-titanium alloy maintains its linear elastic and/or non-super-elastic characteristics and/or properties.


In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy may be in the range of about 50 to about 60 weight percent nickel, with the remainder being essentially titanium. In some embodiments, the composition is in the range of about 54 to about 57 weight percent nickel. One example of a suitable nickel-titanium alloy is FHP-NT alloy commercially available from Furukawa Techno Material Co. of Kanagawa, Japan. Some examples of nickel titanium alloys are disclosed in U.S. Pat. Nos. 5,238,004 and 6,508,803, which are incorporated herein by reference. Other suitable materials may include ULTANIUM™ (available from Neo-Metrics) and GUM METAL™ (available from Toyota). In some other embodiments, a superelastic alloy, for example a superelastic nitinol can be used to achieve desired properties.


In at least some embodiments, portions or all of device 10 and/or catheter 100 may also be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of device 10 and/or catheter 100 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of device 10 and/or catheter 100 to achieve the same result.


In some embodiments, a degree of Magnetic Resonance Imaging (MRI) compatibility is imparted into device 10 and/or catheter 100. For example, device 10 and/or catheter 100 (or portions thereof) may be made of a material that does not substantially distort the image and create substantial artifacts (i.e., gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image. Device 10 and/or catheter 100 (or portions thereof) may also be made from a material that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.


It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The invention's scope is, of course, defined in the language in which the appended claims are expressed.

Claims
  • 1. A method of implanting a leadless pacing device, comprising: positioning a distal end of a distal holding section of a delivery catheter against a heart wall with the leadless pacing device positioned within the distal holding section, wherein the leadless pacing device includes: a housing containing electrical circuitry and a power supply therein;an electrode in electrical communication with the electrical circuitry; anda plurality of anchoring members coupled to the housing for engaging the housing to the heart wall, each of the plurality of anchoring members having a first, delivery configuration when positioned within the distal holding section of the delivery catheter, each anchoring member including: a base region fixedly attached to the housing;a distal tip located distal of a distal end of the housing in the first configuration; andan engaging portion located between the base region and the distal tip, wherein the engaging portion is engaged against an inner surface of the distal holding section while the distal tip is spaced away from the inner surface of the distal holding section in the first configuration;thereafter, expelling the leadless pacing device from the distal end of the distal holding section such that the plurality of anchoring members penetrate into the heart wall.
  • 2. The method of claim 1, wherein the distal tip of each of the plurality of anchoring members penetrates into the heart wall while the engaging portion of each of the plurality of anchoring members remains engaged against the inner surface of the distal holding section.
  • 3. The method of claim 1, wherein the plurality of anchoring members transition to a second configuration when expelled from the distal end of the distal holding section.
  • 4. The method of claim 3, wherein each of the plurality of anchoring members includes a compound curvature in the second configuration.
  • 5. The method of claim 4, wherein the compound curvature includes a first curved region and a second curved region, wherein the second curved region is positioned between the first curved region and the distal tip.
  • 6. The method of claim 5, wherein the engaging portion is an outermost convex surface of the second curved region in the first configuration.
  • 7. The method of claim 5, wherein a curvature of the second curved region is opposite a curvature of the first curved region.
  • 8. The method of claim 7, wherein the curvature of the first curved region has a radius of curvature that varies.
  • 9. The method of claim 8, wherein the curvature of the second curved region has a radius of curvature that varies.
  • 10. The method of claim 8, wherein the curvature of the second curved region has a constant radius of curvature.
  • 11. The method of claim 5, wherein the second configuration is an equilibrium configuration.
  • 12. The method of claim 1, wherein the distal tip is tapered.
  • 13. A method of implanting a leadless pacing device, comprising: positioning a distal end of a distal holding section of a delivery catheter against a heart wall with the leadless pacing device positioned within the distal holding section, wherein the leadless pacing device includes: a housing containing electrical circuitry and a power supply therein;an electrode in electrical communication with the electrical circuitry; anda plurality of anchoring members coupled to the housing for engaging the housing to the heart wall, each of the plurality of anchoring members having a first, delivery configuration when positioned within the distal holding section of the delivery catheter, each anchoring member including: a base region fixedly attached to the housing;a distal tip located distal of a distal end of the housing in the first configuration; andan engaging portion located between the base region and the distal tip, wherein the engaging portion is engaged against an inner surface of the distal holding section while the distal tip is spaced away from the inner surface of the distal holding section in the first configuration;moving the leadless pacing device distally within the distal holding section to expel the leadless pacing device from the distal end of the distal holding section, wherein the step of moving the leadless pacing device distally within the distal holding section includes sliding the engaging portion of each of the plurality of anchoring members against the inner surface of the distal holding section while the distal tip of each of the plurality of anchoring members remains spaced away from the inner surface of the distal holding section.
