The present disclosure pertains to medical devices, and methods for manufacturing medical devices. More particularly, the present disclosure pertains to leadless cardiac pacing devices.
A wide variety of medical devices have been developed for medical use, for example, cardiac use. Some of these devices include catheters, leads, pacemakers, and the like. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices as well as alternative methods for manufacturing and using medical devices.
This disclosure provides design, material, manufacturing method, and use alternatives for medical devices. An example implantable leadless pacing device may include a pacing capsule. The pacing capsule may include a housing. The housing may have a proximal region and a distal region. A first electrode may be disposed along the distal region. An anchoring member may be coupled to the distal region. One or more anti-rotation members may be fixedly attached to the distal region.
An example implantable leadless pacing device system may include a delivery catheter having a proximal section, a distal holding section, and a lumen formed therein. A push member may be slidably disposed within the lumen. A leadless pacing device may be slidably received within the distal holding section. The leadless pacing device may include a housing having a proximal region and a distal region. A first electrode may be disposed along the distal region. An anchoring member may be coupled to the distal region. One or more anti-rotation members may be fixedly attached to the distal region.
Another example implantable leadless pacing device system may include a delivery catheter having a proximal section, a distal holding section, and a lumen formed therein. A push member may be slidably disposed within the lumen. A leadless pacing device may be slidably received within the distal holding section. The leadless pacing device may include a housing having a proximal region and a distal region. A first electrode may be disposed along the distal region. A helical anchoring member may be coupled to the distal region. A plurality of anti-rotation members may be fixedly attached to the distal region and may be spaced from the helical anchoring member.
The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.
The disclosure may be more completely understood in consideration of the following detailed description in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include one or more particular features, structures, and/or characteristics. However, such recitations do not necessarily mean that all embodiments include the particular features, structures, and/or characteristics. Additionally, when particular features, structures, and/or characteristics are described in connection with one embodiment, it should be understood that such features, structures, and/or characteristics may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contrary.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
Cardiac pacemakers provide electrical stimulation to heart tissue to cause the heart to contract and thus pump blood through the vascular system. Conventional pacemakers typically include an electrical lead that extends from a pulse generator implanted subcutaneously or sub-muscularly to an electrode positioned adjacent the inside or outside wall of the cardiac chamber. As an alternative to conventional pacemakers, self-contained or leadless cardiac pacemakers have been proposed. A leadless cardiac pacemaker may take the form of a relatively small capsule that may be fixed to an intracardiac implant site in a cardiac chamber. It can be readily appreciated that the implantation of a leadless pacing device within a beating heart could become dislodged as the heart functions. Accordingly, it may be desirable for a leadless pacing device to include an anchoring mechanism and/or one or more anchoring members to help securing the pacing device to the heart.
Some of the features of device 10 can be seen in
Docking member 20 may include a head portion 22 and a neck portion 24 extending between housing 12 and head portion 22. Head portion 22 may be capable of engaging with a delivery and/or retrieval catheter. For example, head portion 22 may include a bore or opening 30 formed therein. The ends of bore 30 may be open or exposed while a central region of bore 30 may be covered by a section 34 of head portion. During delivery, device 10 may be secured to a delivery device by extending a suture through bore 30. A portion of the delivery catheter may include projections or lugs that may engage bore 30. Some additional details of example delivery devices for delivering device 10 to cardiac tissue are disclosed herein.
Docking member 20 may also be engaged if it is desired to retrieve and/or reposition device 10. For example, a retrieval catheter may be advanced to a position adjacent to device 10. A retrieval mechanism such as a snare, tether, arm, or other suitable structure may extend from the retrieval catheter and engage head portion 22. When suitably engaged, device 10 may be pulled from the cardiac tissue and, ultimately, removed from the patient or repositioned.
As the name suggest, anchoring member 18 may be used to anchor device 10 to the target tissue. A suitable number of anchoring member 18 may be used with device 10. For example, device 10 may include one, two, three, four, five, six, seven, eight, or more anchoring members. In at least some embodiments, anchoring member 18 may take the form of a helix or screw. According to these embodiments, anchoring member 18 may be threaded into cardiac tissue. Some additional details of example mechanisms for threading/anchoring device 10 to cardiac tissue are disclosed herein.
It can be appreciated that in order to securely anchor device 10 to cardiac tissue with a helical anchoring member 18, it may be desirable to reduce or prevent unintended rotation and/or “unthreading” of device 10. Because of this device, device 10 may include one or more anti-rotation tines or members 32. In general, anti-rotation members 32 may be disposed along distal region 14 and may extend radially outward from housing 12. In at least some embodiments, anti-rotation members 32 may help to maintain device 10 in a securely anchored arrangement. For example,
Anti-rotation members 32 may be fixedly attached to housing 12. In other words, anti-rotation members may be designed so that during typical use, anti-rotation members 32 remain attached to housing 12. In some embodiments, anti-rotation member 32 may have some freedom of movement relative to housing 10. For example, anti-rotation members 32 may be capable of pivoting, rotating, or otherwise moving relative to housing 12.
The form of anti-rotation members 32 may vary. For example, anti-rotation members 32 may take the form of cylindrical rods or tubes projecting from housing 12. The rods may have a generally circular cross-sectional shape. In at least some embodiments, anti-rotation members 32 may be substantially straight. In other embodiments, anti-rotation members 32 may include one or more curves or bends. A variety of other shapes, forms, and configurations are also contemplated for anti-rotation members 32 and some of these are disclosed herein. In addition, some devices may include combinations of differently shaped or oriented anti-rotation members 32.
Device 110 may include anti-rotation members 132. According to this embodiment, anti-rotation members 132 may be relatively flattened relative to anti-rotation members 132 or otherwise have a ribbon-like shape. In cross-section, anti-rotation members 132 may be described as having a rectangular cross-sectional shape. This is just an example. Other shapes are contemplated. Just like other anti-rotation members disclosed, anti-rotation members 132 herein may be capable of reducing or preventing unwanted rotation of device 110. For example, anti-rotation members 132 may become engaged or otherwise entwined with trabeculae along the inner walls of the heart so that unwanted rotation of device 110 may be reduced and/or prevented.
Device 210 may include anti-rotation members 232. According to this embodiment, anti-rotation members 232 may extend “straight” radially outward from distal region 214. For example, in at least some embodiments anti-rotation members 232 may extend in a direction that is substantially perpendicular to the longitudinal axis of housing 212. In other words, anti-rotation members 232 may lie in a plane that is normal to the longitudinal axis of housing 212. Just like other anti-rotation members disclosed, anti-rotation members 232 herein may be capable of reducing or preventing unwanted rotation of device 210. For example, anti-rotation members 232 may become engaged or otherwise entwined with trabeculae along the inner walls of the heart so that unwanted rotation of device 210 may be reduced and/or prevented.
Device 310 may include anti-rotation members 332. According to this embodiment, anti-rotation members 332 may have a polygonal cross-sectional shape. For example, anti-rotation members 332 may have a substantially trapezoidal cross-sectional shape. This is just an example. Other shapes are contemplated. Just like other anti-rotation members disclosed, anti-rotation members 332 herein may be capable of reducing or preventing unwanted rotation of device 310. For example, anti-rotation members 332 may become engaged or otherwise entwined with trabeculae along the inner walls of the heart so that unwanted rotation of device 310 may be reduced and/or prevented.
Device 410 may include anti-rotation members 432. According to this embodiment, anti-rotation members 432 may be angled and/or curved. For example, anti-rotation members 432 may extend circumferentially about housing 412 and may also curve and extend in the distal direction. This orientation of anti-rotation members 432 may be described as being helical or helically-oriented. This is just an example. Other shapes are contemplated. Just like other anti-rotation members disclosed, anti-rotation members 432 herein may be capable of reducing or preventing unwanted rotation of device 410. For example, anti-rotation members 432 may become engaged or otherwise entwined with trabeculae along the inner walls of the heart so that unwanted rotation of device 410 may be reduced and/or prevented.
Catheter 500 may be advanced through the vasculature to target region 546. For example, catheter 500 may be advanced through a femoral vein, into the inferior vena cava, into the right atrium, through the tricuspid valve, and into the right ventricle. Target region 546 may be a portion of the right ventricle. For example, target region 546 may be a portion of the right ventricle near the apex of the heart.