  • 14. The method of claim 13, wherein the distal tip of each of the plurality of anchoring members penetrates into the heart wall while the engaging portion of each of the plurality of anchoring members remains engaged against the inner surface of the distal holding section.
  • 15. The method of claim 13, wherein the plurality of anchoring members transition to a second configuration when expelled from the distal end of the distal holding section.
  • 16. The method of claim 15, wherein each of the plurality of anchoring members includes a compound curvature in the second configuration.
  • 17. The method of claim 16, wherein the compound curvature includes a first curved region and a second curved region, wherein the second curved region is positioned between the first curved region and the distal tip.
  • 18. The method of claim 17, wherein the engaging portion is an outermost convex surface of the second curved region in the first configuration.
  • 19. The method of claim 17, wherein a curvature of the second curved region is opposite a curvature of the first curved region.
  • 20. A method of implanting a leadless pacing device, comprising: positioning a distal end of a distal holding section of a delivery catheter against a heart wall with the leadless pacing device positioned within the distal holding section, wherein the leadless pacing device includes: a housing containing electrical circuitry and a power supply therein;an electrode in electrical communication with the electrical circuitry; anda plurality of anchoring members coupled to the housing for engaging the housing to the heart wall, each of the plurality of anchoring members having a first, delivery configuration when positioned within the distal holding section of the delivery catheter, each anchoring member including: a base region fixedly attached to the housing;a distal tip located distal of a distal end of the housing in the first configuration; andan engaging portion located between the base region and the distal tip, wherein the engaging portion is engaged against an inner surface of the distal holding section while the distal tip is spaced away from the inner surface of the distal holding section in the first configuration;moving the leadless pacing device distally within the distal holding section such that the distal tip of each of the plurality of anchoring members penetrates into the heart wall while the engaging portion of each of the plurality of anchoring members remains engaged against the inner surface of the distal holding section.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/088,835, filed Nov. 4, 2020, which is a continuation of U.S. patent application Ser. No. 16/210,536, filed Dec. 5, 2018, now U.S. Pat. No. 10,857,353, which is a continuation of U.S. patent application Ser. No. 14/452,680, filed Aug. 6, 2014, now U.S. Pat. No. 10,179,236, which claims the benefit of and priority under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 61/866,799, filed Aug. 16, 2013, the disclosures of which are herein incorporated by reference in their entirety.

US Referenced Citations (269)
Number Name Date Kind
721869 Dunning Mar 1903 A
3717151 Collett Feb 1973 A
3754555 Schmitt Aug 1973 A
3814104 Irnich et al. Jun 1974 A
3835864 Rasor et al. Sep 1974 A
3902501 Citron et al. Sep 1975 A
3943936 Rasor Mar 1976 A
3971364 Fletcher et al. Jul 1976 A
3976082 Schmitt Aug 1976 A
4103690 Harris Aug 1978 A
4112952 Thomas et al. Sep 1978 A
4269198 Stokes May 1981 A
4280512 Karr Jul 1981 A
4301815 Doring Nov 1981 A
4402328 Doring Sep 1983 A
4409994 Doring Oct 1983 A
4502492 Bornzin Mar 1985 A
4662382 Sluetz et al. May 1987 A
4898577 Badger et al. Feb 1990 A
4913164 Greene et al. Apr 1990 A
5003990 Osypka Apr 1991 A
5057114 Wittich et al. Oct 1991 A
5129749 Sato Jul 1992 A
5171233 Amplatz et al. Dec 1992 A
5193540 Schulman et al. Mar 1993 A
5238004 Sahatjian et al. Aug 1993 A
5257634 Kroll Nov 1993 A
5282845 Bush et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5318528 Heaven et al. Jun 1994 A
5336253 Gordon et al. Aug 1994 A
5405367 Schulman et al. Apr 1995 A