Device 510 may include anchor member 518 and anti-rotation members 532. Just like other anti-rotation members disclosed, anti-rotation members 532 herein may be capable of reducing or preventing unwanted rotation of device 510. For example, anti-rotation members 532 may become engaged or otherwise entwined with trabeculae along the inner walls of the heart so that unwanted rotation of device 510 may be reduced and/or prevented.
During advancement of catheter 500 through the vasculature, anti-rotation members 532 may be oriented in the distal direction (e.g., toward the distal end of device 510 and/or distally from device 510). Anti-rotation member 532 may be pivotable along device 510 so that anti-rotation members 532 are capable of pivoting so as to become oriented in the proximal direction after implantation. Such an orientation may aid anti-rotation members 532 in becoming engaged with trabeculae. However, other orientations are also contemplated. For example,
The materials that can be used for the various components of device 10 and catheter 500 (and/or other devices/catheters disclosed herein) may include those commonly associated with medical devices. For example, device 10 and/or catheter 500 may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the sheath can be blended with a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.
Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like); platinum enriched stainless steel; titanium; combinations thereof; and the like; or any other suitable material.
As alluded to herein, within the family of commercially available nickel-titanium or nitinol alloys, is a category designated “linear elastic” or “non-super-elastic” which, although may be similar in chemistry to conventional shape memory and super elastic varieties, may exhibit distinct and useful mechanical properties. Linear elastic and/or non-super-elastic nitinol may be distinguished from super elastic nitinol in that the linear elastic and/or non-super-elastic nitinol does not display a substantial “superelastic plateau” or “flag region” in its stress/strain curve like super elastic nitinol does. Instead, in the linear elastic and/or non-super-elastic nitinol, as recoverable strain increases, the stress continues to increase in a substantially linear, or a somewhat, but not necessarily entirely linear relationship until plastic deformation begins or at least in a relationship that is more linear that the super elastic plateau and/or flag region that may be seen with super elastic nitinol. Thus, for the purposes of this disclosure linear elastic and/or non-super-elastic nitinol may also be termed “substantially” linear elastic and/or non-super-elastic nitinol.
In some cases, linear elastic and/or non-super-elastic nitinol may also be distinguishable from super elastic nitinol in that linear elastic and/or non-super-elastic nitinol may accept up to about 2-5% strain while remaining substantially elastic (e.g., before plastically deforming) whereas super elastic nitinol may accept up to about 8% strain before plastically deforming. Both of these materials can be distinguished from other linear elastic materials such as stainless steel (that can also can be distinguished based on its composition), which may accept only about 0.2 to 0.44 percent strain before plastically deforming.
In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy is an alloy that does not show any martensite/austenite phase changes that are detectable by differential scanning calorimetry (DSC) and dynamic metal thermal analysis (DMTA) analysis over a large temperature range. For example, in some embodiments, there may be no martensite/austenite phase changes detectable by DSC and DMTA analysis in the range of about −60 degrees Celsius (° C.) to about 120° C. in the linear elastic and/or non-super-elastic nickel-titanium alloy. The mechanical bending properties of such material may therefore be generally inert to the effect of temperature over this very broad range of temperature. In some embodiments, the mechanical bending properties of the linear elastic and/or non-super-elastic nickel-titanium alloy at ambient or room temperature are substantially the same as the mechanical properties at body temperature, for example, in that they do not display a super-elastic plateau and/or flag region. In other words, across a broad temperature range, the linear elastic and/or non-super-elastic nickel-titanium alloy maintains its linear elastic and/or non-super-elastic characteristics and/or properties.
In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy may be in the range of about 50 to about 60 weight percent nickel, with the remainder being essentially titanium. In some embodiments, the composition is in the range of about 54 to about 57 weight percent nickel. One example of a suitable nickel-titanium alloy is FHP-NT alloy commercially available from Furukawa Techno Material Co. of Kanagawa, Japan. Some examples of nickel titanium alloys are disclosed in U.S. Pat. Nos. 5,238,004 and 6,508,803, which are incorporated herein by reference. Other suitable materials may include ULTANIUM™ (available from Neo-Metrics) and GUM METAL™ (available from Toyota). In some other embodiments, a superelastic alloy, for example a superelastic nitinol can be used to achieve desired properties.
In at least some embodiments, portions or all of device 10 and/or catheter 500 may also be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of device 10 and/or catheter 500 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of device 10 and/or catheter 500 to achieve the same result.
In some embodiments, a degree of Magnetic Resonance Imaging (MRI) compatibility is imparted into device 10 and/or catheter 500. For example, device 10 and/or catheter 500 (or portions thereof) may be made of a material that does not substantially distort the image and create substantial artifacts (i.e., gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image. Device 10 and/or catheter 500 (or portions thereof) may also be made from a material that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
This application claims the benefit of U.S. Provisional Application No. 61/866,813 filed Aug. 16, 2013, the complete disclosure of which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
721869 | Dunning | Mar 1903 | A |
3717151 | Collett | Feb 1973 | A |
3754555 | Schmitt | Aug 1973 | A |
3814104 | Irnich et al. | Jun 1974 | A |
3835864 | Rasor et al. | Sep 1974 | A |
3902501 | Citron et al. | Sep 1975 | A |
3943936 | Rasor | Mar 1976 | A |
3971364 | Fletcher et al. | Jul 1976 | A |
3976082 | Schmitt | Aug 1976 | A |
4103690 | Harris | Aug 1978 | A |
4112952 | Thomas et al. | Sep 1978 | A |
4269198 | Stokes | May 1981 | A |
4280512 | Karr | Jul 1981 | A |
4301815 | Doring | Nov 1981 | A |
4402328 | Doring | Sep 1983 | A |
4409994 | Doring | Oct 1983 | A |
4502492 | Bornzin | Mar 1985 | A |
4662382 | Sluetz et al. | May 1987 | A |
4898577 | Badger et al. | Feb 1990 | A |
4913164 | Greene et al. | Apr 1990 | A |
5003990 | Osypka | Apr 1991 | A |
5057114 | Wittich et al. | Oct 1991 | A |
5129749 | Sato | Jul 1992 | A |
5171233 | Amplatz et al. | Dec 1992 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5257634 | Kroll | Nov 1993 | A |
5282845 | Bush et al. | Feb 1994 | A |
5300107 | Stokes et al. | Apr 1994 | A |
5318528 | Heaven et al. | Jun 1994 | A |
5336253 | Gordon et al. | Aug 1994 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5405374 | Stein | Apr 1995 | A |
5411535 | Fujii et al. | May 1995 | A |
5425756 | Heil et al. | Jun 1995 | A |
5443492 | Stokes et al. | Aug 1995 | A |
5492119 | Abrams | Feb 1996 | A |
5522875 | Gates et al. | Jun 1996 | A |
5522876 | Rusink | Jun 1996 | A |
5545201 | Helland et al. | Aug 1996 | A |
5545206 | Carson | Aug 1996 | A |
5562723 | Rugland et al. | Oct 1996 | A |
5575814 | Giele et al. | Nov 1996 | A |
5578068 | Laske et al. | Nov 1996 | A |
5697936 | Shipko et al. | Dec 1997 | A |
5716390 | Li | Feb 1998 | A |
5716391 | Grandjean | Feb 1998 | A |
5755764 | Schroeppel | May 1998 | A |
5776178 | Pohndorf et al. | Jul 1998 | A |
5807399 | Laske et al. | Sep 1998 | A |
5837006 | Ocel et al. | Nov 1998 | A |
5837007 | Altman et al. | Nov 1998 | A |
5851226 | Skubitz et al. | Dec 1998 | A |
5871531 | Struble | Feb 1999 | A |
5908381 | Aznoian et al. | Jun 1999 | A |