5405374 Stein Apr 1995 A
5411535 Fujii et al. May 1995 A
5425756 Heil et al. Jun 1995 A
5443492 Stokes et al. Aug 1995 A
5492119 Abrams Feb 1996 A
5522875 Gates et al. Jun 1996 A
5522876 Rusink Jun 1996 A
5545201 Helland et al. Aug 1996 A
5545206 Carson Aug 1996 A
5562723 Rugland et al. Oct 1996 A
5575814 Giele et al. Nov 1996 A
5578068 Laske et al. Nov 1996 A
5697936 Shipko et al. Dec 1997 A
5716390 Li Feb 1998 A
5716391 Grandjean Feb 1998 A
5755764 Schroeppel May 1998 A
5776178 Pohndorf et al. Jul 1998 A
5807399 Laske et al. Sep 1998 A
5837006 Ocel et al. Nov 1998 A
5837007 Altman et al. Nov 1998 A
5851226 Skubitz et al. Dec 1998 A
5871531 Struble Feb 1999 A
5908381 Aznoian et al. Jun 1999 A
5908447 Schroeppel et al. Jun 1999 A
6041258 Cigaina et al. Mar 2000 A
6055457 Bonner Apr 2000 A
6074401 Gardnier et al. Jun 2000 A
6078840 Stokes Jun 2000 A
6093177 Javier et al. Jul 2000 A
6129749 Bartig et al. Oct 2000 A
6132456 Sommer et al. Oct 2000 A
6178356 Chastain Jan 2001 B1
6181973 Ceron et al. Jan 2001 B1
6188932 Lindegren Feb 2001 B1
6240322 Peterfeso et al. May 2001 B1
6251104 Kesten et al. Jun 2001 B1
6290719 Garberoglio Sep 2001 B1
6321124 Cigaina Nov 2001 B1
6322548 Payne et al. Nov 2001 B1
RE37463 Altman Dec 2001 E
6358256 Reinhardt Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6381495 Jenkins Apr 2002 B1
6381500 Fischer, Sr. Apr 2002 B1
6408214 Williams et al. Jun 2002 B1
6458145 Ravenscroft et al. Oct 2002 B1
6477423 Jenkins Nov 2002 B1
6500182 Foster Dec 2002 B2
6508803 Horikawa et al. Jan 2003 B1
6510332 Greenstein Jan 2003 B1
6510345 Van Bentem Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6572587 Lerman et al. Jun 2003 B2
6582441 He et al. Jun 2003 B1
6592581 Bowe Jul 2003 B2
6623518 Thompson et al. Sep 2003 B2
6626915 Leveillee Sep 2003 B2
6638268 Niazi Oct 2003 B2
6684109 Osypka Jan 2004 B1
6711443 Osypka Mar 2004 B2
6743240 Smith et al. Jun 2004 B2
6755812 Peterson et al. Jun 2004 B2
6909920 Lokhoff et al. Jun 2005 B2
6944507 Froberg et al. Sep 2005 B2
6953454 Peterson et al. Oct 2005 B2
7027876 Casavant et al. Apr 2006 B2
7082335 Klein et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092765 Geske et al. Aug 2006 B2
7092766 Salys et al. Aug 2006 B1
7120504 Osypka Oct 2006 B2
7149587 Wardle et al. Dec 2006 B2
7158838 Seifert et al. Jan 2007 B2
7162310 Doan Jan 2007 B2
7181288 Rezai et al. Feb 2007 B1
7187982 Seifert et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7212869 Wahlstrom et al. May 2007 B2
7229415 Schwartz Jun 2007 B2
7251532 Hess et al. Jul 2007 B2
7289853 Campbell et al. Oct 2007 B1
7313445 McVenes et al. Dec 2007 B2
7326231 Phillips et al. Feb 2008 B2
7328071 Stehr et al. Feb 2008 B1
7383091 Chitre et al. Jun 2008 B1
7450999 Karicherla et al. Nov 2008 B1
7462184 Worley et al. Dec 2008 B2
7463933 Wahlstrom et al. Dec 2008 B2
7499758 Cates et al. Mar 2009 B2
7509169 Eigler et al. Mar 2009 B2
7515971 Doan Apr 2009 B1
7532939 Sommer et al. May 2009 B2
7558631 Cowan et al. Jul 2009 B2
7634319 Schneider et al. Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7657325 Williams Feb 2010 B2
7678128 Boyle et al. Mar 2010 B2
7717899 Bowe et al. May 2010 B2
7731655 Smith et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7740640 Ginn Jun 2010 B2
7785264 Hettrick et al. Aug 2010 B2
7799037 He et al. Sep 2010 B1
7801624 Flannery et al. Sep 2010 B1
7835801 Sundararajan et al. Nov 2010 B1
7840281 Kveen et al. Nov 2010 B2
7840283 Bush et al. Nov 2010 B1
7860580 Falk et al. Dec 2010 B2
7875049 Eversull et al. Jan 2011 B2
7890186 Wardle et al. Feb 2011 B2
7904179 Rutten et al. Mar 2011 B2
7920928 Yang et al. Apr 2011 B1
7993351 Worley et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8036757 Worley Oct 2011 B2
8057486 Hansen Nov 2011 B2
8082035 Glukhovsky Dec 2011 B2
8103361 Moser Jan 2012 B2
8108054 Helland Jan 2012 B2
8142347 Griego et al. Mar 2012 B2
8160722 Rutten et al. Apr 2012 B2
8170690 Morgan et al. May 2012 B2
8185213 Kveen et al. May 2012 B2
8219213 Sommer et al. Jul 2012 B2
8233994 Sommer et al. Jul 2012 B2
8252019 Fleming, III Aug 2012 B2
8295939 Jacobson Oct 2012 B2