5908447 | Schroeppel et al. | Jun 1999 | A |
6041258 | Cigaina et al. | Mar 2000 | A |
6055457 | Bonner | Apr 2000 | A |
6074401 | Gardnier et al. | Jun 2000 | A |
6078840 | Stokes | Jun 2000 | A |
6093177 | Javier et al. | Jul 2000 | A |
6129749 | Bartig et al. | Oct 2000 | A |
6132456 | Sommer et al. | Oct 2000 | A |
6181973 | Ceron et al. | Jan 2001 | B1 |
6188932 | Lindegren | Feb 2001 | B1 |
6240322 | Peterfeso et al. | May 2001 | B1 |
6251104 | Kesten et al. | Jun 2001 | B1 |
6290719 | Garberoglio | Sep 2001 | B1 |
6321124 | Cigaina | Nov 2001 | B1 |
6322548 | Payne et al. | Nov 2001 | B1 |
RE37463 | Altman | Dec 2001 | E |
6358256 | Reinhardt | Mar 2002 | B1 |
6363938 | Saadat et al. | Apr 2002 | B2 |
6381495 | Jenkins | Apr 2002 | B1 |
6381500 | Fischer, Sr. | Apr 2002 | B1 |
6408214 | Williams et al. | Jun 2002 | B1 |
6458145 | Ravenscroft et al. | Oct 2002 | B1 |
6477423 | Jenkins | Nov 2002 | B1 |
6500182 | Foster | Dec 2002 | B2 |
6510332 | Greenstein | Jan 2003 | B1 |
6510345 | Van Bentem | Jan 2003 | B1 |
6522915 | Ceballos et al. | Feb 2003 | B1 |
6572587 | Lerman et al. | Jun 2003 | B2 |
6582441 | He et al. | Jun 2003 | B1 |
6592581 | Bowe | Jul 2003 | B2 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6626915 | Leveillee | Sep 2003 | B2 |
6638268 | Niazi | Oct 2003 | B2 |
6684109 | Osypka | Jan 2004 | B1 |
6711443 | Osypka | Mar 2004 | B2 |
6743240 | Smith et al. | Jun 2004 | B2 |
6755812 | Peterson et al. | Jun 2004 | B2 |
6909920 | Lokhoff et al. | Jun 2005 | B2 |
6944507 | Froberg et al. | Sep 2005 | B2 |
6953454 | Peterson et al. | Oct 2005 | B2 |
7027876 | Casavant et al. | Apr 2006 | B2 |
7082335 | Klein et al. | Jul 2006 | B2 |
7085606 | Flach et al. | Aug 2006 | B2 |
7092765 | Geske et al. | Aug 2006 | B2 |
7092766 | Salys et al. | Aug 2006 | B1 |
7120504 | Osypka | Oct 2006 | B2 |
7149587 | Wardle et al. | Dec 2006 | B2 |
7158838 | Seifert et al. | Jan 2007 | B2 |
7162310 | Doan | Jan 2007 | B2 |
7181288 | Rezai et al. | Feb 2007 | B1 |
7187982 | Seifert et al. | Mar 2007 | B2 |
7200437 | Nabutovsky et al. | Apr 2007 | B1 |
7212869 | Wahlstrom et al. | May 2007 | B2 |
7229415 | Schwartz | Jun 2007 | B2 |
7251532 | Hess et al. | Jul 2007 | B2 |
7289853 | Campbell et al. | Oct 2007 | B1 |
7313445 | McVenes et al. | Dec 2007 | B2 |
7326231 | Phillips et al. | Feb 2008 | B2 |
7328071 | Stehr et al. | Feb 2008 | B1 |
7383091 | Chitre et al. | Jun 2008 | B1 |
7450999 | Karicherla et al. | Nov 2008 | B1 |
7462184 | Worley et al. | Dec 2008 | B2 |
7463933 | Wahlstrom et al. | Dec 2008 | B2 |
7499758 | Cates et al. | Mar 2009 | B2 |
7509169 | Eigler et al. | Mar 2009 | B2 |
7515971 | Doan | Apr 2009 | B1 |
7532939 | Sommer et al. | May 2009 | B2 |
7558631 | Cowan et al. | Jul 2009 | B2 |
7634319 | Schneider et al. | Dec 2009 | B2 |
7647109 | Hastings et al. | Jan 2010 | B2 |
7657325 | Williams | Feb 2010 | B2 |
7678128 | Boyle et al. | Mar 2010 | B2 |
7717899 | Bowe et al. | May 2010 | B2 |
7731655 | Smith et al. | Jun 2010 | B2 |