8313445 Mishima et al. Nov 2012 B2
8352025 Jacobson Jan 2013 B2
8352028 Wenger Jan 2013 B2
8364277 Glukhovsky Jan 2013 B2
8364280 Marnfeldt et al. Jan 2013 B2
8406900 Barlov et al. Mar 2013 B2
8406901 Starkebaum et al. Mar 2013 B2
8428750 Kolberg Apr 2013 B2
8452420 Flach et al. May 2013 B2
8478431 Griswold et al. Jul 2013 B2
8489189 Tronnes Jul 2013 B2
8494650 Glukhovsky et al. Jul 2013 B2
8504156 Bonner et al. Aug 2013 B2
8518060 Jelich et al. Aug 2013 B2
8527068 Ostroff Sep 2013 B2
8532790 Griswold Sep 2013 B2
8548605 Ollivier Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8634912 Bornzin et al. Jan 2014 B2
8670842 Bornzin et al. Mar 2014 B1
8700181 Bornzin et al. Apr 2014 B2
8721587 Berthiaume et al. May 2014 B2
8727996 Allan et al. May 2014 B2
8738147 Hastings et al. May 2014 B2
8758365 Bonner et al. Jun 2014 B2
10071243 Kuhn et al. Sep 2018 B2
10518084 Kuhn et al. Dec 2019 B2
20020077556 Schwartz Jun 2002 A1
20030004537 Boyle et al. Jan 2003 A1
20040176797 Opolski Sep 2004 A1
20040230280 Cates Nov 2004 A1
20040249417 Ransbury et al. Dec 2004 A1
20050090890 Wu et al. Apr 2005 A1
20050267555 Marnfeldt et al. Dec 2005 A1
20060085039 Hastings et al. Apr 2006 A1
20060247753 Wenger et al. Nov 2006 A1
20070135883 Drasler et al. Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070233218 Kolberg Oct 2007 A1
20070239248 Hastings et al. Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070276444 Gelbart Nov 2007 A1
20070293904 Gelbart Dec 2007 A1
20080021532 Kveen et al. Jan 2008 A1
20080051863 Schneider et al. Feb 2008 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090281605 Marnfeldt et al. Nov 2009 A1
20100198288 Ostroff Aug 2010 A1
20100211149 Morgan et al. Aug 2010 A1
20110034939 Kveen et al. Feb 2011 A1
20110054555 Williams et al. Mar 2011 A1
20110112548 Fifer et al. May 2011 A1
20110125163 Rutten et al. May 2011 A1
20110190785 Gerber et al. Aug 2011 A1
20110190786 Gerber et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110270339 Murray, III et al. Nov 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20110307043 Ollivier Dec 2011 A1
20120078322 Dal Molin et al. Mar 2012 A1
20120078336 Helland Mar 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120109002 Mothilal et al. May 2012 A1
20120109079 Asleson et al. May 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac Jul 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120271134 Allan et al. Oct 2012 A1
20120330392 Regnier et al. Dec 2012 A1
20130006261 Lampropoulos et al. Jan 2013 A1
20130006262 Lampropoulos et al. Jan 2013 A1
20130012925 Berthiaume et al. Jan 2013 A1
20130035636 Beasley et al. Feb 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103049 Medtronic Apr 2013 A1
20130110219 Bornzin et al. May 2013 A1
20130116740 Bornzin et al. May 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131591 Berthiaume May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Waldhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130296957 Tronnes Nov 2013 A1
20140058494 Ostroff et al. Feb 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140180306 Grubac et al. Jun 2014 A1
20150039070 Kuhn et al. Feb 2015 A1
Foreign Referenced Citations (13)
Number Date Country
1003904 Jan 1977 CA
2053919 May 1972 DE
779080 May 2003 EP
H0288666 Jul 1990 JP
05245215 Sep 1993 JP
2011151104 Jun 2013 RU
03032807 Apr 2003 WO
2009039400 Mar 2009 WO
2009042295 Apr 2009 WO
2010131157 Nov 2010 WO
2012092067 Jul 2012 WO
2012092074 Jul 2012 WO
2014006471 Jan 2014 WO
Non-Patent Literature Citations (2)
Entry
Spickler, et al. “Totally Self-Contained Intracardiac Pacemaker” J. Electrocardiology, vol. 3, Nos. 3 & 4, pp. 325-331 (1970).
Merriam-Webster Definition of “Compound Curve”, accessed on Apr. 25, 2017. <http://www.merriam-webster.com/dictionary/compound%20curve>.
Related Publications (1)
Number Date Country
20230256240 A1 Aug 2023 US
Provisional Applications (1)
Number Date Country
61866799 Aug 2013 US
Continuations (3)
Number Date Country
Parent 17088835 Nov 2020 US
Child 18141183 US
Parent 16210536 Dec 2018 US
Child 17088835 US
Parent 14452680 Aug 2014 US
Child 16210536 US