7734343 | Ransbury et al. | Jun 2010 | B2 |
7740640 | Ginn | Jun 2010 | B2 |
7785264 | Hettrick et al. | Aug 2010 | B2 |
7799037 | He et al. | Sep 2010 | B1 |
7801624 | Flannery et al. | Sep 2010 | B1 |
7835801 | Sundararajan et al. | Nov 2010 | B1 |
7840281 | Kveen et al. | Nov 2010 | B2 |
7840283 | Bush et al. | Nov 2010 | B1 |
7860580 | Falk et al. | Dec 2010 | B2 |
7875049 | Eversull et al. | Jan 2011 | B2 |
7890186 | Wardle et al. | Feb 2011 | B2 |
7904179 | Ruffen et al. | Mar 2011 | B2 |
7920928 | Yang et al. | Apr 2011 | B1 |
7993351 | Worley et al. | Aug 2011 | B2 |
8010209 | Jacobson | Aug 2011 | B2 |
8036757 | Worley | Oct 2011 | B2 |
8057486 | Hansen | Nov 2011 | B2 |
8082035 | Glukhovsky | Dec 2011 | B2 |
8103361 | Moser | Jan 2012 | B2 |
8108054 | Helland | Jan 2012 | B2 |
8142347 | Griego et al. | Mar 2012 | B2 |
8160722 | Ruffen et al. | Apr 2012 | B2 |
8185213 | Kveen et al. | May 2012 | B2 |
8219213 | Sommer et al. | Jul 2012 | B2 |
8233994 | Sommer et al. | Jul 2012 | B2 |
8252019 | Fleming, III | Aug 2012 | B2 |
8295939 | Jacobson | Oct 2012 | B2 |
8313445 | Mishima et al. | Nov 2012 | B2 |
8352025 | Jacobson | Jan 2013 | B2 |
8352028 | Wenger | Jan 2013 | B2 |
8364277 | Glukhovsky | Jan 2013 | B2 |
8364280 | Marnfeldt et al. | Jan 2013 | B2 |
8406900 | Barlov et al. | Mar 2013 | B2 |
8406901 | Starkebaum et al. | Mar 2013 | B2 |
8428750 | Kolberg | Apr 2013 | B2 |
8452420 | Flach et al. | May 2013 | B2 |
8478431 | Griswold et al. | Jul 2013 | B2 |
8489189 | Tronnes | Jul 2013 | B2 |
8494650 | Glukhovsky et al. | Jul 2013 | B2 |
8504156 | Bonner et al. | Aug 2013 | B2 |
8518060 | Jelich et al. | Aug 2013 | B2 |
8527068 | Ostroff | Sep 2013 | B2 |
8532790 | Griswold | Sep 2013 | B2 |
8548605 | Ollivier | Oct 2013 | B2 |
8565897 | Regnier et al. | Oct 2013 | B2 |
8615310 | Khairkhahan et al. | Dec 2013 | B2 |
8634912 | Bornzin et al. | Jan 2014 | B2 |
8670842 | Bornzin et al. | Mar 2014 | B1 |
8721587 | Berthiaume et al. | May 2014 | B2 |
8727996 | Allan et al. | May 2014 | B2 |
8758365 | Bonner et al. | Jun 2014 | B2 |
20020077556 | Schwartz | Jun 2002 | A1 |
20030004537 | Boyle et al. | Jan 2003 | A1 |
20040176797 | Opolski | Sep 2004 | A1 |
20050090890 | Wu et al. | Apr 2005 | A1 |
20050267555 | Marnfeldt et al. | Dec 2005 | A1 |
20060247753 | Wenger et al. | Nov 2006 | A1 |
20070135883 | Drasler et al. | Jun 2007 | A1 |
20070150037 | Hastings et al. | Jun 2007 | A1 |
20070150038 | Hastings et al. | Jun 2007 | A1 |
20070233218 | Kolberg | Oct 2007 | A1 |
20070239248 | Hastings et al. | Oct 2007 | A1 |
20070255376 | Michels et al. | Nov 2007 | A1 |
20070276444 | Gelbart | Nov 2007 | A1 |
20070293904 | Gelbart | Dec 2007 | A1 |
20080021532 | Kveen et al. | Jan 2008 | A1 |
20080109054 | Hastings | May 2008 | A1 |
20090082828 | Ostroff | Mar 2009 | A1 |
20090281605 | Marnfeldt et al. | Nov 2009 | A1 |
20100114280 | Hill | May 2010 | A1 |
20100198288 | Ostroff | Aug 2010 | A1 |
20100234931 | Jarl | Sep 2010 | A1 |
20110034939 | Kveen et al. | Feb 2011 | A1 |
20110112548 | Fifer et al. | May 2011 | A1 |
20110125163 | Rutten et al. | May 2011 | A1 |
20110190785 | Gerber et al. | Aug 2011 | A1 |
20110190786 | Gerber et al. | Aug 2011 | A1 |
20110208260 | Jacobson | Aug 2011 | A1 |
20110237967 | Moore et al. | Sep 2011 | A1 |
20110270339 | Murray, III et al. | Nov 2011 | A1 |
20110270340 | Pellegrini et al. | Nov 2011 | A1 |
20110282423 | Jacobson | Nov 2011 | A1 |
20110307043 | Ollivier | Dec 2011 | A1 |
20120078322 | Dal Molin et al. | Mar 2012 | A1 |
20120078336 | Helland | Mar 2012 | A1 |
20120095539 | Khairkhahan et al. | Apr 2012 | A1 |
20120109002 | Mothilal et al. | May 2012 | A1 |
20120109079 | Asleson et al. | May 2012 | A1 |
20120109148 | Bonner et al. | May 2012 | A1 |
20120109149 | Bonner et al. | May 2012 | A1 |
20120116489 | Khairkhahan | May 2012 | A1 |
20120158111 | Khairkhahan et al. | Jun 2012 | A1 |
20120165827 | Khairkhahan et al. | Jun 2012 | A1 |
20120172690 | Anderson et al. | Jul 2012 | A1 |
20120172891 | Lee | Jul 2012 | A1 |
20120172892 | Grubac et al. | Jul 2012 | A1 |
20120197373 | Khairkhahan et al. | Aug 2012 | A1 |
20120232565 | Kveen et al. | Sep 2012 | A1 |
20120271134 | Allan et al. | Oct 2012 | A1 |
20120330392 | Regnier et al. | Dec 2012 | A1 |
20130006261 | Lampropoulos et al. | Jan 2013 | A1 |
20130006262 | Lampropoulos et al. | Jan 2013 | A1 |
20130012925 | Berthiaume et al. | Jan 2013 | A1 |
20130035636 | Beasley et al. | Feb 2013 | A1 |
20130035748 | Bonner et al. | Feb 2013 | A1 |
20130053921 | Bonner et al. | Feb 2013 | A1 |
20130079798 | Tran et al. | Mar 2013 | A1 |
20130079861 | Reinert et al. | Mar 2013 | A1 |
20130103047 | Steingisser et al. | Apr 2013 | A1 |
20130103049 | Medtronic | Apr 2013 | A1 |
20130116741 | Bornzin et al. | May 2013 | A1 |
20130123875 | Varady et al. | May 2013 | A1 |
20130131591 | Berthiaume et al. | May 2013 | A1 |
20130131693 | Berthiaume et al. | May 2013 | A1 |
20130253342 | Griswold et al. | Sep 2013 | A1 |
20130253343 | Waldhauser et al. | Sep 2013 | A1 |
20130253344 | Griswold et al. | Sep 2013 | A1 |
20130253345 | Griswold et al. | Sep 2013 | A1 |
20130253346 | Griswold et al. | Sep 2013 | A1 |
20130253347 | Griswold et al. | Sep 2013 | A1 |
20130296957 | Tronnes | Nov 2013 | A1 |
20140058494 | Ostroff et al. | Feb 2014 | A1 |
20140074114 | Khairkhahan et al. | Mar 2014 | A1 |
20140148815 | Wenzel et al. | May 2014 | A1 |
20140180306 | Grubac et al. | Jun 2014 | A1 |
20140303704 | Suwito | Oct 2014 | A1 |
20140324145 | Eggen | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
1003904 | Jan 1977 | CA |
2053919 | May 1972 | DE |
779080 | May 2003 | EP |
05245215 | Sep 1993 | JP |
03032807 | Apr 2003 | WO |
2009039400 | Mar 2009 | WO |
2012092067 | Jul 2012 | WO |
2012092074 | Jul 2012 | WO |
Entry |
---|
Spickler, et al. “Totally Self-Contained Intracardiac Pacemaker” J. Electrocardiology, vol. 3, Nos. 3 & 4, pp. 325-331 (1970). |
Number | Date | Country | |
---|---|---|---|
20150051612 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61866813 | Aug 2013 | US |